Interplay between Composition, Structure and Properties of New H₃PO₄ Doped PBI₄N-HfO₂ Nanocomposite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells

Graeme Nawn[†], Giuseppe Pace^{†,‡}, Sandra Lavina^{†,§}, Keti Vezzù[#], Enrico Negro^{†,§}, Federico Bertasi^{†,§,‡}, Stefano Polizzi^{+,§}, Vito Di Noto^{†,§}*

† Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, I-35131 Padova (PD),

Italy

‡ CNR-IENI, Via Marzolo 1, I-35131 Padova (PD), Italy

§ Consorzio Interuniversitario Nazionale per la Scienza e la Tecnolgia dei Materiali, INSTM, Italy

Veneto Nanotech S.C.p.a., Via San Crispino, 106, I-35129, Padova (PD), Italy

 + Dipartimento di Scienze Molecolari e Nanosistemi, Università di Venezia, Calle Larga S. Marta, Dorsoduro 2137, I-30123 Venezia (VE), Italy **Figure SI-1.** Retention of phosphoric acid by composite membranes. Samples were immersed in doubly distilled water at room temperature for 60 minutes before being dried and weighed. $< \alpha >$ is the average percentage of leached phosphoric acid, *y* and *y*_{aft} are the number of H₃PO₄ molecules per monomer repeat unit before and after forced leaching respectively

Figure SI-2: TG profiles for PBI4N and [PBI4N(HfO₂)_x] measured under an air atmosphere

Figure SI-3. Weight loss attributed to acid dehydration with increasing nanofiller content observed by TG analysis

Figure SI-4. TG profiles for [PBI4N(HfO₂)_x](H₃PO₄)_y measured under an air atmosphere

Figure SI-5. MDSC profiles for $[PBI4N(H_3PO_4)_x]$ showing heat flow (red) and reversing heat flow (blue)

Figure SI-6. MDSC profiles for $[PBI4N(HfO_2)_x](H_3PO_4)_y$ showing heat flow (red) and reversing heat flow (blue)

Figure SI-7. The effect of nanofiller content (x) on the interplanar distance of (200) and (110) for undoped (circles) and acid-doped (squares) membranes

Figure SI-8. WAXS patter of $[PBI4N(HfO_2)_x]$ (black) and $[PBI4N(HfO_2)_x](H_3PO_4)_y$ (red) with some assigned peaks

Figure SI-9. Temperature dependent storage modulus (*E'*), loss modulus (*E''*) and tan δ profiles for PBI4N and [PBI4N(HfO₂)_x]

Figure SI-10. Effect of nanofiller content on the 4 mechanical transitions observed by DMA

Figure SI-11. FT-IR-ATR spectra of all undoped membranes and neat filler

Figure SI-12. FT-IR-ATR spectra of all undoped membranes and neat nanofiller showing assigned in-plane and out-of-plane bands

Figure SI-13. Effect of nanofiller levels on the in-plane vibrational bands of $[PBI4N(HfO_2)_x]$ occurring at 1439 cm⁻¹ (circles) and 1421 cm⁻¹ (squares). The areas under the bands are compared with that of the area under the band occurring at 1528 cm⁻¹ which is shown to be largely unaffected by nanofiller content

Figure SI-14. Effect of nanofiller levels on the out-of plane bands of $[PBI4N(HfO_2)_x]$ occurring at 792 cm⁻¹ (triangles) and 684 cm⁻¹ (circles) and 458 cm⁻¹(squares). The areas under the bands are compared with that of the area under the band occurring at 1528 cm⁻¹ which is shown to be largely unaffected by nanofiller content

Figure SI-15. FT-IR-ATR spectra of all undoped membranes showing the diminishing intensity of the peak at 458 cm⁻¹ with increasing nanofiller content

Figure SI-16. FT-IR-ATR spectra of all acid-doped membranes and o-phosphoric acid (85 %)

Figure SI-17. Decomposition of the experimental normalized FT-IR-ATR spectra for acid-doped PBI4N (black) confirming the presence of H_3PO_4 (red) and $H_2PO_4^-$ (blue)

Figure SI-18. Full FT-IR-ATR assignment of PBI4N(HfO₂)_x and [PBI4N(HfO₂)_x](H₃PO₄)_y

Figure SI-1. Retention of phosphoric acid by composite membranes. Samples were immersed in doubly distilled water at room temperature for 60 minutes before being dried and weighed. $< \alpha >$ is the average percentage of leached phosphoric acid, *y* and *y*_{aft} are the number of H₃PO₄ molecules per monomer repeat unit before and after forced leaching respectively

Figure SI-2. TG profiles for PBI4N and [PBI4N(HfO₂)_x] measured under an air atmosphere

Figure SI-3. Weight loss attributed to acid dehydration with increasing nanofiller content observed by TG analysis

Figure SI-4. TG profiles for PBI4N(H_3PO_4)_y and [PBI4N(HfO_2)_x](H_3PO_4)_y measured under an air atmosphere.

