Organocatalytic Enantioselective Formal C(sp ${ }^{2}$)-H Alkylation

Madhu Sudan Manna, and Santanu Mukherjee*
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, INDIA
sm@orgchem.iisc.ernet.in

SUPPORTING INFORMATION: PART A

General: Infrared (FT-IR) spectra were recorded on a Perkin Elmer Spectrum BX spectrophotometer, $v_{\text {max }}$ in cm^{-1} and the bands are characterized as broad (br), strong (s), medium (m), and weak (w). NMR spectra were recorded on Bruker Ultrashield spectrometer at 400 MHz (for ${ }^{1} \mathrm{H}-\mathrm{NMR}$) and 100 MHz (for ${ }^{13} \mathrm{C}-\mathrm{NMR}$). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard $\left(\mathrm{CDCl}_{3}: \delta 7.26, \mathrm{CD}_{3} \mathrm{OD}: \delta 3.31\right.$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\mathrm{CDCl}_{3}: \delta 77.16, \mathrm{CD}_{3} \mathrm{OD}: \delta 49.00$ for ${ }^{13} \mathrm{C}-\mathrm{NMR}$). For ${ }^{1} \mathrm{H}-\mathrm{NMR}$, data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. High resolution mass spectrometry was performed on Micromass Q-TOF Micro instrument. Optical rotations were measured on JASCO P-2000 polarimeter. Melting points were measured in open glass capillary using ANALAB μ-Thermocal 10 melting point apparatus. Enantiomeric ratios were determined by Shimadzu LC-20AD HPLC instrument and SPD-20A UV/Vis detector using stationary phase chiral columns ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$) in comparison with authentic racemic compounds.

Unless stated otherwise, all reactions were carried out with distilled and dried solvents under an atmosphere of nitrogen or argon, oven $\left(120^{\circ} \mathrm{C}\right)$ dried glassware with standard vacuumline techniques. Organic solvents used for carrying out reactions were dried using standard methods. All work up and purification were carried out with reagent grade solvents in air. Thinlayer chromatography was performed using Merck silica gel $60 \mathrm{~F}_{254}$ pre-coated plates (0.25 mm). Column chromatography was performed using silica gel (230-400 or 100-200 mesh). Catalyst IIV were synthesized according to literature procedure. ${ }^{1,2,3}$
(1) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
(2) Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967.
(3) (a) Manna, M. S.; Kumar, V.; Mukherjee, S. Chem. Commun. 2012, 48, 5193. (b) Manna, M. S.; Mukherjee, S. Chem.-Eur. J. 2012, 18, 15277. (c) Manna, M. S.; Mukherjee, S. Chem. Sci. 2014, 5, 1627.

Synthesis of cinchona-derived urea catalysts (V \& VII):

To a solution of 9-amino(9-deoxy)epi-dihydroquinine ${ }^{3}(1.0 \mathrm{~g}, 3.072 \mathrm{mmol}, 1.0$ equiv.) in 10 mL of dry THF in a 50 mL round-bottom flask, was slowly added a solution of 3,5bis(trifluoromethyl)phenyl isocyanate ($0.64 \mathrm{~mL}, 3.687 \mathrm{mmol}, 1.2$ equiv.) in 2.0 mL of dry THF at ambient temperature. The mixture was stirred for 16 h under argon atmosphere and the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (230400 mesh) using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N} 100: 2: 1$ as eluent to afford the urea derivative $\mathbf{V}(1.07 \mathrm{~g}$, $1.84 \mathrm{mmol}, 60 \%$ yield) as an off-white amorphous solid. m.p. $138-140{ }^{\circ} \mathrm{C}$; FT-IR (neat): 2931 (w), 2864 (w), 1696 (m), 1621 (m), 1569 (m), 1472 (m), 1385 (s), 1274 (s$) ;{ }^{\mathbf{1}} \mathbf{H}$-NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 8.85(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H})$, 7.43 (dd, $J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 3.20-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}$, $1 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.19(\mathrm{~m}, 1 \mathrm{H})$, 1.14-1.08 (m, 1H), $0.91(\mathrm{dd}, J=13.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 158.7,154.6,147.3,145.2,144.2,140.5,132.0,131.9(\mathrm{q}, J=33 \mathrm{~Hz}), 128.6$, $123.1(\mathrm{q}, J=271 \mathrm{~Hz}), 122.7,119.1,118.4,115.6,102.0,77.3,59.8,57.3,55.9,41.8,36.7,28.1$, 27.7, 27.2, 24.9, 12.0; HRMS (ESI+): Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 581.2351, Found: 581.2350; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+30.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Catalyst VII: Purified by silica-gel (230-400 mesh) column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right.$ 100:2:1); Off-white amorphous solid ($210 \mathrm{mg}, 0.357 \mathrm{mmol}, 43 \%$ yield); m.p. $140-142{ }^{\circ} \mathrm{C}$; FT-IR (neat): 2932 (m), 2871 (m), 1621 (m), 1509 (m), 1471 (m), 1381 (s$), 1274$ (s$)$, 1172 (m), 1127 (s); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}$, 2 H), $7.34(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.36$ $(\mathrm{m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 1 \mathrm{H}), 2.96-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 3 \mathrm{H})$, 1.42-1.34 (m, 2H), 1.24-1.22 (m, 1H), 1.11-1.06 (m, 1H), $0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 158.4,155.0,147.5,144.9,141.1,139.4,131.8,131.7(\mathrm{q}, J=33 \mathrm{~Hz}$), 128.2, 123.2 (q, $J=273 \mathrm{~Hz}), 122.4,118.1,115.4,114.1,101.6,77.3,60.7,55.7,49.1,36.9,26.6$,
26.0, 25.4, 25.2, 22.8, 11.9; HRMS (ESI+): Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 581.2351$, Found: 581.2354; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{24}+89.5\left(c 1.0, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit}{ }^{4}+90.3\left(c 0.36, \mathrm{CHCl}_{3}\right)\right]$.

