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S1. Supplementary matrix-based LCA
In the 1990s, Heijungs et al.1 proposed a matrix method to solve the inventory problem in LCA (see Heijungs
and Suh2 for a brief history of the matrix method). It also provides explicit algebraic equations to calculate
environmental impact though several intermediate steps. In the first step, they define economic flows (also
known as technology flows) and environmental flows (also known as intervention flows) as follows:

• aij : economic flow i of unit process j.

• bij : environmental flow i of unit process j

Each elementary process is represented as a vector in a base of economic flows and a base of environmental
flows giving the economic matrix A and the environmental matrix B. The negative value corresponds to
consumption, and the positive value corresponds to emissions.

We denote S, the scaling matrix. We obtain the final demand matrix f as follows:

f = AS (1)

so the scaling matrix S is equal to :

S = A−1f (2)

where final demand matrix f is a vector that is defined arbitrarily. The result g is then defined with S
and B:

g = BS (3)

Lastly,3 went on from the inventory flows to the aggregation of environmental impacts h using the
characterization matrix Q:

h = Qg (4)

Matrix Q represents factors of characterization for each impact category. The goal is to reduce all the
inventory flows participating into an impact category in a single unit quantifying the associated potential
impact. For example, for the global warming impact category (greenhouse effect), many substances can lead
to this effect, such as water vapor, CO2, CO3, CH4, N2O, etc. By the matrix Q, everything is reduced to
kg CO2 equivalent. There are several methods of characterization (ReCiPe, UseTox, ILCD, IMPACT2002+,
etc.); each method defines different impact categories, so each method has its own characterization matrix.
In summary, the formula for the environmental impacts h is described by the following equation:

h = QBA−1f (5)

where Λ = BA−1 is called intensity matrix. A overview of all matrix in the matrix-based LCA is given in the 
table S1.

Table S1: Overview of the matrix in matrix-based LCA

Symbol Name Dimension (rows × columns)
A (aij) Economic (technology) matrix Economic flows×processes
B (aij) Environmental (intervention) matrix Environmental flows×processes
Q (qij) Characterization matrix Categories×environmental flows
S (sj) Scaling matrix Processes×1
g (gi) inventory matrix Environmental flows×1
h (hk) Environmental impacts Categories×1
Λ (λij) Intensity matrix Environmental flows×economic flows
f (fi) Final demand matrix Economic flows×1
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S2. Supplementary relative sensitivity coefficients
Given a function (model) ϕ with output y and input parameters xi and xj :

y = ϕ(xi, xj) (6)

The model ϕ can be a matrix-based LCA model (see Equation 5 for example). The sensitivity coefficients
of xi and xj noted ∂y

∂xi
and ∂y

∂xj
can be calculated by the partial derivative of function ϕ:

∂y
∂xi

= ∂ϕ(xi, xj)
∂xi

∂y
∂xj

= ∂ϕ(xi, xj)
∂xj

(7)

We then investigate dimensionless multipliers, such as:
∂y
∂xi

xi
y = ∂y/y

∂xi/xi

∂y
∂xj

xj
y = ∂y/y

∂xj/xj

(8)

The results of these formulas are sensitivity ratios, and are termed "relative". The objective is to observe
a small change in input parameter that leads to a change in the result. The partial derivatives for the matrix
A and B are :

∂hk
∂aij

= −sj

∑
l

(qklλli) (9)

∂hk
∂bij

= qkisj (10)

The relative sensitivity coefficient of the economic matrix A and the environmental matrix B are (see
Table S1 for information on the parameters):

∂hk/hk

∂aij/aij
= −aij

hk
sj

∑
l

(qklλli) (11)

∂hk/hk

∂bij/bij
= bij

hk
qkisj (12)

These values can be negative indicating that the change in the result is negative with respect to the varied
parameter4.
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S3. Modeling uncertainty: univariate and multivariate random
sampling
Log-normal distribution is defined by its mean µ and its variance σ2; parameter σ is its standard deviation
(noted SD). The distribution is often abbreviated lnN(µ, σ). The probability density function is described
so that :

f(x) = 1
xσ
√

2π
exp

{
− (ln(x)− µ)2

2σ2

}
, x > 0 (13)

For the correlation case, a multivariate log-normal distribution must be used, it is definition is defined by:

f(X) = 1√
(2π)p|Σ|

(
∏p

i=1
1
xi

)exp
{
− 1

2 (ln(X)− µ)T Σ−1(ln(X)− µ)
}
, ∀xi > 0 (14)

where p represents the number of variables and µ is the means corresponding to vectors. X = (x1, x2, . . . , xp)
and ln(X) = (ln(x1), ln(x2), . . . , ln(xp)). |Σ| is the determinant of the variance-covariance matrix Σ (p× p),
and Σ−1 is the inverse covariance matrix. The variance-covariance matrix Σ (p× p) define as following:

Σ(p× p) =


var(x1) cov(x1, x2) · · · cov(x1, xp)

cov(x2, x1)
. . . · · ·

...
...