Figure SI-5. MDSC profiles for $[PBI4N(HfO_2)_x]$ showing heat flow (red) and reversing heat flow (blue)

Figure SI-6. MDSC profiles for $[PBI4N(HfO_2)_x](H_3PO_4)_y$ showing heat flow (red) and reversing heat flow (blue)

Figure SI-7. The effect of nanofiller content (x) on the interplanar distances of (200) and (110) for undoped (circles) and acid-doped (squares) membranes

Figure SI-8. WAXS patter of $[PBI4N(HfO_2)_x]$ (black) and $[PBI4N(HfO_2)_x](H_3PO_4)_y$ (red) with some assigned peaks

Figure SI-9. Temperature dependent storage modulus (*E'*), loss modulus (*E''*) and tan δ profiles for PBI4N and [PBI4N(HfO₂)_x]

Figure SI-10. Effect of nanofiller content on the 4 mechanical transitions observed by DMA

Figure SI-11. FT-IR-ATR spectra of all undoped membranes and neat filler

Figure SI-12.FT-IR-ATR spectra of all undoped membranes and neat nanofiller showing assigned in-plane and out-of-plane bands

Figure SI-13. Effect of nanofiller levels the on in-plane vibrational bands of $[PBI4N(HfO_2)_x]$ occurring at 1439 cm⁻¹ (circles) and 1421 cm⁻¹ (squares). The areas under the bands are compared with that of the area under the band occurring at 1528 cm⁻¹ which is shown to be largely unaffected by nanofiller content

Figure SI-14. Effect of nanofiller levels on the out-of plane bands of $[PBI4N(HfO_2)_x]$ occurring at 792 cm⁻¹ (triangles) and 684 cm⁻¹ (circles) and 458 cm⁻¹(squares). The areas under the bands are compared with that of the area under the band occurring at 1528 cm⁻¹ which is shown to be largely unaffected by nanofiller content

Figure SI-15. FT-IR-ATR spectra of all undoped membranes showing the diminishing intensity of the peak at 458 cm⁻¹ with increasing nanofiller content

Figure SI-16. FT-IR-ATR spectra of all acid-doped membranes and o-phosphoric acid (85 %)

Figure SI-17. Decomposition of the experimental normalized FT-IR-ATR spectra for acid doped PBI4N (black) confirming the presence of H_3PO_4 (red) and $H_2PO_4^-$ (blue)

[PBI/(HfO ₂) _x]			[PBI/(HfO ₂) _x]/(H ₃ PO ₄) _y		
Observed wavenumber / cm ⁻¹	Calculated wavenumber (Intensity) / cm ⁻¹ (kJ/mol)	Mode description ^(a)	Observed wavenumber / cm ⁻¹	Calculated wavenumber (Intensity) / cm ⁻¹ (kJ/mol)	Mode description ^(a)
1624 (vw, sh)	1611(49)	$[\delta_{XH}+\nu_{CC}]^{ip}(II)$	1632 (vw)	1599(25)	$[v_{CC+}v_{CN}+\delta^{ip}_{XH}](BI+Im)$
1608 (vw)	1599(0)	$[\delta_{XH} + \nu_{CC}]^{ip}(II)$	1613 (vw,sh)	1597(89)	$[\nu_{CC+}\nu_{CN}+\delta^{ip}{}_{XH}](BI+Im)$
1587 (vw)	1581(213)	$[\delta_{CH} + \nu_{CC}]^{ip}(BII)$	1564 (vw)	1557(16)	$[\delta_{CH} + \nu_{CC}]^{ip}(BII)$
1576 (vw, sh)	1559(42)	$[\delta_{CH} + \nu_{CC}]^{ip}(BII)$	1523 (vw)	1523(22)	$\delta^{ip}{}_{NH}+[\nu_{CC}+\delta_{CH}]^{ip}$
1528 (vw)	1517(0.06)	$\delta_{CH}^{ip}(BII)$	1494 (vw)	1492(1)	$\delta^{ip}{}_{NH}+[\delta_{CH}+\nu_{CC}+\nu_{CN}]^{ip}$
1457 (vw, sh)	1452(95)	$\delta_{XH}^{ip}(II) + \delta_{CH}^{ip}(BII) + \nu_{CC}^{ip}$	1483 (vw, sh)	1477(7)	$\delta^{ip}{}_{CH}(BII) + \nu^{ip}{}_{CN}$
1438 (m)	1437(0.02)	$\delta_{XH}^{ip}(II) + \delta_{CH}^{ip}(BII)$	1458 (vw)	1459(128)	$\left[\delta_{XH} + \nu_{CC} + \delta_{CNC}\right]^{ip}$
			1448 (vw, sh)	1449(7)	$v^{ip}{}_{CN}+\delta^{ip}{}_{CH}(BII)+\delta^{ip}{}_{CH}(BI)$
1421 (m, sh)	1421(57)	$\delta_{XH}{}^{ip}(II) + \delta_{CH}{}^{ip}(BII) + [\nu_{CC} + \nu_{CN}]^{ip}$	1414 (vw)	1407(23)	$v^{ip}{}_{CN}+\delta^{ip}{}_{CH}(BII)+\delta^{ip}{}_{CH}(BI)$
1395 (m)	1374(14)	$\delta_{\rm XH}^{ip}$ (endgroup)	1378 (vw, sh)	1375(11)	$\delta^{ip}{}_{NH}+\delta^{ip}{}_{CH}(BI)+[\nu_{CC}+\delta_{CH}]^{ip}(BII)$
1343 (w)	1348(240)	$\delta_{\rm XH}{}^{\rm ip}({\rm II+BII})$	1343 (vw)	1342(1)	$\delta_{CH}{}^{ip}(BII) + \delta^{ip}{}_{XH}$
1274 (m)	1275(33)	$[\delta_{XH}+\nu_{CC}]^{ip}(II)+\delta_{CH}^{ip}(BII)$	1309(vw)	1328(4)	$\delta_{P(OH)2} + \delta_{P(OH)} H_{11} P_4 O_{16}$
1227 (w)	1227(7)	$\left[\delta_{XH}+\nu_{CC}+\nu_{CN}\right]^{ip}(II)$	1223 (vw, sh)	1225(361)	δ(POH) + νP=O [H3PO4]4 (ε domain probe)