Synthesis of Catalyst VI:

To a solution of 9-amino(9-deoxy)epiquinine ${ }^{3}$ ($90 \mathrm{mg}, 0.773 \mathrm{mmol}, 1.0$ equiv.) in 6.0 mL of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($186 \mathrm{mg}, 0.850 \mathrm{mmol}$, 1.1 equiv.) followed by $(\mathrm{Boc})_{2} \mathrm{O}$ ($186 \mathrm{mg}, 0.850 \mathrm{mmol}, 1.1$ equiv.) and the mixture was stirred at r.t. After 24 h , solvent (MeOH) was removed in vacuo and the residue was dissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10 mL of $\mathrm{H}_{2} \mathrm{O}$. Organic phase was separated from aqueous phase and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. Combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain $\mathbf{S 1}$ as a colorless sticky foam ($305 \mathrm{mg}, 0.720 \mathrm{mmol}, 93 \%$ yield). FT-IR (neat): 2923 (m), 2862 (m), 1619 (m), 1589 (m), 1507 (m), 1225 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 8.71(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}$, 2 H), $5.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.72-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=13.6,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 2.79-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.19(\mathrm{~m}, 2 \mathrm{H})$, $1.63-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-0.75(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}-$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 157.6,155.4,147.5,144.7,141.2,141.2,131.7,131.7,128.4$, $121.4,114.4,101.8,79.5,77.2,55.9,55.5,40.8,39.5,28.2,28.1,27.9,27.3,25.9$.

In an oven-dried round-bottom flask, cooled under air, was taken S1 ($280 \mathrm{mg}, 0.661$ $\mathrm{mmol}, 1.0$ equiv.) with 2.6 mL of absolute toluene. To this was added $\mathrm{Pd}(\mathrm{OAc})_{2}(15 \mathrm{mg}, 0.066$ mmol, 0.1 equiv.), PPh_{3} ($35 \mathrm{mg}, 0.132 \mathrm{mmol}, 0.2$ equiv.) and bromobenzene ($0.14 \mathrm{~mL}, 1.32$ mmol, 2.0 equiv.), followed by $\mathrm{Et}_{3} \mathrm{~N}(0.18 \mathrm{~mL}, 1.32 \mathrm{mmol}, 2.0$ equiv.). The resulting mixture was stirred at $110^{\circ} \mathrm{C}$. After 72 h , reaction mixture was cooled to r.t., filtered through a plug of cotton, washed with CHCl_{3} and the filtrate was concentrated in vacuo. The crude reaction
(4) McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367.
mixture was purified by silica-gel (230-400 mesh) column chromatography (EtOAc to 1% MeOH in EtOAc) to obtain $\mathbf{S 2}$ as an off-white solid ($75 \mathrm{mg}, 0.150 \mathrm{mmol}, 23 \%$ yield). m.p. $78-$ $79{ }^{\circ} \mathrm{C}$; FT-IR (neat): 2929 (m), 2862 (m), 1695 (s), 1620 (m), 1473 (m), 1363 (m), 1241 (m); ${ }^{1} \mathbf{H}-N M R\left(400 ~ M H z, ~ \mathbf{C D C l}_{3}\right): \delta 8.74(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.64$ $(\mathrm{m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.15$ (m, 1H), $6.33(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.32(\mathrm{~m}$, $1 \mathrm{H}), 3.24-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.27-$ $1.25(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{dd}, J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 157.8,155.6,147.7,144.8,137.2,133.1,132.9,132.1,131.9,130.3,128.6,128.5,127.2,126.0$, 121.5, 101.9, 79.6, 77.3, 56.7, 55.7, 53.5, 40.8, 39.2, 28.2, 27.9, 27.8, 26.1; HRMS (ESI+): Calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 500.2913 , Found: 500.2916 .

In an oven-dried round-bottom flask, $\mathbf{S 2}(75 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.0$ equiv.) was taken with 0.6 mL of absolute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this was added trifluoroacetic acid $(0.12 \mathrm{~mL}, 1.5 \mathrm{mmol}, 10.0$ equiv.) and the resulting solution was stirred at r.t. After 2 h , reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and carefully quenched with 20% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. Reaction mixture was diluted with 5 mL of CHCl_{3} and the organic phase was separated from aqueous phase. Aqueous phase was washed with additional $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{~mL})$, combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was dissolved in $10 \mathrm{~mL} 1.0 \mathrm{M} \mathrm{aq}$.HCl and $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$, organic phase was separated and discarded. The aqueous phase was made alkaline with aq. ammonia solution and the product was extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. Combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain $\mathbf{S 3}$ as a colorless oil ($39 \mathrm{mg}, 0.097 \mathrm{mmol}, 65 \%$ yield). FT-IR (neat): $2930(\mathrm{~m}), 1621$ (m), 1509 (m), $1471(\mathrm{~m}), 1381(\mathrm{~m}), 1214(\mathrm{~m}) ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.76(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.36$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.40-$ $3.34(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{br} \mathrm{s}$, 2 H), 1.70-1.69 (m, 1H), 1.61-1.58 (m, 2H), 1.54-1.49 (m, 1H), 0.83 (dd, $J=13.5,7.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 157.6,147.8,146.9,144.7,137.3,135.5,131.8,129.9,128.7$, $128.4,128.1,127.0,125.9,121.1,102.0,77.2,57.0,55.5,40.9,39.4,29.6,28.2,27.9,26.1$; HRMS (ESI +): Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 400.2389, Found: 400.2388.

