Supporting Information

Table of Contents

Analytical methods 1
Data in Table 1, with HP-1 2
Data in Table 1, wth HP-3 19
Data in Table 1, with HP-4 29
Data in Table 2 44
Data in Table 3 61
Data in Scheme 3 95

Analytical Methods

On-DNA reactions were analyzed by LCMS. Samples (ca. 100 pmol) were injected onto a reverse-phase chromatography column (Targa C18, $5 \mu, 2.1 \times 40 \mathrm{~mm}$) and eluted ($15-70 \%$ solvent B over 7 minutes, $0.36 \mathrm{~mL} / \mathrm{min}$ flow rate, $10-60 \%$ solvent B over 3 minutes, 0.55 $\mathrm{mL} / \mathrm{min}$ flow rate, or $10-90 \%$ solvent B over 1minutes, $1 \mathrm{~mL} / \mathrm{min}$ flow rate ; Solvent A: 0.75% hexafluoroisopropanol (HFIP) / 0.38\% triethylammonium acetate /10 $\mu \mathrm{M}$ EDTA in deionized water; Solvent B: 0.75\% HFIP/0.38\% TEAA/10 $\mu \mathrm{M}$ EDTA in 90/10 methanol/water) with monitoring at 260 nm . Effluent was analyzed on a ThermoFinnigan Advantage electrospray mass spectrometer in negative ion mode. When necessary, mass deconvolution was achieved using ProMass software (Novatia). Chromatographic purification was likewise achieved using reversephase liquid chromatography (Gemini C18 5μ, $30 \times 100 \mathrm{~mm}$; Solvent A: pH 7.550 mM triethylammonium acetate; Solvent B: 1% water in acetonitrile).

Yields were calculated by examination of the UV and TIC traces of the LCMS chromatograms.
Materials. All the reagents were purchased through vendors. They were dissolved in an appropriate solvent before use. DNA headpiece (HP) (5'-/5Phos/GAGTCA/iSp9/iUniAmM/iSp9/TGACTCCC-3') was obtained from Biosearch Technologies, Novato, CA.

"Headpiece (HP)." Sequence: 5'-/5Phos/GAGTCA/iSp9/iUniAmM/iSp9/TGACTCCC-3’

Figure 1. Sequence and structure of the "headpiece." MW = 4937 D

Preparation of HP-1

A solution of HP in pH9.4 borate buffer (250 mM) ($1 \mu \mathrm{~mol}, 350 \mu \mathrm{~L}$) was added at cold 40 equivalents of 4-iodo benzoic acid (9.92 mg in $70 \mu \mathrm{~L}$ of DMF), followed by 40 equivalents of DMT-MM (10.9 mg in $70 \mu \mathrm{~L}$ of water). After being kept at cold for 10 minutes, the reaction was allowed to proceed at room temperature overnight. The reaction was precipitated by adding 10% 5 N NaCl water solution and 2.5 times volume of absolute EtOH. The pellet was redissolved in water ($400 \mu \mathrm{~L}$), followed by adding piperidine $(60 \mu \mathrm{~L})$. The reaction was allowed to proceed at room temperature for a couple hours. The headpiece was precipitated by treating with EtOH, which will be used directly for the next step without further purification.

HP-1: expected mass 5167.20 (M-3/3=1721.40), observed 5166.18 (M-3/3=1721.06).
In the MS traces, especially in the -5 and -6 charge states, hexafluoroisopropanol (HFIP) adducts (expected mass of HFIP 168, observed +167) were observed. HFIP was a component of the solvents used in the LCMS.

The HFIP adducts were also observed in other samples' LCMS chromatograms.

General procedure for the coupling of HP-1 with boronic acids in Table 1.
A 1 mM solution of $\mathbf{H P}-1$ in water ($20 \mathrm{nmol}, 20 \mu \mathrm{~L}$) was added 20 equivalents of boronate (1 $\mu \mathrm{L}, 400 \mathrm{mM}$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 1 / 1$) and 40 equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mu \mathrm{~L}, 1.6 \mathrm{M}$ in water), followed by 1 equivalent of degassed $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(1 \mu \mathrm{~L}, 20 \mathrm{mM}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Toluene $/ \mathrm{CH}_{3} \mathrm{CN}$ $1 / 2 / 2$). The reaction was allowed to proceed at $80^{\circ} \mathrm{C}$.