Figure SI-18. Full FT-IR-ATR assignment of PBI4N(HfO₂)_x and [PBI4N(HfO₂)_x](H₃PO₄)_y

[PBI/(HfO ₂) _x]			[PBI/(HfO ₂) _x]/(H ₃ PO ₄) _y		
Observed wavenumber / cm ⁻¹	Calculated wavenumber (Intensity) / cm ⁻¹ ¹ (kJ/mol)	Mode description ^(a)	Observed wavenumber cm ⁻¹	Calculated wavenumber (Intensity) / cm ⁻¹ (kJ/mol)	Mode description ^(a)
				1228(200)	$\delta_{P(OH)2} + \delta_{P(OH)} H_{11} P_4 O_{16}$
1217 (w)	1219(5)	$\left[\delta_{\rm NH} + v_{\rm CN}\right]^{ip} + \delta_{\rm CH}^{ip}({\rm BII})$	1160 (w)	1159(90)	$\delta_{(POH)} + \nu_{P(OH)} [H_3PO_4]_4$
1167 (w)	1154(0)	$[\delta_{XH} + v_{CC} + v_{CN}]^{ip}(II) + \delta_{CH}^{ip}(BII)$	1090 (w)	1090(94)	$\delta_{(POH)} + \nu_{P=O} [H_3PO_4]_4$
				1090(297)	$\delta_{P(OH)3}+\delta_{P(OH)2}+\delta_{P(OH)}H_{11}P_4O_1$
1129 (vw)	1132(12)	$\delta_{CH}^{ip}(BI)$	1007 (w)	989(245)	$v_{P=O} + v_{P(OH)2} H_{11} P_4 O_{16}$
1092 (w)	1099(15)	$\delta_{CH}^{ip}(BII)$	958 (vs)	958(204)	$\delta_{POH} + \nu_{P(OH)} [H_3PO_4]_4$
				964(210)	$\delta_{(POH)} + \nu_{P(OH)3} H_{11} P_4 O_{16}$
				920(272)	v _{P(OH)3} H ₁₁ P ₄ O ₁₆
1074 (vw)	1073(4)	$\delta_{CH}^{ip}(BII) + \delta_{NH}^{ip}$	906 (vs)	881(186)	$v_{P(OH)} + v_{P(OH)2} + v_{PO-} H_{11} P_4 O_{16}$
1016 (vw)	1004(0.14)	$\delta_{\rm CH}{}^{\rm ip}({ m II})$	878 (vs)	883(267)	v _{P(OH)} [H ₃ PO ₄] ₄
				870(113)	v _{P(OH)OO-} +v _{P(OH)3} H ₁₁ P ₄ O ₁₆
998 (vw)		(BII)	857 (vs)	851(221)	v _{P(OH)3} H ₁₁ P ₄ O ₁₆
982 (vw)	984(1)	v _{CC} ^{ip} (BII)	830	816(213)	δ _{POH} H ₁₁ P ₄ O ₁₆ -
			803	799(32)	δ _{CH} ^{oop} (BII)