In an oven-dried round-bottom flask, $\mathbf{S 3}(36 \mathrm{mg}, 0.090 \mathrm{mmol}, 1.0$ equiv.) was taken with 0.15 mL of absolute THF under argon atmosphere. To this was added a solution of 3,5bis(trifluoromethyl)phenyl isocyanate ($28 \mathrm{mg}, 0.108 \mathrm{mmol}, 1.2$ equiv.) in 0.2 mL absolute THF and the resulting mixture was stirred at r.t. After 20 h , solvent was removed under reduced pressure and the residue was purified by silica-gel (230-400 mesh) column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N} 100: 2: 1$ as eluent to obtain VI as a white foam ($30 \mathrm{mg}, 0.045 \mathrm{mmol}$, 51\% yield). m.p. $130-132{ }^{\circ} \mathrm{C}$; FT-IR (neat): 2922 (m), 2853 (w), 1697 (m), 1570 (m), 1472 (m), 1385 (s , 1274 (s); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}\right.$): $\delta 8.70(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.95(\mathrm{~m}, 3 \mathrm{H})$, $7.86(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.15 (m, 1H), 6.46 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.62(\mathrm{~s}, 1 \mathrm{H}) 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H})$, 1.80-1.74 (m, 3H), 1.37-1.33 (m, 1H), 1.03-0.94 (m, 1H), 0.91-0.88 (m, 1H); ${ }^{13}$ C-NMR (100 $\mathbf{M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 159.8,156.6,148.2,147.3,147.3,145.1,143.2,140.1,138.7,133.7,133.0(q$, $J=33 \mathrm{~Hz}), 131.7,131.4,130.0,129.4,128.1,127.1,124.7(\mathrm{q}, J=273 \mathrm{~Hz}), 123.6,119.0,103.1$, 60.7, 57.4, 56.3, 42.1, 40.2, 30.7, 30.0, 28.3, 27.5; HRMS (ESI+): Calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 655.2508$, Found: 655.2510; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}+16.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

The initial breakthrough towards $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathrm{H}$ methylation:

In an oven and vacuum-dried round-bottom flask, $\mathbf{A}^{3 \mathrm{c}}$ ($50 \mathrm{mg}, 0.168 \mathrm{mmol}, 1.0$ equiv.) was taken with 0.7 mL of freshly distilled CHCl_{3} under argon atmosphere. To this was added nitromethane ($90 \mu \mathrm{~L}, 1.68 \mathrm{mmol}, 10$ equiv.) followed by $\mathrm{DBU}(13 \mu \mathrm{~L}, 0.084 \mathrm{mmol}, 0.5$ equiv.) and the resulting mixture was refluxed at $80^{\circ} \mathrm{C}$. After 36 h reaction mixture was cooled to r.t., solvent was removed under vacuo and the residue was purified by silica-gel column chromatography (10% EtOAc in petroleum ether) to obtain \mathbf{C} a light yellow oil as $1: 1$ mixture of two atropisomers ($25 \mathrm{mg}, 0.080 \mathrm{mmol}, 48 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.01(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H})$,
6.74-6.72 (m, 2H), $6.00(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.97(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.98$ (s, 3H), $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 206.0, 205.8, 204.9, 204.8, 171.1, 171.0, 157.5, 157.4, 156.0, 153.2, 135.6, 135.5, 129.6, 129.2, $128.5,127.3,120.2,119.8,86.9,86.7,52.3,52.0,42.3,42.1,24.5,24.3,19.0,18.6,10.1,10.1$; HRMS (ESI+): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 333.1103$, Found: 333.1100 .

Preparation of 2,2-disubstituted cyclopentane-1,3-dione (S4):

2,2-Disubstituted cyclopentane-1,3-diones were synthesized following our previously reported procedure. ${ }^{3 \mathrm{c}}$

Compound S4a: 2-Methyl cyclopentane-1,3-dione ($500 \mathrm{mg}, 4.46 \mathrm{mmol}, 1.0$ equiv.) was taken with 5.0 mL of 1.0 M aq. NaOH solution and the suspension was stirred at r.t. for 10 min . To this mixture was added 4-methylbenzyl bromide ($1.65 \mathrm{~g}, 8.91 \mathrm{mmol}, 2.0$ equiv.) at once and the resulting biphasic solution was stirred vigorously at r.t. After being stirred for 48 h , the reaction mixture was diluted with 10 mL of EtOAc, organic phase was separated from aqueous phase and the aqueous phase was back-extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude reaction mixture was purified by silica-gel column chromatography ($8-10 \%$ EtOAc in petroleum ether) to obtain a colorless oil ($750 \mathrm{mg}, 3.46 \mathrm{mmol}, 77 \%$ yield); FT-IR (Thin film): 2971 (w), 2925 (w), 1764 (w), 1718 (s), 1449 (m), 1415 (w), 1370 (w), 1323 (w); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.01$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.59-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.99$ (m, 2H), 1.17 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 217.7,136.9,132.7,129.5,129.3,58.4$, 42.9, 35.9, 21.1, 19.9.

Compound S4b: Purified by silica-gel column chromatography (8-10\% EtOAc in petroleum ether); Colorless oil ($625 \mathrm{mg}, 2.89 \mathrm{mmol}, 65 \%$ yield); FT-IR (Thin film): 2975 (m), 2929 (m), 2860 (w), 1762 (m), 1718 (s), 1489 (m), 1448 (m), 1410 (m), 1371 (m), 1324 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 ~ \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.09-7.02(\mathrm{~m}$, $3 \mathrm{H}), 6.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 2.59-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H})$, 1.20 (s, 3H); ${ }^{13} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 217.8,136.8,134.3,131.0,129.7,127.4,126.0$, 58.1, 39.9, 36.0, 19.9, 19.7.

Preparation of 2-(4,4-dichlorobenzhydryl)-2-methylcyclopentane-1,3-dione (S4c):

2-(4,4-Dichlorobenzhydryl)-2-methylcyclopentane-1,3-dione was synthesized according to our previously reported procedure. ${ }^{3 \mathrm{c}}$

