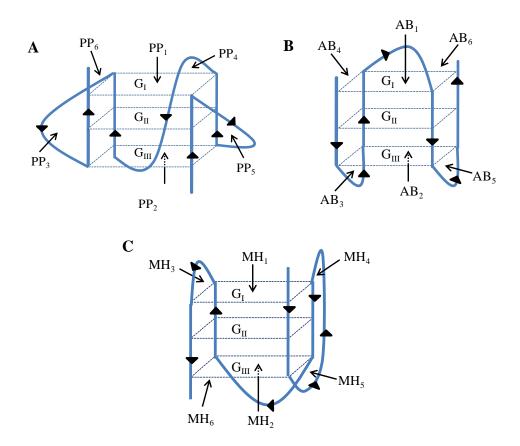
Ligand 5,10,15,20-Tetra(*N*-methyl-4pyridyl)porphine (TMPyP4) Prefers the Parallel Propeller-Type Human Telomeric G-Quadruplex DNA over Its Other Polymorphs

Asfa Ali,[†] Manju Bansal,[§] and Santanu Bhattacharya^{*,†,‡}

[†]Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India.

[‡]Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.


[§]Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.

Supporting Information

	Number of Runs	Clustering	L.B.E.	M.B.E.	Site of Binding
PP ₀	150	61	-7.70	-7.46	End-stacking
AB_0	150	73	-5.90	-5.77	Groove binding
MH_0	150	145	-5.48	-5.35	Groove binding

Table S1. A comparative study of the "blind" docking of TMPyP4 to different G-quadruplexDNA.

 PP_0 , AB_0 , MH_0 = complexes formed due to blind docking of TMPyP4 to PP, AB, and MH, respectively, L.B.E. = lowest binding energy in kcal mol⁻¹, M.B.E. = mean binding energy in kcal mol⁻¹.

Figure S1. Probable binding positions of the 22-mer human telomeric G-quadruplex DNA. (A) binding sites of parallel propeller-type (PP) G-quadruplex DNA: PP₁, PP₂ = two endstacking positions, PP₃-PP₆ = four groove binding positions; (B) binding sites of antiparallel basket-type (AB) G-quadruplex DNA: AB₁, AB₂ = two end-stacking positions, AB₃-AB₆ = four groove binding positions; (C) binding sites of mixed hybrid-type (MH) G-quadruplex DNA: MH₁, MH₂ = two end-stacking positions, MH₃-MH₆ = four groove binding positions. G_I, G_{II}, and G_{III} are the three G-tetrads in the native G-quadruplex DNA.

Table S2. Hydrogen bond occurrence^a during the final molecular dynamics simulation for 50ns for different G-quadruplex DNAs.

	РР		AB		МН	
	N2-H21N7	N1-H1O6	N2-H21N7	N1-H1O6	N2-H21N7	N1-H1O6
G2	95.4	99.1	99.3	98.7	99.6	99.9
G3	99.5	92.6	99.4	81.5	99.8	97.2
G4	99.1	98.9	99.7	100.0	98.7	99.7
G8	97.9	98.8	98.4	99.6	96.1	99.6
G9	99.3	96.3	99.3	97.8	99.9	96.4
G10	98.3	98.8	99.3	98.7	99.6	99.8
G14	98.8	99.3	99.5	99.7	99.6	99.8
G15	99.5	95.1	100.0	97.0	100.0	95.3
G16	98.3	98.8	96.1	99.8	99.7	99.8
G20	99.6	99.9	99.9	100.0	99.9	99.7
G21	99.8	97.1	98.8	85.9	99.9	98.5

PP = parallel propeller-type, AB = antiparallel basket-type, and MH = mixed hybrid-type quadruplex DNA. GX = guanine bases in the 22-mer sequence used where X = residue number. ^aAll the values are shown in percentages.