Table 1: Suzuki coupling of HP-1 with boronic acids

Entry	Boronic acid	Expected	M-3/3	M-4/4	M-5/5	M-6/6

		mass				
1		5117.4	1704.8	1278.35	1022.48	851.9
2		5185.4	1727.47	1295.35	1036.08	863.23
3		5161.41	1719.47	1289.35	1031.28	859.24
4		5135.39	1710.80	1282.85	1026.08	854.90
5		5159.44	1718.81	1288.86	1030.89	858.91
6		5147.42	1714.81	1285.86	1028.48	856.90
7		5142.41	1713.14	1284.60	1027.48	856.07

Table 1, entry 1A: LCMS @ 90 min
 yd1260-113J-90m \#118-135 RT: 3.57-4.03 AV: 18 NL: 2.36E7 T: - c ESI Full ms [400.00-2000.00]

Table 1, entry 1A: LCMS @ 17 h

yd1260-113J-17h \#116-135 RT: 3.54-4.06 AV: 20 NL: 1.14E7
T: - c ESI Full ms [400.00-2000.00]

Table 1, entry 2A: LCMS @ 90 min

Table 1, entry 2A: LCMS @ 17 h

Table 1, entry 3A: LCMS @ 90 min

Table 1, entry 3A: LCMS @ 17 h

yd1260-113C-17h \#117-135 RT: 3.60-4.11 AV: 19 NL: 5.65E6
$\mathrm{T}:$ - c ESI Full ms [400.00-2000.00]

Table 1, entry 4A: LCMS @ 90 min

Table 1, entry 4A: LCMS @ 17 h

Table 1, entry 5A: LCMS @ 90 min

Table 1, entry 5A: LCMS @ 17 h

Table 1, entry 6A: LCMS @ 90 min

Table 1, entry 6A: LCMS @ 17 h

yd1260-113F-17h \#117-139 RT: 3.57-4.18 AV: 23 NL: 1.12E7
T: - c ESI Full ms [400.00-2000.00]

Table 1, entry 7A: LCMS @ 90 min

Table 1, entry 7A: LCMS @ 17 h

Preparation of HP-3

A solution of HP in pH9. 4 borate buffer (250 mM) $(1 \mu \mathrm{~mol}, 300 \mu \mathrm{~L})$ was added at cold 40 equivalents of 4-iodophenylacetic acid (10.5 mg in $70 \mu \mathrm{~L}$ of DMF), followed by 40 equivalents of DMT-MM (10.9 mg in $70 \mu \mathrm{~L}$ of water). After being kept at cold for 30 minutes, the reaction was allowed to proceed at room temperature for 5 hours. The reaction was further treated with piperidine ($44 \mu \mathrm{~L}$) for 5 minutes, followed with precipitation by $10 \% 5 \mathrm{~N} \mathrm{NaCl}$ water solution and 2.5 times volume of absolute EtOH. The pellet was redissolved in water and would be used directly for the next step without further purification. It contained about 40% of HP and 60% of HP-3.

HP-3: expected mass 5181.23 (M-3/3=1726.08), observed 5180 (M-3/3=1725.66)

General procedure for the coupling of HP-3 with boronic acids in Table 1.
A solution of $\mathbf{H P}-3$ in water (20 nmol in $14 \mu \mathrm{~L}$) was added 20 equivalents of boronate ($1 \mu \mathrm{~L}$, 400 mM in $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 1 / 1\right)$ and 40 equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mu \mathrm{~L}, 1.6 \mathrm{M}$ in water), followed
 reaction was allowed to proceed at $80^{\circ} \mathrm{C}$ for 2 h .

Table 1, entry 1B:

Table 1, entry 2B:
oxPraeds Detal.ijud1200-1131-8002h
682a2005 00:44:23 PM

Table 1, entry 3B:

Table 1, entry 4B:

Table 1, entry 5B:
20Pracin Dotal...yd1260-118E-60ch
Davamons 06.D1 41 PM

Table 1, entry 6B:
axpravcis Dataluhdize0-118F-60cah

Table 1, entry 7B:
3:Praecis Datal...hd1200-113H-60c玉n
08222005 0633:43 PM

Preparation of HP-4

A solution of HP in pH9.4 borate buffer (250 mM) ($1 \mu \mathrm{~mol}, 300 \mu \mathrm{~L}$) was added 40 equivalents of 4 -bromobenzoic acid (8.1 mg in $70 \mu \mathrm{~L}$ of DMF), followed by 40 equivalents of DMT-MM (10.9 mg in $70 \mu \mathrm{~L}$ of water). The reaction was allowed to proceed at room temperature for 5 hours. To the reaction mixture was added piperidine ($88 \mu \mathrm{~L}, 20 \%$ in volume). The reaction was allowed to proceed at room temperature for 5 mins, followed by adding $10 \% 5 \mathrm{~N} \mathrm{NaCl}$ water solution and 2.5 times volume of absolute EtOH to precipitate the DNA. The pellet was redissolved in water and it will be used directly for the next step.

