Optimization of poly(*N*-isopropylacrylamide) as an artificial amidase

Yoke-Ming Wong^{†,‡}, Yu Hoshino^{§,*}, Kumar Sudesh[‡], Yoshiko Miura[§], Keiji Numata^{†,*}

[†]Enzyme Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.

[‡]Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.

[§]Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

*Corresponding Author

Keiji Numata

Tel: +81 48 467 9525, Fax: +81 48 462 4664, E-mail: keiji.numata@riken.jp

Yu Hoshino

Tel: +81 92 802 2759, Fax: +81 92 802 2769, E-mail: yhoshino@chem-eng.kyushuu.ac.jp

Figure S1. ¹³C NMR of NMG–20% 1-VI in D_2O .

Figure S2. Esterase activity on substrate, *p*-nitrophenyl acetate using 40 g/L of NMG–1-VI 20% at 25°C, pH 8. (a) Amount of *p*-nitrophenol released as a function of time. Initial velocity obtained was plotted as (b) Michaelis-Menten plot and followed by (c) Lineweaver-Burk plot to determine the catalytic constants. All data shown are the means of triplicate tests.

Figure S3. (a) Acid–base titration of polymer catalyst solution of NMG–5% 1-VI (●), NMG–10% 1-VI (●), NMG–15% 1-VI (●), NMG–20% 1-VI (●), and NMG–10% DMAPM (●) at 25°C against HCl. (b) The fraction of protonated functional group for different NMGs.

Figure S4. Amidase activity on substrate, L-alanine *p*-nitroanilide (0.25 mM) using ionized NMG–10% DMAPM and NMG–10% DMAPM (as control) at 25°C, pH 8. All data shown are the means of triplicate tests, and mean data accompanied by asterisks are significantly different (Tukey's HSD test, p < 0.05).

Figure S5. The influence of temperature on the amidase activity on substrate, L-alanine *p*-nitroanilide using 40 g/L of NMG–1-VI 20% at pH 6. Insets show the transition of NMG from swollen state (25°C) to shrunken state as the temperature increased to 50°C. All data shown are the means of triplicate tests.

Figure S6. Linear plot of the relationship between catalytic rate and calculated distance. Turnover rate for α -chymotrypsin was taken from the reported result as monopeptide-*p*-nitroanilide substrates were used.

Figure S7. Dixon plots of NMG–20% 1-VI with different types of inhibitors (a) UV, (b) PMSF and (c) E-64 using L-alanine *p*-nitroanilide as substrate at 25°C, pH 6.

Figure S5 shows the Dixon plot which was used to calculate the inhibitor constant, K_i of the NMG. According to the Dixon method, K_i is detemined when the straight lines generated from different substrate concentrations intercept each other at a point on the left of the vertical axis. Therefore, the value of $-K_i$ can be determined directly.¹

NMG-x 1-VI	Distance,
(%)	(Å)
5	18.0
10	14.2
15	12.6
20	11.2
lpha-chymotrypsin	$2.6 - 2.9^{a}$

Table S1. Distance between functional group of the NMG based on the proposed

 theoretical average distance.

^aDistance among the catalytic triads at the active site of α -chymotrypsin are Ser 195 – His 57, 2.74 – 2.82 Å and His 57 – Asp 102, 2.61 – 2.64 Å as reported.²

 Table S2. Debye-Huckel length of NMGs.

Sample	Debye-Huckel length, 1/κ ^a
	(× 10 ² nm)
NMG-5% 1-VI	3.76
NMG-10% 1-VI	3.84
NMG-15% 1-VI	4.71
NMG-20% 1-VI	7.44
NMGs in 0.1 M Acetate buffer	0.01
α -chymotrypsin	0.40
α -chymotrypsin in 0.1 M Sodium phosphate buffer ^b	0.01

^aDebye-Huckel length is calculated based on the equation,

$$\frac{1}{\kappa} = \frac{304 \ pm}{\sqrt{c} \ mol/L}$$

where, $1/\kappa$ denotes Debye-Huckel length and *c* is concentration of electrolyte.

^bCondition of α -chymotrypsin is based on the catalysis using monopeptide-*p*-nitroanilide substrates.³

REFERENCES

- (1) Dixon, M. Biochem. J. 1953, 55, 170–171.
- (2) Blow, D. M. Acc. Chem. Res. 1976, 9, 672–678.
- (3) Ascenzi, P.; Menegatti, E.; Guarneri, M.; Bortolotti, F.; Antonini, E. *Biochemistry* **1982**, *21*, 2483–2490.