In an oven and vacuum-dried round-bottom flask, equipped with reflux condenser, $\mathrm{K}_{2} \mathrm{CO}_{3}\left(1.23 \mathrm{~g}, 8.91 \mathrm{mmol}, 2.0\right.$ equiv.) was taken and heated at $180^{\circ} \mathrm{C}$ under vacuum for 3 h , cooled to r.t. and purged with argon. To this was added 2-methyl-cyclopentane-1,3-dione (500 $\mathrm{mg}, 4.46 \mathrm{mmol}, 1.0$ equiv.), 4,4'-dichlorobenzhydryl bromide ($2.11 \mathrm{~g}, 6.68 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($584 \mathrm{mg}, 0.892 \mathrm{mmol}, 0.20$ equiv.) followed by 21.0 mL of dry CHCl_{3} and the resulting solution was stirred at $80^{\circ} \mathrm{C}$ under argon. After being stirred for 48 h , reaction mixture was cooled to r.t., quenched with 20 mL of distilled water and diluted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic phase was separated from aqueous phase, aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\times 10 \mathrm{~mL}$). Combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude reaction mixture was purified by silica-gel column chromatography (10-15\% EtOAc in petroleum ether) to obtain a colorless thick oil ($540 \mathrm{mg}, 1.55 \mathrm{mmol}, 35 \%$ yield). FTIR (Thin film): 2970 (m), 2920 (m), 1720 (s), 1598 (w), 1496 (m), 1451 (m), 1416 (m), 1254 (m); ${ }^{1} \mathbf{H}-N M R\left(400 ~ M H z, ~ C_{C l}^{3}\right): ~ \delta 7.33(d, J=8.4 ~ H z, ~ 4 H), ~ 7.22(d, J=8.4 ~ H z, ~ 4 H), ~ 4.35 ~(s, ~$ $1 \mathrm{H}), 2.71-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 216.8$, $137.8,133.3,131.0,128.8,60.1,56.1,35.7,20.6$.

Preparation of (1-methyl-2,5-dioxocyclopentyl)methyl acetate (S4d):

In an oven and vacuum-dried round-bottom flask, 2-methyl-cyclopentane-1,3-dione (500 $\mathrm{mg}, 4.46 \mathrm{mmol}, 1.0$ equiv.), paraformaldehyde ($147 \mathrm{mg}, 4.90 \mathrm{mmol}, 1.1$ equiv.) and p-toluenesulfonic acid monohydrate ($170 \mathrm{mg}, 0.89 \mathrm{mmol}, 0.2$ equiv.) was taken with 22 mL of acetic acid and the resulting suspension was stirred at $65^{\circ} \mathrm{C}$. After 72 h , reaction mixture was cooled to r.t., solvent was removed under vacuum and the residue was dissolved in $20 \mathrm{~mL} \mathrm{CHCl}_{3}$ and $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. Organic phase was separated from aqueous phase and the aqueous phase was washed with additional $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{~mL})$. Combined organic phase was washed with sat.
NaHCO_{3} solution $(2 \times 20 \mathrm{~mL})$, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude mixture was purified by silica-gel column chromatography ($5-20 \%$ EtOAc in petroleum ether) to obtain (1-methyl-2,5-dioxocyclopentyl)methyl acetate S4d ($330 \mathrm{mg}, 1.79 \mathrm{mmol}, 40 \%$ yield) and rac-(1,3-dimethyl-2,5-dioxocyclopent-3-en-1-yl)methyl acetate rac-S4e ($438 \mathrm{mg}, 2.23 \mathrm{mmol}, 50 \%$ yield).

Compound S4d: Purified by silica-gel column chromatography (15-20\% EtOAc in petroleum ether); Light yellow oil ($330 \mathrm{mg}, 1.79 \mathrm{mmol}, 40 \%$ yield); FT-IR (Thin film): 2973 (m), 2930 (m), 1734 (m), 1699 (s), 1490 (w), 1327 (m), 1259 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 4.15(\mathrm{~s}, 2 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 4 \mathrm{H})$, 1.94 (s, 3H), 1.09 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 214.3,169.9,66.6,54.9,35.7,20.6$, 16.4 .

Compound rac-S4e: Purified by silica-gel column chromatography (5-7\%
 EtOAc in petroleum ether); Yellow oil ($438 \mathrm{mg}, 2.23 \mathrm{mmol}, 50 \%$ yield); FT-IR (Thin film): 2932 (m), 1738 (m), 1666 (s$), 1490$ (w), 1250 (m); ${ }^{\mathbf{1}} \mathbf{H}-$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.01(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 204.9, 203.3, 169.7, 160.7, 144.3, 64.7, 49.4, 20.2, 15.5, 11.3.

Preparation of 2,2-disubstituted cyclopentene-1,3-dione (1):

2,2-Disubstituted cyclopentene-1,3-diones (1a, 1b, 1e-1m, 10, 1p, 1r) were synthesized according to our previously reported procedure. ${ }^{3 c}$ Same procedure was followed to synthesize other substrates.

Compound 1c: To a solution of 2-methyl-2-(4-methylbenzyl)cyclopent-4-ene-1,3-dione ($725 \mathrm{mg}, 3.352 \mathrm{mmol}, 1.0$ equiv.) in 20 mL of MeOH was added copper(II) bromide ($1.65 \mathrm{~g}, 7.37 \mathrm{mmol}, 2.2$ equiv.) and the resulting brown solution was stirred at $90^{\circ} \mathrm{C}$ under argon atmosphere. After 1 h the reaction mixture was cooled to r.t., quenched with 10 mL of distilled water followed by 10 mL of 1.0 M aq. HCl solution, 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic phase was separated from aqueous phase. Aqueous phase was washed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude reaction mixture was purified by silica-gel column chromatography ($2-5 \% \mathrm{EtOAc}$ in petroleum ether) to obtain a yellow crystalline solid ($625 \mathrm{mg}, 2.91 \mathrm{mmol}, 87 \%$ yield); m.p. $113-114{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2927 (m), 1743 (m), 1698 (s$), 1449$ (m), 1372 (m), 1325 (m), 1257 (m); ${ }^{\mathbf{1}} \mathbf{H}$ -

NMR (400 MHz, CDCl ${ }_{3}$): $\delta 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.94$ (s, 2H), $2.22(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.5,148.8,136.6,132.5$, 129.6, 129.1, 52.6, 40.6, 21.1, 19.3.

Compound 1d: Purified by silica-gel column chromatography (3-5\% EtOAc in petroleum ether); Yellow solid ($820 \mathrm{mg}, 3.82 \mathrm{mmol}, 76 \%$ yield); m.p. 103-104 ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2930 (m), 1743 (m), 1703 (s), 1453 (m), 1326 (m), 1245 (m); ${ }^{1} \mathbf{H}-N M R\left(400 ~ M H z, ~ \mathbf{C D C l}_{3}\right): \delta 7.03-6.95(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.5,148.9$, 136.6, 134.1, 131.1, 130.1, 127.1, 125.8, 52.4, 37.3, 19.6, 19.5.

