Supporting Information for:

Electron Energy Loss of Terrylene Deposited on Au(111): Vibrational and Electronic Spectroscopy

P. Navarro ${ }^{\text {I }}$, F.C. Bocquet ${ }^{2,3}$, I. Deperasińska ${ }^{4}$, G. Pirug ${ }^{2,3}$, F. S. Tautz ${ }^{2,3}$, M. Orrit ${ }^{1}$
${ }^{1}$ Huygens-Kamerlingh Onnes Laboratory, University of Leiden 2300 RA Leiden (Netherlands)
${ }^{2}$ Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich (Germany)
${ }^{3}$ Jülich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425, Jülich (Germany)
${ }^{4}$ Institute of Physics, Polish Academy of Sciences, 02-668, Warsaw (Poland)

S1. Deposition of Terrylene on $\mathrm{Au}(111)$ followed by XPS

Figure S1 shows the evolution of the XPS intensity signals after exposure of the $\mathrm{Au}(111)$ surface to terrylene. The spectra show the expected doublet peak for gold, which corresponds to the $\mathrm{Au} 4 f_{7 / 2}$ electrons with binding energy of 84.1 eV and the $\mathrm{Au} 4 f_{5 / 2}$ electrons with binding energy of 87.8 eV . The signal decreases as terrylene is deposited on the gold surface.

Figure Sla : The first XPS spectrum corresponds to the clean $A u(111)$ surface before deposition of terrylene. The peak at 87.8 eV correponds to the $A u 4 f_{7 / 2}$ and the peak at 84.1eV to the $A u 4 f_{5 / 2}$. The deposition times for each spectrum were $2,4,6,8,10,12,14$, 16, 18, 20, 22, 27 and 42 min exposure. The last spectrum corresponds to clean surface again after sputtering. The temperature in the Knudsen cell was $198 \pm 2^{\circ} \mathrm{C}$.

Figure S1b shows the increasing XPS signal of the C1s electrons with binding energy 284.2 eV as a function of increasing exposure of the gold surface to terrylene and show the complementary growth of the carbon signal.

Figure Slb: XPS spectra of $A u(111)$ at various deposition stages of terrylene films in the carbon region, for the C1s signal. Same conditions as for Fig. S1a.

Figure S1c shows the integrated intensity from the correspondent peaks in Figs. S1a and b, respectively. One can clearly observe the decrease of the $A u$ signal correlated to the increase of C signal due to the deposition of terrylene in the surface. The HREEL spectra shown in Fig. 3 (main text) and in Fig.S2, were taken exactly after recording these XPS spectra. In this way we followed the evolution of the HREEL spectra as a function of increasing terrylene deposition.

Figure S1 c: Filled dots (\bullet) show the integrated intensity of the $\mathrm{Au} 4 f_{7 / 2}$ electrons with binding energy 84.1 eV . Empty dots (०) show the Cls electrons with binding energy 284.2 eV . Both signals were normalized to the $\mathrm{Au} 4 f_{7 / 2}$ intensity obtained for the clean gold surface before and after the experiment. The dotted line indicates when the surface presumably becomes fully covered with terrylene. The gold signal decays to about 60% of the maximum, showing that terrylene is not deposited as a uniform film any more. This points to a Stranski-Krastanov growth mode.

S2. HREEL at increasing deposition times

The data shown in Fig.S2 correspond to the HREEL spectra for increasing deposition of terrylene. These were taken after each exposition shown in Fig S1. Figure 3 shows data for very high exposition times where clear changes on the HREELS can be observed. Therefore, the data in Fig.S2 complements data on Fig. 3 (main text). The main peak at $802 \mathrm{~cm}^{-1}$ appears even after the shortest deposition time (2 min), were other features can barely be seen. The very weak intensity in the in-plane region 1280 and $1495 \mathrm{~cm}^{-1}$ (insert zoom $40 \times$) can be due to the electrostatic image effect of the gold surface.

Figure S2: The specular HREELS spectra as a function of increasing deposition time of terrylene on a clean gold surface (dotted spectrum) up to 42 min . The beam energy used was $E_{0}=5 \mathrm{eV}$ and the integration time was 30 min . The insert shows the same energy interval from $800-2000 \mathrm{~cm}^{-1}$, magnified by a factor of 40 .