...
. . .

...
cov(xp, x1) · · · · · · cov(xp)

 =


σ2

x1
σx1x2 · · · σx1xp

)

σx2x1

. . . · · ·
...

...
...

. . .
...

σxpx1 · · · · · · σ2
xp

 (15)

where cov(x1, x2) = σx1x2 = ρx1x2 ∗ σx1 ∗ σx2 . We note that other probability distributions can be used.
However, for the sake of simplicity, the study is limited to this probability distribution.
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S4. Supplementary Sobol indices
TSI expresses all the effects of an uncertainty on the output result. The relationship between SI and TSI is
described as follows :

TSI(xi) = SI(xi)︸ ︷︷ ︸
main effect

+
∑
j 6=i

SI(xi,j) +
∑

j 6=i,k 6=i,j<k

SI(xi,j,k) + · · ·︸ ︷︷ ︸
total interactions

=
∑
l∈#i

SI(xl)

where xi,j (id. xi,j,k) represents interactions between xi and xj (and xk). #i represents all subsets which
contain the index i. hence

∑
l∈#i SI(xl) is the sum of all the sensitivity indices involving uncertainty xi.

SI(xi) is also known as the main effect, SI(xi,j) (id. SI(xi,j,k)) is the interaction in the second degree (id.
third degree), and the sum of all degrees is termed total interactions.
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S5. Supplementary information for LCA practitioners
Figure S1 presents an example of an LCA model as done by LCA practitioners: a process tree. It shows that the 
different processes are split in foreground and background activities. Foreground activities concern processes 
of the system that are specific t o i t5 and f or which s pecific da ta is  pr ovided di rectly by  LCA practitioner. 
Background activities are processes, which supply energy and materials to the foreground system, via a 
homogeneous market so that individual and operations cannot be identified6. Background LCI data is taken 
from LCI databases.

Figure S1: Example of LCA model (Process tree) illustrating the fertilisation of 1 ha (reference flow)

Interactions are produced by the model itself (process tree) and due to explicit causality relations. Since
this information is embedded in A matrix for economic flows and B matrix for environmental flows, the LCA
practitioner do not need to supply any additional data for interactions assessment.

Correlation presents the relationship among random variables. It quantify whether and how strongly pairs
of random variable are related. The information related to correlation is generally not embedded in most of
Life Cycle Inventories databases and models. Since it is a difficult task to identify all potential correlations
within a LCA process tree, we propose to split it in two parts:

• For foreground activities, the practitioner has the expertise and should be able to complete the corre-
lation matrix. Some methods7;8;9;10 have been proposed in literature for assessing correlations; but their
adaptation to the LCA specificities have not yet being done. For the illustration example hereunder,
correlation coefficients have been estimated empirically, and thus are quite arbitrary and subjective. As
such methods will become more used within the LCA community, guidelines should be provided in order
to help practitioners assessing correlation between the variables of their modelled system, combining,
if need both empirical and existing methods. We could imagine recommendations linked to families of
correlated issues, in the same way that have been established Data Quality Indicators (DQI) to assess
uncertainty in LCI databases.

• Until Databases include such information, the identification of correlated input parameters for back-
ground activities seems to be often not feasible for a common LCA practitioner (it should need
expertise for all background processes and activities).

For the construction of the correlation matrix of the agricultural example presented in Figure S1, the first
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step is to identify stochastic external processes or phenomena, which can affect uncertainty associated to
LCA model variables, such as:

• Climatic factors (e.g. rain).

• Field topography and soil conditions.

• Agricultural practices (e.g. human factor associated to the technology used for spraying).

These external stochastic processes can have a combined effect (i.e. a correlated effect) on the uncertainties
of couples of LCA model variables. For instance, climatic factor such as rain can affect both field nitrates
and phosphorus emissions (via leaching). Field topography and soil conditions have a coupled effect on the
sprayed amount of N&P-fertilizers per hectare and on the diesel consumption: flow rate (i.e. dose per ha) is
proportional to the sprayer advance (using electronic device measuring wheels rotations) and is correlated to
soil conditions due to wheel spin which also affects the fuel consumption. Agricultural practices (e.g. spraying
tractor speed and operator carefulness for avoiding overlapping) may lead to a heterogeneous distribution of
fertilizers on the field and may affect as well fuel consumption per hectare.

On the contrary, CO2 emissions from tractor may directly proportional to diesel consumption, given
the explicit internal causality relation between these two variables (fuel combustion model). This is clearly
involved by the model itself (process tree). We consider that no values of correlation factors are implemented
in the correlation matrix.