Compound 1q: Purified by silica-gel column chromatography (5\% EtOAc in petroleum ether); Yellow crystalline solid ($360 \mathrm{mg}, 1.04 \mathrm{mmol}, 69 \%$ yield); m.p. $142-143{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2928 (m), 1741 (m), 1700 (s), 1466 (m), 1255 (m); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 ~ M H z, \mathbf{C D C l}_{3}\right): \delta 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}-\mathbf{N M R}$ (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.1,148.8,137.6,133.3,131.0,128.9,55.6,54.9,19.1$.

Preparation of 2-(hydroxymethyl)-2-methylcyclopent-4-ene-1,3-dione (S5):

The above mentioned procedure was followed for the oxidation and in-situ acetyl deprotection of (1-methyl-2,5-dioxocyclopentyl)methyl acetate (S4d).

Compound S5: Purified by silica-gel column chromatography (10-15\% EtOAc in petroleum ether); Yellow oil ($75 \mathrm{mg}, 0.53 \mathrm{mmol}, 33 \%$ yield); FT-IR (Thin film): 2973 (m), 2930 (m), 1734 (m), 1699 (s), 1490 (w), 1327 (m), 1259 (w); ${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04$ (br s, 1H), 1.06 (s, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 206.9,149.5,64.7,52.6,15.0$.

Preparation of 2-(((tert-butyldimethylsilyl)oxy)methyl)-2-methylcyclopent-4-ene-1,3-dione

 (1n):

In an oven-dried round-bottom flask, $\mathbf{S 5}(50 \mathrm{mg}, 0.356 \mathrm{mmol}, 1.0$ equiv.) was taken with 1.7 mL of absolute dichloromethane under Argon and cooled to $0^{\circ} \mathrm{C}$. To this was added tert-butyl-dimethylsilyl chloride ($81 \mathrm{mg}, 0.535 \mathrm{mmol}, 1.5$ equiv.) and imidazole ($36 \mathrm{mg}, 0.535$ mmol, 1.5 equiv.) followed by DMAP ($4.3 \mathrm{mg}, 0.035 \mathrm{mmol}, 0.1$ equiv.) and the resulting solution was slowly warmed to r.t. and stirred for 40 h . Reaction mixture was diluted with 10 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10 mL of $\mathrm{H}_{2} \mathrm{O}$, organic phase was separated from aqueous phase, aqueous phase was washed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. Combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude reaction mixture was purified by silica-gel flash column chromatography ($2-4 \%$ EtOAc in petroleum ether) to obtain 1n as a yellow oil ($71 \mathrm{mg}, 0.254$ $\mathrm{mmol}, 78 \%$ yield). FT-IR (Thin film): 2932 (m), 1734 (m), 1709 (s , 1465 (m), 1258 (m); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.30$ (s, 2H), 3.76 (s, 2H), $0.99(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.1,149.6,65.9,52.8,25.7,18.1,14.0,-5.8$.

Preparation of Nitroalkanes:

Nitomethane (2a) and nitroethane (2b) were purchased from commercial source and used as received without any further purification. Nitroalkane $\mathbf{2 d}$ and $\mathbf{2 e}$ were prepared by oxidation of the corresponding oximes.

In an oven-dried round-bottom flask, oxime ${ }^{5}(500 \mathrm{mg}, 4.12 \mathrm{mmol}, 1.0$ equiv.) was taken with 25 mL of acetic acid. To this solution was added sodium perborate tetrahydrate (3.8 g , $24.76,6.0$ equiv.) and the resulting suspension was stirred at $55^{\circ} \mathrm{C}$. After 20 h , reaction mixture was cooled to r.t. and solvent was removed under vacuum. The residue was added to 20 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 20 mL of $\mathrm{H}_{2} \mathrm{O}$, organic phase was separated from aqueous phase and the aqueous phase was back-extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. Combined organic phase was washed with sat. NaHCO_{3} solution, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude mixture was purified by silica-gel column chromatography $\left(5-7 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in petroleum ether) to obtain $\mathbf{2 d}$ as a colorless oil ($220 \mathrm{mg}, 1.60 \mathrm{mmol}, 38 \%$). FT-IR (Thin film): 2927 (m), 1700 (m), 1552 (s$), 1455$ (m),

[^0]$1379(\mathrm{~m}), 1255(\mathrm{w}) ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.48-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 130.1,130.1,129.8,129.2,80.1$.

Compound 2e: Purified by silica-gel column chromatography (2-4\% EtOAc in petroleum ether); Colorless oil ($170 \mathrm{mg}, 1.12 \mathrm{mmol}, 28 \%$ yield); FT-IR (Thin film): 2920 (m), 1742 (m), 1552 (s), 1497 (m), 1379 (s), 1222 (m); ${ }^{1} \mathbf{H}-N M R$ ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.34$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $5.40(\mathrm{~s}, 2 \mathrm{H}), 2.38$ (s , 3H); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 140.2,130.0,129.8,129.9,79.9,21.4$.

Nitroalkane 2c, $\mathbf{2 f}$ and $\mathbf{2 g}$ were prepared by reduction of the corresponding nitroalkenes.

In an oven-dried round-bottom flask, nitrostyrene ${ }^{6}(1.0 \mathrm{~g}, 6.70 \mathrm{mmol}, 1.0$ equiv.) was taken with $90 \mathrm{~mL} \mathrm{CHCl}_{3} / i-\mathrm{PrOH}(5: 1)$ under argon atmosphere. To this was added 10.0 g of silica-gel followed by portion-wise addition of $\mathrm{NaBH}_{4}(1.01 \mathrm{~g}, 26.82 \mathrm{mmol}, 4.0$ equiv.) over 30 \min at r.t. After 2 h , reaction mixture was carefully quenched with $1.0 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$ solution, filtered through a plug of cotton and the filtrate was washed with 1.0 M aq. $\mathrm{HCl}(20 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$. The organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude mixture was purified by silica-gel column chromatography (2% EtOAc in petroleum ether) to obtain $\mathbf{2 f}$ a colorless oil ($702 \mathrm{mg}, 4.64 \mathrm{mmol}, 69 \%$ yield). FT-IR (Thin film): 2973 (m), 1698 (s), 1552 (s), 1431 (m), 1379 (m); ${ }^{1} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.54$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 135.7,128.9$, 128.5, 127.3, 76.2, 33.3.

