Intercalation Route to Complex Perovskites $AM_{0.2}$ Ta_{0.8}O_{2.8}N_{0.2} (A =Sr, Ba; M =Li, Na): Neutron Diffraction and Nuclear Magnetic Resonance Study

Young-Il Kim,^{*,†} Younkee Paik,[‡] Maxim Avdeev[§]

[†] Department of Chemistry, Yeungnam University, Gyeongsan 712-749, Korea

[‡] Korea Basic Science Institute, Daegu 702-701, Korea

[§] Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia

	$SrLi_{0.2}Ta_{0.8}O_{2.8}N_{0.2}$	$SrNa_{0.2}Ta_{0.8}O_{2.8}N_{0.2}$	$BaLi_{0.2}Ta_{0.8}O_{2.8}N_{0.2}$	BaNa _{0.2} Ta _{0.8} O _{2.8} N _{0.2}
λ (Å)	1.5475	1.5472	1.5472	1.5472
space group	I4/mcm	I4/mcm	$Pm\overline{3}m$	$Pm\overline{3}m$
Ζ	4	4	1	1
<i>a</i> (Å)	5.67696(9)	5.7227(1)	4.11049(2)	4.13271(4)
<i>c</i> (Å)	8.0436(2)	8.1165(4)		
$V(\text{\AA}^3)$	259.228(5)	265.81(1)	69.451(1)	70.584(2)
2θ range	10-130.5	12-130.5	10–130	12–130
$N_{ m data}$	12049	11849	11999	11799
$N_{ m obs}$	75	91	24	26
R_{wp} (%)	4.99	6.60	8.03	7.37
R_p (%)	4.24	5.27	7.03	6.10
R_{F2} (%)	1.71	4.14	2.03	5.07
χ^2	1.73	2.74	2.57	2.53

Table S1. Summary of the X-ray Rietveld refinement of $AM_{0.2}$ Ta_{0.8}O_{2.8}N_{0.2} (A = Li, Na; M = Sr, Ba).

Table S2. Atomic parameters for $SrM_{0.2}Ta_{0.8}O_{2.8}N_{0.2}$ (M = Li, Na) from an X-ray Rietveld refinement.

atom	site	M = Li		M = Na	
		occupancy	$U_{\rm iso}({\rm \AA}^2)$	occupancy	$U_{\rm iso}({\rm \AA}^2)$
Sr	4 <i>b</i> (0, ¹ / ₂ , ¹ / ₄)	Sr _{1.0}	0.0147(2)	Sr _{1.0}	0.0242(2)
M/Ta	4c(0,0,0)	$Li_{0.244(2)}Ta_{0.756}$	0.0072(1)	$Na_{0.19(1)}Ta_{0.81}$	0.0215(1)
O/N1	4 <i>a</i> (0, 0, ¹ ⁄ ₄)	$O_{0.933}N_{0.067}$	0.0249(7)	$O_{0.933}N_{0.067}$	0.024(1)
O/N2	$8h(x, x + \frac{1}{2}, 0)$	$O_{0.933}N_{0.067}$	0.0249	$O_{0.933}N_{0.067}$	0.024
		x = 0.7752(7)		x = 0.7820(8)	

Table S3. Atom	ic parameters for	$BaM_{0.2}Ta_{0.8}O_{2.3}$	$_{8}N_{0.2}$ (<i>M</i> = Li, Na)) from an X-ray	Rietveld refinement.
----------------	-------------------	----------------------------	------------------------------------	-----------------	----------------------

atom	site	M = Li		M = Na	
		occupancy	$U_{ m iso}$ (Å ²)	occupancy	$U_{ m iso}$ (Å ²)
Ba	1 <i>a</i> (0, 0, 0)	Ba _{1.0}	0.0084(2)	Ba _{1.0}	0.0123(2)
M/Ta	1b (½, ½, ½)	$Li_{0.206(2)}Ta_{0.794}$	0.0072(2)	$Na_{0.18(1)}Ta_{0.82}$	0.0107(2)
O/N	3c (0, ½, ½)	$O_{0.933}N_{0.067}$	0.0058(8)	$O_{0.933}N_{0.067}$	0.0053(8)

Figure S1. (continued)

Figure S1. XPD patterns (Cu K_{α}) of reference compounds, Ba₄LiTa₃O₁₂, BaNa_{0.25}Ta_{0.75}O₃, LiTaO₃, Li₃TaO₄, NaTaO₃, and Na₂WO₄.

Figure S2. Rietveld refinement of SXPD ($\lambda \approx 1.547$ Å) patterns for $AM_{0.2}$ Ta_{0.8}O_{2.8}N_{0.2} (A =Sr, Ba; M =Li, Na).

Figure S3. UV-vis spectra for $AM_{0.2}$ Ta_{0.8}O_{2.8}N_{0.2} and A_5 Ta₄O₁₅ (A =Sr, Ba; M = Li, Na): (top) diffuse-reflectance and (bottom) absorbance.

Before	After (phases and PDF No.)	Diagram
SrLi _{0.2} Ta _{0.8} O _{2.8} N _{0.2}	SrLi _{0.25} Ta _{0.75} O ₃ (#25-1382, blue)	А
	Sr ₅ Ta ₄ O ₁₅ (#54-1251, green)	
	Sr ₂ Ta ₂ O ₇ (#30-1304, gray)	
SrNa _{0.2} Ta _{0.8} O _{2.8} N _{0.2}	Sr ₅ Ta ₄ O ₁₅ (#54-1251, blue)	В
	Sr ₂ Ta ₂ O ₇ (#30-1304, green)	

Figure S4. (continued)

Before	After	Diagram
BaLi _{0.2} Ta _{0.8} O _{2.8} N _{0.2}	Ba ₄ LiTa ₃ O ₁₂ (#27-1216, blue)	С
	Ba _{0.5} TaO ₃ (#17-793, green)	
BaNa _{0.2} Ta _{0.8} O _{2.8} N _{0.2}	Ba ₅ Ta ₄ O ₁₅ (#1-72-631, blue)	D
	BaNa _{0.25} Ta _{0.75} O ₃ (#18-1200, green)	

Figure S4. XPD patterns (Cu K_{α}) for the samples after the TGA up to 1670 K in air.

Figure S5. Peak fitting of centerbands from ⁷Li MAS NMR. (experimental: circles, fit: red line)

Figure S6. Fitting of ²³Na MAS NMR line shapes of Na₂WO₄, NaReO₄, and NaTaO₃ (experimental: blue, fit: red).