S3. Optical spectroscopy of terrylene in solution

This spectrum is useful to compare the electronic excitation of our terrylene films by electron impact in Fig. 4 with the optical excitation of the HOMO \rightarrow LUMO transition of terrylene in solution. The maximum absorption peak appears at $17699 \mathrm{~cm}^{-1}$ with a 0-1 vibronic component at $19157 \mathrm{~cm}^{-1}$.

Figure S3: Solid line: absorption spectrum of a terrylene solution in orthodichlorobenzene. The dashed line is the HREELS spectrum of Fig. 4 reproduced for comparison (the upper axis shows the wavenumber of the optical spectrum, compared to the energy loss on the lower axis).

Table S1: Symmetry, frequencies, IR activity, and reduced masses of the 132 groundstate vibrations of terrylene calculated with the DFT B3LYP/6-31 G(d,p) method. Below: visualization of normal modes (visualization with the use of Facio 16.2.1)

no sym $\left(\mathrm{cm}^{-1}\right)$	IR	red.mass	in plane / out of plane	no sym (cm^{-1})	IR	red.mass	in plane / out of plane
1 AU 20.7	0.0	4.937	out	67 B2G 980.0	0.0	1.304	out
2 B1G 28.4	0.0	4.400	out	68 B2U 1044.5	2.7285	7.010	in
3 B3U 36.9	0.1459	5.706	out	69 AG 1058.9	0.0	3.752	in
4 B2G 111.6	0.0	4.790	out	70 B3G 1081.0	0.0	3.950	in
5 B3U 112.3	0.1231	3.462	out	71 B2U 1093.2	2.6642	2.735	in
6 B2U 150.3	0.0906	5.705	in	72 AG 1125.5	0.0	1.782	in
7 B2G 168.3	0.0	4.301	out	73 B1U 1126.3	3.0817	1.900	in
8 B3U 181.1	4.6656	4.251	out	74 B3G 1160.8	0.0	1.611	in
9 AU 214.2	0.0	4.032	out	75 B2U 1173.1	2.5283	1.372	in
10 B1G 221.0	0.0	3.565	out	76 B1U 1186.0	0.0001	1.683	in
11 AG 246.4	0.0	7.576	in	77 AG 1186.0	0.0	1.294	n
12 B3G 276.9	0.0	5.695	in	78 B3G 1198.5	0.0	2.050	in
13 B3U 277.2	1.4772	5.750	out	79 B3G 1218.4	0.0	1.481	in
14 AU 297.9	0.0	3.916	out	80 B2U 1222.8	0.0613	1.558	in
15 B2G 353.3	0.0	4.574	out	81 B1U 1232.4	7.6702	1.656	in
16 B2U 391.1	0.0120	7.027	in	82 B2U 1243.2	6.5670	1.748	in
17 B3G 396.9	0.0	6.431	in	83 AG 1243.6	0.0	1.619	in
18 B1U 434.6	0.2223	4.860	in	84 B3G 1250.3	0.0	2.117	in
19 B1G 435.2	0.0	4.636	out	85 B2U 1256.9	3.9879	1.688	in
20 AG 447.9	0.0	4.705	in	86 AG 1307.9	0.0	2.804	in
21 B2G 468.4	0.0	3.662	out	87 B2U 1314.3	1.4489	5.351	in
22 B3U 471.4	0.0096	3.344	out	88 B3G 1330.9	0.0	2.622	in
23 B1U 478.7	4.0775	7.838	in	89 B2U 1334.3	6.7213	4.738	in
24 B2G 481.7	0.0	3.625	out	90 B1U 1341.6	0.0548	1.664	in
25 AU 498.4	0.0	4.021	out	91 AG 1343.7	0.0	2.616	in
26 B1U 528.0	7.8929	5.443	in	92 B3G 1380.5	0.0	3.956	in
27 B2U 538.8	1.0005	6.992	in	93 B2U 1385.5	1.7061	4.798	in
28 AG 544.8	0.0	7.369	in	94 AG 1391.1	0.0	5.888	in
29 B3G 554.1	0.0	6.283	in	95 B1U 1402.9	21.7449	4.820	in
30 B3G 570.5	0.0	7.373	in	96 AG 1403.2	0.0	4.662	in
31 B1G 571.4	0.0	3.697	out	97 B1U 1414.4	70.6773	3.040	in
32 B3U 579.7	4.0859	4.862	out	98 B1U 1432.5	3.5711	2.975	in
33 AG 590.1	0.0	6.498	in	99 AG 1454.3	0.0	4.361	in
34 B2G 628.2	0.0	4.653	out	100 AG 1480.8	0.0	2.185	in
35 B2U 637.1	0.4376	8.257	in	101 B1U 1491.1	9.3743	2.874	in
36 AU 637.5	0.0	4.044	out	102 B3G 1494.1	0.0	2.564	in
37 B1G 643.8	0.0	2.397	out	103 B3G 1507.6	0.0	3.579	in