Compound 2c: Purified by silica-gel column chromatography (5\% EtOAc in petroleum ether); Light yellow oil ($301 \mathrm{mg}, 2.91 \mathrm{mmol}, 59 \%$ yield); FT-IR (Thin film): 2930 (m), 1707 (m), 1561 (s), 1438 (m), 1378 (s), 1255 (m); ¹H-NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 4.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3H); ${ }^{\mathbf{1 3}} \mathbf{C - N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta \mathbf{7 5 . 6}, 29.4,19.6,13.4$.

Compound 2g: Purified by silica-gel column chromatography (5\% EtOAc in petroleum ether); Colorless oil ($340 \mathrm{mg}, 2.40 \mathrm{mmol}, 67 \%$ yield); FT-IR (Thin
(6) Mampreian, D. M.; Hoveyda, A. H. Org. Lett. 2004, 6, 2829.
film): 2926 (m), 1705 (m), 1557 (s$), 1430$ (m), 1378 (m), 1255 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right): \delta 7.33(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.4,142.3,110.6,107.5,73.4,26.1$.

Preparation of N -(2-nitroethyl)aniline (2h):

In an oven-dried round-bottom flask, equipped with reflux-condenser, aniline (1.0 g , $10.73 \mathrm{mmol}, 1.0$ equiv.) was taken with 11.0 mL of absolute THF and the mixture was cooled to $0^{\circ} \mathrm{C}$ under argon. To this was added paraformaldehyde ($322 \mathrm{mg}, 10.73 \mathrm{mmol}, 1.0$ equiv.) and the suspension was stirred at $0{ }^{\circ} \mathrm{C}$. After 1 h , nitromethane ($5.8 \mathrm{~mL}, 107.3 \mathrm{mmol}, 10.0$ equiv.) and 1.0 g silica-gel was added and the resulting slurry was heated at $70^{\circ} \mathrm{C}$ for 48 h . Reaction mixture was cooled to r.t., filtered through a plug of cotton and the filtrate was concentrated under vacuum. The crude reaction mixture was purified by silica-gel column chromatography (3$5 \%$ EtOAc in petroleum ether) to obtain $\mathbf{2 h}$ as a thick yellow oil ($950 \mathrm{mg}, 5.71 \mathrm{mmol}, 53 \%$ yield). FT-IR (Thin film): 2925 (w), 1603 (s$), 1552$ (s), 1508 (s), 1385 (m), 1359 (m), 1258 (m); ${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}\right.$, CDCl $\left._{3}\right): \delta 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 2 \mathrm{H}), 4.57$ $(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 146.2, 129.6, 118.7, 113.1, 74.3, 41.2.

Preparation of \mathbf{N}-(2-nitroethyl)-N-phenylbenzamide (2i):

In an oven-dried round-bottom flask, $\mathbf{2 h}(250 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.0$ equiv.) was taken with 3.0 mL of absolute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon and cooled to $0{ }^{\circ} \mathrm{C}$. To this was added pyridine $(0.18$ $\mathrm{mL}, 2.25 \mathrm{mmol}, 1.5$ equiv.) followed by benzoyl chloride ($0.21 \mathrm{~mL}, 1.8 \mathrm{mmol}, 1.2$ equiv.) and the mixture was gently warmed to r.t. and stirred. After 24 h , reaction mixture was quenched with 5 mL of $\mathrm{H}_{2} \mathrm{O}$ and diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic phase was separated from aqueous phase, aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined reaction mixture was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel column chromatography (10-15\% EtOAc in petroleum ether) to obtain $2 \mathbf{i}$ as a light yellow oil ($180 \mathrm{mg}, 0.665 \mathrm{mmol}, 44 \%$ yield). FT-IR (Thin film): 2959 (w), 1651 (s), 1595 (s), 1552 (s), 1493 (m), 1384 (s), 1306 (m), 1250 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 7.28-7.13(\mathrm{~m}, 8 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=5.4 \mathrm{~Hz}$,

2H); ${ }^{13} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 171.1,142.8,134.8,130.2,130.0,129.5,128.8,128.4$, 127.8, 127.5, 127.4, 72.8, 48.3.

Preparation of 2-nitroethan-1-ol (2j):

In an oven-dried round-bottom flask, equipped with reflux condenser, paraformaldehyde ($500 \mathrm{mg}, 16.65 \mathrm{mmol}, 1.0$ equiv.) was taken with 75.0 mL of nitromethane. To this was added 0.15 mL 3.0 M methanolic KOH solution and the mixture was stirred at r.t. for 2 h and then refluxed at $100^{\circ} \mathrm{C}$ for additional 30 min . After cooling the reaction mixture to r.t., solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography ($20-25 \%$ EtOAc in petroleum ether) to obtain $2 \mathbf{j}$ as a light yellow oil (910 mg , $1.00 \mathrm{mmol}, 60 \%$ yield). FT-IR (Thin film): 2921 (w), 1637 (m), 1402 (w), 1261 (m); ${ }^{1} \mathbf{H}$-NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 4.51(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 77.2,58.7$.

Preparation of tert-butyldimethyl(2-nitroethoxy)silane (2k):

In an oven-dried round-bottom flask, $\mathbf{2 j}(250 \mathrm{mg}, 2.74 \mathrm{mmol}, 1.0$ equiv.) was taken with 2.7 mL of dry DMF under argon. To this was added imidazole ($280 \mathrm{mg}, 4.12 \mathrm{mmol}, 1.3$ equiv.) followed by TBSCl ($496 \mathrm{mg}, 3.29 \mathrm{mmol}, 1.2$ equiv.) and the resulting mixture was stirred at 50 ${ }^{\circ} \mathrm{C}$. After 18 h , reaction mixture was cooled to r.t. and diluted with 5 mL of $\mathrm{H}_{2} \mathrm{O}$ and 10 mL of $\mathrm{Et}_{2} \mathrm{O}$. Organic phase was separated from aqueous phase, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether) to obtain $2 \mathbf{k}$ as a colorless oil ($450 \mathrm{mg}, 2.19$ mmol, 80\% yield). FT-IR (Thin film): 2930 (s), 2858 (s), 1701 (m), 1560 (s), 1369 (m), 1257 (m); ${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l ~ 3): ~ \delta ~ 4.45 ~(t, ~ J=5.0 ~ H z, ~ 2 H), ~ 4.13 ~(t, ~ J=5.0 ~ H z, ~ 2 H), ~ 0.86 ~(s, ~$ 9H), 0.06 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}\right.$): $\delta 77.7,59.6,25.7,18.2,-5.4$.