HP-4: expected mass 5120.20 (M-5/5=1023.04), observed 5120.5 (M-5/5=1023.06)

General procedure for the coupling of HP-4 with boronates in Table 1.
A 1 mM solution of $\mathbf{H P}-4$ in water ($20 \mathrm{nmol}, 20 \mu \mathrm{~L}$) was added 20 equivalents of boronate (0.5 $\mu \mathrm{L}, 800 \mathrm{mM}$ in DMA) and 40 equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mu \mathrm{~L}, 1.6 \mathrm{M}$ in water), followed by 0.5 equivalent of degassed $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(2 \mu \mathrm{~L}, 5 \mathrm{mM}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$. The reaction was allowed to proceed at $80^{\circ} \mathrm{C}$ for 4 hours.

Table 1, Entry 1C: LCMS @ 4 h

yd1260-119J-4h \#137-145 RT: 4.12-4.37 AV: 9 NL: 7.26E6
T: - c ESI Full ms [400.00-2000.00]

Table 1, entry 1C: LCMS @ 21 h
 YD1260-119J-21H \#112-131 RT: 3.39-3.91 AV: 20 NL: 1.28E7

Table 1, entry 2C: LCMS @ 4 h

Table 1, entry 2C: LCMS @ 21 h

Table 1, entry 3C: LCMS @ 4 h

Table 1, entry 3C: LCMS @ 21 h

Table 1, entry 4C: LCMS @ 4 h
D:Praecis Datal. Iyd1260-1180-4n

Table 1, entry 4C: LCMS @ 21 h

Table 1, entry 5C: LCMS @ 4 h

Table 1, entry 5C: LCMS @ 21 h
D:Praecis Datal.iYD1260-119E-21H

Table 1, entry 6C: LCMS @ 4 h

Table 3, entry 6: LCMS @ 21 h was very similar to LCMS @ 4 h

Table 1, entry 7C: LCMS @ 4 h
DiPraocis Datal.jyd1200-119H-4h
00/24/2005 05:54:19 PM

Table 1, entry 7C: LCMS @ 21 h

General procedure for the coupling of HP-1 with boronic esters in Table 2.
A 1 mM solution of $\mathbf{H P}-1$ in water ($20 \mathrm{nmol}, 20 \mu \mathrm{~L}$) was added 20 equivalents of boronate (0.5 $\mu \mathrm{L}, 800 \mathrm{mM}$ in DMA) and 40 equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mu \mathrm{~L}, 1.6 \mathrm{M}$ in water), followed by 0.5 equivalent of degassed $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(3 \mu \mathrm{~L}, 3.5 \mathrm{mM}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$. The reaction was allowed to proceed at $80^{\circ} \mathrm{C}$ for 3 hours 20 mins.

Table 2, entry 1 :

Table 2, entry 2:

Table 2, entry 3 :

Table 2, entry 4:

Table 2, entry 5:

Table 2, entry 6 :

HP-1 for entry 7-12:

Id-N15345-suzuki-SM \#103-121 RT: 1.48-1.70 AV: 19 NL: 9.18E3
「: ITMS - c ESI Full ms [600.00-2000.00]

Id-N15345-suzuki-SM \#103-121 RT: 1.48-1.70 AV: 19 NL: 9.18E3
「: ITMS - c ESI Full ms [600.00-2000.00]

Table 2, entry 7 :
प्रव-N15345-23-80C $33 h 20 \mathrm{~m}-\mathrm{A}^{2}$

Table 2, entry 7, LCMS @ 16 hrs:

Table 2, entry 8 :

Table 2, entry 8, LCM @ 16 hrs:

Table 2, entry 9:

Table 2, entry 10 :

Table 2, entry 10, LCMS @ 16 hrs:

Table 2, entry 11:

Table 2, entry 12:

Preparation of HP-5, 6 \& 7

A solution of HP in pH9.4 borate buffer (250 mM) ($1 \mu \mathrm{~mol}, 300 \mu \mathrm{~L}$) was added at cold 40 equivalents of bromo-nicotinic acid (8.1 mg in $70 \mu \mathrm{~L}$ of DMF), followed by 40 equivalents of DMT-MM (10.9 mg in $70 \mu \mathrm{~L}$ of water). The pH of the reaction solution was adjusted to around 9 with NaOH . The reaction was allowed to proceed at cold overnight. 10% piperidine ($44 \mu \mathrm{~L}$) was added to the reaction. After 15 minutes, the reaction was precipitated by adding $10 \% 5 \mathrm{~N}$ NaCl water solution and 2.5 times volume of absolute EtOH . The pellet was redissolved in water $(400 \mu \mathrm{~L})$, and purified with reverse-phase HPLC ($10-40 \%$ solvent B).

General procedure for the coupling of HP-5, 6 \& 7 with boronic acids in Table 3.