Based on that, Table S2 shows how the correlation matrix can be determined empirically for the 
agricultural example (Figure S1).

Table S2: Correlation matrix for example of Figure S1.

CO2 emis-
sion in
Tractor
operation

N-Nitrate
emissions
to water in
Fertiliza-
tion

P-
Phosophate
emissions
to water in
Fertiliza-
tion

Diesel con-
sumption in
Tractor op-
eration

N-Fertilizer
consump-
tion in
Fertiliza-
tion

P-Fertilizer
amount per
hectare in
Fertilization

CO2 emission in
Tractor operation

1 0 0 0 0 0

N-Nitrate emissions
to water in Fertil-
ization

0 1 0.9(a) 0 0 0

P-Phosophate
emissions to water
in Fertilization

0 0.9(a) 1 0 0 0

Diesel consumption
in Tractor opera-
tion

0 0 0 1 0.4(b)(c) 0.4(b)(c)

N-Fertilizer con-
sumption in Fertil-
ization

0 0 0 0.4(b)(c) 1 0.8(b)(c)

P-Fertilizer amount
per hectare in Fer-
tilization

0 0 0 0.4(b)(c) 0.8(b)(c) 1

Legend:
(a) Due to uncertainty related to the climatic factor (e.g. rain), N-Nitrate emissions to water are correlated with
P-Phosphate emissions.
(b) Due to uncertainty related to field topography and soil conditions, N&P-fertilizers amounts per hectare and Diesel
consumption are correlated. N-fertilizers and P-fertilizers doses may be more correlated between themselves than with
Diesel consumption, which explains the differences between the proposed correlation factors.
(c) Due to uncertainty related to agricultural practices, N&P-fertilizers amounts per hectare and Diesel consumption
are also correlated.
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Table S3. Correlation matrix. We consider that Phenol and Gas are correlated. Indeed, gas is used in 
the manufacture of methanol which is based on the production of formaldehyde itself. Formaldehyde and 
Phenol are both binding agents (fixing agents/binders) used to secure the glass fibers in the manufacture 
of glass wool11.

Parameters CO2in Am-
monia

CO2in Lig-
nitePower

Phenol Gas

CO2inAmmonia 1 0 0 0
CO2inLignitePower 0 1 0 0
Phenol 0 0 1 0.9
Gas 0 0 0.9 1

S8



References
(1) R. Heijungs, J. Guinée, and C. voor Milieukunde, Environmental life cycle assessment of products:

backgrounds-October, 1992. Centre of Environmental Science, 1992.

(2) R. Heijungs and S. Suh, “Reformulation of matrix-based lci: from product balance to process balance,”
Journal of Cleaner Production, vol. 14, no. 1, pp. 47–51, 2006.

(3) R. Heijungs and S. Suh, The computational structure of life cycle assessment, vol. 11. Springer, 2002.

(4) R. Hischier, P. Wäger, and J. Gauglhofer, “Does weee recycling make sense from an environmental
perspective?: The environmental impacts of the swiss take-back and recycling systems for waste electrical
and electronic equipment (weee),” Environmental Impact Assessment Review, vol. 25, no. 5, pp. 525–539,
2005.

(5) I. Handbook, “Ilcd handbook: General guide for life cycle assessment-detailed guidance. 417 pages,”
Téléchargeable à l’adresse: http://lct. jrc. ec. europa. eu/pdf-directory/ILCD-Handbook-Generalguide-
for-LCA-DETAIL-online-12March2010. pdf, 2010.

(6) A. Azapagic, Environmental System Analysis: The Application of Linear Programming to Life Cycle
Assessment Volume 1. PhD thesis, University of Surrey, 1996.

(7) K. Pearson, “On a new method of determining correlation between a measured character a, and a
character b, of which only the percentage of cases wherein b exceeds (or falls short of) a given intensity
is recorded for each grade of a,” Biometrika, vol. 7, no. 1/2, pp. 96–105, 1909.

(8) S. Wright, “Correlation and causation,” Journal of agricultural research, vol. 20, no. 7, pp. 557–585,
1921.

(9) F. Esscher, “On a method of determining correlation from the ranks of the variates,” Scandinavian
Actuarial Journal, vol. 1924, no. 1, pp. 201–219, 1924.

(10) H. Hotelling, “Relations between two sets of variates,” Biometrika, pp. 321–377, 1936.

(11) J. Wang, M.-P. G. Laborie, and M. P. Wolcott, “Correlation of mechanical and chemical cure de-
velopment for phenol–formaldehyde resin bonded wood joints,” Thermochimica Acta, vol. 513, no. 1,
pp. 20–25, 2011.

S9