Preparation of (E)-7-nitrohept-3-en-2-one (2I):

(E)-7-nitrohept-3-en-2-one (2l) was prepared according to a modified literature procedure. ${ }^{7}$ In an oven and vacuum-dried round-bottom flask, $\mathrm{MeNO}_{2}(8.1 \mathrm{~mL}, 151 \mathrm{mmol}, 10$ equiv) and KF ($2.67 \mathrm{~g}, 46 \mathrm{mmol}, 3.1$ equiv) was taken in $\mathrm{MeOH}(20 \mathrm{~mL})$ under argon and the mixture was cooled to $-35^{\circ} \mathrm{C}$. A solution of acrolein ($1.0 \mathrm{~mL}, 15 \mathrm{mmol}, 1.0$ equiv.) in 5 mL MeOH was added drop wise at $-35^{\circ} \mathrm{C}$ over 10 minutes. The resulting solution was stirred at -35 ${ }^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was diluted with 50 mL EtOAc and 50 mL of $\mathrm{H}_{2} \mathrm{O}$. The organic phase was separated, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the crude 4-nitrobutanal ($600 \mathrm{mg}, 5.12 \mathrm{mmol}, 34 \%$ yield). The crude product was used in the next step without further purification or characterization.

To a solution of the crude 4-nitrobutanal ($600 \mathrm{mg}, 5.12 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.1 mL) was added 1-(triphenylphosphoranylidene)-2-propanone ($1.95 \mathrm{~g}, 6.15 \mathrm{mmol}, 1.2$ equiv) at r . t . The resulting solution was stirred at ambient temperature for 24 h . The reaction mixture was diluted with petroleum ether/EtOAc (1:1) and the solid formed was filtered off, washed with petroleum ether/EtOAc (1:1) and the filtrate was concentrated under reduced pressure. The crude product was purified by silica-gel flash column chromatography (15-20\% EtOAc in petroleum ether) to afford $2 \mathbf{l}$ as a colorless oil ($195 \mathrm{mg}, 1.24 \mathrm{mmol}, 24 \%$ yield). FT-IR (Thin film): 2929 (m), 1698 (s), 1673 (s), 1555 (s), 1434 (s), 1383 (s), 1257 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ $6.72(\mathrm{dt}, J=15.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.31(\mathrm{~m}$, 2H), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 198.1,144.3,132.5,74.6$, 28.9, 27.3, 25.6.

[^1]Table 1: Optimization of terminal base: uncatalyzed reaction:

entry	base	time (h)	\% conversion of 1a ${ }^{\text {a }}$
1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	12	>95
2	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	24	<5
3	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	24	<5
4	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	24	<5
5	NaHCO_{3}	24	<5
6	2,6-lutidine	24	<5

${ }^{a}$ Conversion of 1a as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture.

Table 2: Optimization of terminal base: catalytic reaction:

entry	base	time (h)	\% conversion of 1a ${ }^{\text {a }}$	er
1	none	4	~ 10	n.d.
2	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	20	>95	20:80
3	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	96	20	n.d.
4	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	27	>95	24:76
5	NaHCO_{3}	72	76	20:80
6	$\mathrm{NaHCO}_{3} / 4 \AA \mathrm{MS}$	72	44	20:80
7	2,6-lutidine	72	20	n.d.

Table 3: Preliminary catalyst screening:

Table 4: Solvent optimization:

 entry	IV (10 mol\%)$\mathrm{CH}_{3} \mathrm{NO}_{2}$ (10 equiv.)$\mathrm{Na}_{2} \mathrm{CO}_{3}(1.5$ equiv.)Solven (0.5 M)r.t.			
	solvent	time (h)	\% conversion of 1a	er
1	CHCl_{3}	20	>95	88:12
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	14	>95	88:12
3	DCE	36	80	87:13
4	PhCH_{3}	12	>95	89:11
5	PhF	20	>95	89:11
6	PhCF_{3}	12	>95	90:10

Table 5: Optimization of concentration and the amount of nitromethane:

entry	conc. (M)	X	time (h)	\% conversion of 1a	er
1	0.5	10	55	>95	95:5
2	1.0	10	50	>95	94:6
3	0.25	10	60	>95	95:5
4	0.5	2	72	62	94.5:5.5
5	0.5	5	72	85	95:5

General procedure for the preparation of racemic products (rac-3):

In a glass-vial 1 ($0.050 \mathrm{mmol}, 1.0$ equiv.) and nitroalkane ($0.200 \mathrm{mmol}, 4.0$ equiv.) was taken with 0.1 mL of PhCF_{3}. To this was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.100 \mathrm{mmol}, 2.0$ equiv.) the resulting suspension was stirred at r.t. until TLC reveals the complete consumption of $\mathbf{1}$. The crude mixture was purified by preparative TLC (Merck silica-gel $60 \mathrm{~F}_{254}$ pre-coated plates of 0.25 mm thickness) to obtain the racemic desymmetrized products (rac-3).