38 AU 680.8	0.0	2.569	out	104 B2U 1508.9	0.9185	2.549	in
39 B1U 684.0	0.1339	6.041	in	105 B2U 1551.2	13.6049	4.224	in
40 B3U 703.8	3.1865	4.240	out	106 B3G 1556.0	0.0	3.646	in
41 B3G 738.3	0.0	6.509	in	107 B2U 1581.2	0.1469	4.748	in
42 B3U 765.7	35.1498	1.840	out	108 AG 1605.2	0.0	5.205	in
43 B2G 772.2	0.0	1.825	out	109 B1U 1622.1	5.2468	4.259	in
44 B1G 774.2	0.0	1.299	out	110 B1U 1631.4	35.5680	5.928	in
45 AU 778.9	0.0	1.481	out	111 B3G 1637.7	0.0	5.036	in
46 B2G 780.1	0.0	6.528	out	112 AG 1643.3	0.0	5.019	in
47 B1U 801.0	29.3050	5.549	in	113 B1U 1643.5	23.7887	5.019	in
48 AG 806.8	0.0	5.337	in	114 AG 1646.5	0.0	7.043	in
49 B1U 814.6	3.7775	5.626	in	115 B2U 1665.2	10.3815	6.047	in
50 B3U 829.6	144.9097	1.461	out	116 B3G 1668.4	0.0	7.071	in
51 B1G 832.4	0.0	1.695	out	117 B3G 3180.1	0.0	1.086	in
52 AG 838.7	0.0	7.249	in	118 B2U 3180.2	6.8479	1.086	in
53 B2G 843.8	0.0	3.257	out	119 B1U 3182.3	2.8223	1.086	in
54 B3U 844.2	1.3945	3.252	out	120 AG 3182.4	0.0	1.086	in
55 B2U 844.3	2.2445	6.140	in	121 B3G 3196.9	0.0	1.093	in
56 AU 884.4	0.0	1.490	out	122 B2U 3197.4	25.2615	1.094	in
$57 \mathrm{B1G} 889.1$	0.0	1.379	out	123 B1U 3198.4	176.8030	1.093	in
58 B2G 904.2	0.0	1.546	out	124 AG 3199.2	0.0	1.094	in
59 B3U 909.3	0.4681	1.467	out	125 B3G 3206.6	0.0	1.090	in
60 AU 933.5	0.0	1.335	out	126 B1U 3206.8	0.0847	1.090	in
61 B2G 941.9	0.0	1.374	out	127 B2U 3216.3	10.1628	1.094	in
62 B1U 942.4	17.8005	4.901	in	128 AG 3216.5	0.0	1.094	in
63 B3G 965.8	0.0	6.425	in	129 B3G 3225.4	0.0	1.089	in
64 B1G 970.0	0.0	1.281	out	130 B1U 3225.4	10.5054	1.089	in
65 AU 971.0	0.0	1.279	out	131 B2U 3232.1	69.7886	1.090	in
66 B3U 979.0	1.5802	1.307	out	132 AG 3232.4	0.0	1.090	in

1 2	3	4 5	6
7 8	9	10×11	12
13 14	15	16 17	18
19 20	21	22 23	24
$25 \quad 26$	27	28 29	30
31 32	33	34 35	36
	39	40 41	42

115	116	117	118	119	120
121	122	123	124	125	126
127	128	129	130	131	132