[PBI/(HfO ₂) _x]				[PBI/(HfO ₂) _x]/(H ₃ PO ₄) _y			
Observed wavenumber / cm ⁻¹	Calculated wavenumber (Intensity) / cm ⁻¹ ¹ (kJ/mol)	Mode description ^(a)	Observed wavenumber / cm ⁻¹	Calculated wavenumber (Intensity) / cm ⁻¹ (kJ/mol)	Mode description ^(a)		
950 (vw)	949(5)	δ ^{oop} _{CH} (BII)	799	793(45)	ν _{P(OH)3} +δ _{POH} [H ₃ PO ₄] ₄		
900 (vw)	916(2)	$\delta^{oop}_{CH}(BI \text{ endgroup})$	767	767(45)	ν _{P(OH)3} +δ _{POH} [H ₃ PO ₄] ₄		
			749	742(0.09)	δ _{NCC} ^{oop}		
			735	736(1)	$\delta_{CH}^{oop}(BI) + \delta_{NCC}^{oop}$		
855 (vw, sh)	856(0.02)	$\delta^{oop}_{CH}(BII)$	726	726(26)	$\delta_{POH} H_{11} P_4 O_{16}$		
844 (vw)	838(50)	$\delta^{oop}_{CH}(BI)$	699 (vw)	705(2)	$\delta_{\rm NCN}^{\rm oop}$		
792 (vs)	784(7)	$\delta^{oop}_{CH}(BII)$	690	694(173)	$\delta_{POH} + \nu_{P(OH)} [H_3 PO_4]_4$		
760 (w)	759(5)	$\delta^{oop}_{CH}(BI_{II})$	677	680(32)	δ _{CH} ^{oop} (BII)		
			663	664(6)	$v^{ip}_{ring}(BII) + \delta^{oop}_{XH}$		
750 (vw, sh)	732(0.02)	δ^{ip}_{CXC} (ring)	648	639(92)	$\delta^{oop}{}_{NH}$		
704 (w)	695(0.32)	$\left[\delta_{\mathrm{CNC}}+\delta_{\mathrm{CCH}}\right]^{\mathrm{oop}}$	635	600(36)	$\delta_{POH} H_{11} P_4 O_{16}$		
684 (s)	682(54)	$\delta^{oop}_{CH}(BII)$					
663 (w, sh)	664(0)	v _{CC} ^{ip} (BII+BI) (ring)					
659 (w)	656(0)	$[\delta_{CH}+\delta_{CCC}]^{oop}(BI)$					

[PBI/(HfO ₂) _x]			[PBI/(HfO ₂) _x]/(H ₃ PO ₄) _y		
Observed wavenumber / cm ⁻¹	Calculated wavenumber (Intensity) / cm ⁻¹ ¹ (kJ/mol)	Mode description ^(a)	Observed wavenumber / cm ⁻¹	Calculated wavenumber (Intensity) / cm ⁻¹ ¹ (kJ/mol)	Mode description ^(a)
653 (w,sh)	650(3)	$\left[\delta_{\rm CCC}+\delta_{\rm CNC}\right]^{\rm ip}(ring)$			
636 (vw, sh)	621(2)	δ^{ip}_{CXC} (endgroup) (ring)			
626 (vw, sh)	620(5)	δ^{ip}_{CXC} (endgroup) (ring)			
604 (w)	601(0)	$\delta_{\rm CCC}^{ip}({\rm II})$ (ring)	601 (vw)	612(9)	$\delta^{oop}{}_{NH}$
593(vw, sh)	574(1)	$\delta_{\rm CCC}^{\rm ip}({\rm BI+BII})$ (ring)			
546 (vw)	552(49)	$\delta_{\rm NCC}^{ip}$ (ring)	559 (vw)	558(36)	$\delta^{oop}{}_{XH}$
519 (vw, sh)	517(1)	$\delta_{\rm NCC}^{\rm ip}$ (ring)			
499 (w)		(BII)	495 (vw, sh)	484(1)	V _{ring}
478 (w)	468(19)	$\delta^{oop}_{CH}(BII+BI)+\delta_{CCN}^{oop}(BII+BI)$			
458 (m)	459(0)	$\delta^{oop}{}_{XH}(II)$	460 (w)	468(4)	Vring
441 (w, sh)	434(0)	$\delta_{\rm CCC}^{\rm ip}(ring \ rel)$	442 (w)		
418 (w)	411(69)	$\delta^{oop}{}_{\rm NH}$	422 (vw)	424(5)	$\left[\delta_{\rm CCC} + \delta_{\rm CNC}\right]^{\rm oop}$