A 1 mM solution of $\mathbf{H P}-\mathbf{5},-\mathbf{6}$, or -7 in water ($20 \mathrm{nmol}, 20 \mu \mathrm{~L}$) was added 20 equivalents of boronate ($0.5 \mu \mathrm{~L}, 800 \mathrm{mM}$ in DMA) and 40 equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mu \mathrm{~L}, 1.6 \mathrm{M}$ in water), followed by 0.33 equivalent of degassed $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(2 \mu \mathrm{~L}, 3.3 \mathrm{mM}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$. The reaction was allowed to proceed at $80^{\circ} \mathrm{C}$ for 5 h .

Table 3, entry 1A:

Table 3, entry 2A:

Table 3, entry 3A:

Table 3, entry 4A:

Table 3, entry 5A:

Table 3, entry 6A:

Table 3, entry 7A:

Table 3, entry 8A:

Table 3, entry 9A:

Table 3, entry 10A:

Table 3, entry 11A:

Table 3, entry 1B:

Table 3, entry 2B:

Table 3, entry 3B:

Table 3, entry 4B:

Table 3, entry 5B:

Table 3, entry 6B:

Table 3, entry 7B:

Table 3, entry 8B:

yd-suzuki-2steptreat-29 \#36-54 RT: $0.64-0.96 \mathrm{AV}: 19 \mathrm{NL}: 4.62 \mathrm{E} 2$
T: ITMS - c ESI Full ms [525.00-1950.00]

Table 3, entry 9B:

yd-suzuki-2steptreat-30 *30-40 RT: $0.04-0.82$ AV: 11 NL: $1.95 E 3$
T: ITMS - c ESI Full ms [525.00-1950.00]

Table 3, entry 10B:

|d-6uzukl-2stegtreat-31 $236-54$ RT: 0.64-0.96 AN: 19 NL 3.62E1
C. ITMS-cESI Full ms [$525.00-1950.60$]

Table 3, entry 11B:

Table 3, entry 1C:

Table 3, entry 2C:

Table 3, entry 3C:

Table 3, entry 4C:

Table 3, entry 5C:

Table 3, entry 6C:

Table 3, entry 7C:

Table 3, entry 8C:

Table 3, entry 9C:

Table 3, entry 10C:

Table 3, entry 11C:

yd-suzuki-2steptreat-36 \#37-54 RT: $0.66-0.96$ AV: 18 NL: 8.48 E 2
T: ITMS - c ESI Full ms [525.00-1950.00]

Preparation of HP-8

A solution of AOP-HP ${ }^{1}$ in pH9.4 borate buffer (250 mM) ($0.5 \mu \mathrm{~mol}, 500 \mu \mathrm{~L}$) was added at cold 40 equivalents of 5 -formyl 3-iodobenzoic acid (1 M in DMF), followed by 40 equivalents of DMT-MM (400 mM in water). The reaction was kept in cold overnight. The reaction was further treated with piperidine $(44 \mu \mathrm{~L})$ for 5 minutes, followed with precipitation by $10 \% 5 \mathrm{~N} \mathrm{NaCl}$ water solution and 2.5 times volume of absolute EtOH. The pellet was redissolved in pH5.5 phosphate buffer (250 mM) to make 1 mM concentration. To the above solution was added 50 equivalents of phenylalanine (400 mM in $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMA} 5 / 1$), followed by adding 50 equivalents of $\mathrm{NaCNBH}_{3}\left(400 \mathrm{mM}\right.$ in DMA). The reaction was heated at $50^{\circ} \mathrm{C}$ for 3 hours, followed with precipitation by $10 \% 5 \mathrm{~N} \mathrm{NaCl}$ water solution and 2.5 times volume of absolute EtOH . The pellet of HP-8 which contained about 25\% of reduced starting material was redissolved in water (100 $\mu \mathrm{L}$), followed by EtOH precipitation once more. The pellet was dissolved in water to make 1 mM concentration of solution, which would be used directly for the next step without further purification.

HP-8: expected mass 5591.69 (M-3/3=1862.90), observed $5590(\mathrm{M}-3 / 3=1862.2)$

General procedure for the coupling of HP-8 with boronic acids/esters in Scheme 3.
A 1 mM solution of $\mathbf{H P - 8}$ in water ($10 \mathrm{nmol}, 10 \mu \mathrm{~L}$) was added 40 equivalents of boronate (0.67 $\mu \mathrm{L}, 600 \mathrm{mM}$ in DMA) and 80 equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.67 \mu \mathrm{~L}, 1.2 \mathrm{M}$ in water), followed by 1 equivalent of degassed $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(3.3 \mu \mathrm{~L}, 3 \mathrm{mM}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$. The reaction was allowed to proceed at $80^{\circ} \mathrm{C}$ for 4 hrs .

