Supporting Information ## Multiferroic Grain Boundaries in Oxygen-Deficient Ferroelectric Lead Titanate Takahiro Shimada, ^{1,2,*} Jie Wang, ^{1,3} Taku Ueda, ¹ Yoshitaka Uratani, ¹ Kou Arisue, ¹ Matous Mrovec, ² Christian Elsässer, ² and Takayuki Kitamura ¹ ¹ Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan Zhejiang University, Hangzhou 310027, China 1 ² Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany ³ Department of Engineering Mechanics, School of Aeronautics and Astronautics, ^{*} E-mail: shimada@me.kyoto-u.ac.jp **Supporting Figure S1.** (a) Total energy and (b) stresses for the simulation supercell used in the present study, and (c) the energy difference between paraelectric and ferroelectric phases as a function of cut-off energy of plane waves. Both the total energy and stresses sufficiently converges when the cut-off energy is equal to or more than 500 eV. **Supporting Figure S2.** (a) Total energy and (b) stresses for the simulation supercell used in the present study, and (c) the energy difference between paraelectric and ferroelectric phases as a function of number of k-points. Both the total energy and stresses sufficiently converges when the k-point mesh is equal to or denser than $1\times2\times2$. The half reduction is used for the exact exchange portion of the exchange-correlation functional when the mesh division number is even, but the effect of this treatment does not appreciably change the results, e.g., less than 0.01 eV for the total energy. **Supporting Figure S3.** Total and atom-resolved angular-momentum-projected density of states (DOS) for ferroelectric PbTiO₃ bulk. The projected DOS of Ti d_{z^2} and O1 p_z orbitals are overlapped from the energy levels of -6 eV to -2 eV, which indicates the hybridization of these orbitals in PbTiO₃. The vertical dashed line indicates the Fermi level.