Typical procedure for the organocatalytic enantioselective $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathrm{H}$ methylation:

In an oven-dried Schlenk tube $\mathrm{Na}_{2} \mathrm{CO}_{3}(16.0 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv.) was taken and heated to $150{ }^{\circ} \mathrm{C}$ under high-vacuum for 15 min , cooled to r.t. under vacuum and purged with argon. Catalyst \mathbf{V} ($5.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv.) and 2-benzyl-2-methylcyclopent-4-ene-1,3dione 1a ($20.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv.) was introduced under a positive argon pressure followed by 0.2 mL of absolute PhCF_{3} and the suspension was cooled to $-10^{\circ} \mathrm{C}$. After 10 min nitromethane ($54 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 10.0$ equiv.) was added to it and the resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ until TLC ($3 \times 5 \%$ EtOAc in petroleum ether) revealed complete conversion of $\mathbf{1 a}(48 \mathrm{~h})$. The reaction mixture was diluted with 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 mL of distilled water and slowly warmed to r.t. The resulting biphasic solution was transferred to a 50 mL separating funnel, the organic phase was separated from the aqueous phase. Aqueous phase was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a reddish-brown oil. The crude reaction mixture was purified by silica-gel flash column chromatography (1-2\% EtOAc in petroleum ether) to obtain 3aa as a crystalline yellow solid ($19 \mathrm{mg}, 0.088 \mathrm{mmol}, 88 \%$ yield); m.p. $90-91$ ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2926 (m), 1736 (s), 1695 (s$), 1615$ (m), 1450 (m), 1373 (m), 1255 (m); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.14-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~s}$, 2 H), $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 207.7,206.1,160.9,144.5$, 135.9, 129.6, 128.3, 127.0, 52.7, 41.3, 19.3, 11.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$
$\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 237.0891, Found: 237.0895; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-18.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 97:3 er. This product (3aa) was recrystallized from petroleum ether/EtOAc (1:1) at $0{ }^{\circ} \mathrm{C}$ to obtain light yellow blocks with 99.6:0.4 er. The enantiomeric ratios were determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=7.1 \mathrm{~min}, \tau_{\text {major }}=8.0 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

The ent-3aa was prepared using catalyst VII, following the above procedure with 84% yield and 6:94 er. Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+16.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 94:6 er. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ba: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Light yellow oil ($22 \mathrm{mg}, 0.085 \mathrm{mmol}, 85 \%$ yield); FT-IR (Thin film): 2925 (w), 1742 (m), 1698 (s), 1615 (w), 1490 (m), 1373 (w), 1442 (m); ${ }^{1} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 6.71(\mathrm{~s}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}$, 3H), 1.19 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 207.8,206.2,160.9,147.4,146.5,144.5$, 129.7, 122.9, 110.1, 108.1, 101.0, 52.7, 40.9, 19.3, 11.3; HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 281.0790$, Found: 281.0790; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-21.3$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 96.5:3.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20$ ${ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=15.3 \mathrm{~min}, \tau_{\text {major }}=16.6 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3ca: Purified by silica-gel flash column chromatography (2\% EtOAc in petroleum ether); Light yellow oil ($19 \mathrm{mg}, 0.083 \mathrm{mmol}, 83 \%$ yield); FT-IR (Thin film): 2924 (m), 1745 (m), 1700 (s), 1617 (m), 1515 (m), 1374 (m), 1332 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 6.93$ (d, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 207.9,206.3,160.9,144.5,136.5,132.8,129.5,129.0$, 52.7, 40.9, 21.1, 19.3, 11.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 251.1048$, Found: 251.1048; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-27.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $96.5: 3.5$ er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=6.5$ $\min , \tau_{\text {major }}=7.9 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3da: Purified by silica-gel flash column chromatography (3\% EtOAc in petroleum ether); Light yellow oil ($18 \mathrm{mg}, 0.079 \mathrm{mmol}, 79 \%$ yield); FT-IR (Thin film): 2929 (m), 1717 (s), 1700 (s), 1451 (m), 1374 (w), 1243 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), ~ 6.98-6.94(\mathrm{~m}, 1 \mathrm{H})$,
$6.81(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (s, 3H), $1.88(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 207.9,206.3,161.0,144.5$, 136.6, 134.5, 131.0, 130.1, 127.1, 125.7, 52.6, 37.7, 19.6, 19.4, 11.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$251.1048, Found: 251.1046; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{25}-16.7$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with $94: 6$ er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=6.5 \mathrm{~min}, \tau_{\text {major }}=7.5 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ea: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Colorless thick oil ($22 \mathrm{mg}, 0.083 \mathrm{mmol}, 83 \%$ yield); FT-IR (Thin film): 2921 (m), 1783 (s), 1528 (m), 1216 (s); ${ }^{\mathbf{1}} \mathbf{H -}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 207.8,206.0,160.9,144.2,133.9,132.5,131.6,128.7,128.5,127.9,126.0,125.7$, 125.1, 124.9, 52.9, 37.8, 19.2, 11.0; HRMS (ESI+): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 287.1048, Found: 287.1043; Optical rotation: $[\alpha]_{D}{ }^{25}-18.5$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column ($99: 1 n$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254$ $\left.\mathrm{nm}, \tau_{\text {minor }}=10.1 \mathrm{~min}, \tau_{\text {major }}=12.8 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3fa: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Light yellow solid ($24 \mathrm{mg}, 0.090 \mathrm{mmol}, 90 \%$ yield); m.p. 110-112 ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2927 (m), 1698 (s), 1617 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$, 1.29 (s, 3H); ${ }^{13} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.8,206.1,160.9,144.5,133.6,133.3,132.4$, 128.4, 128.0, 127.9, 127.8, 127.6, 126.1, 125.8, 52.8, 41.4, 19.5, 11.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 287.1048$, Found: 287.1043; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-28.4$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=9.2 \mathrm{~min}, \tau_{\text {major }}=12.4 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ga: Purified by silica-gel flash column chromatography (2\% EtOAc in petroleum ether); Light yellow oil ($21 \mathrm{mg}, 0.084 \mathrm{mmol}, 84 \%$ yield); FT-IR (Thin film): 2928 (m), 1717 (s), 1700 (s), 1489 (w), 1252
(m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~s}$, $1 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.5,205.9$, 161.0, 144.5, 134.4, 133.0, 131.0, 128.5, 52.5, 40.2, 19.6, 11.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClO}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 271.0502, Found: 271.0502; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-19.3$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with $94: 6$ er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane/EtOH, 1.0 $\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=6.9 \mathrm{~min}, \tau_{\text {major }}=8.0 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3ha: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Light yellow oil ($22 \mathrm{mg}, 0.088 \mathrm{mmol}, 88 \%$ yield); FT-IR (Thin film): 2928 (m), 1743 (m), 1699 (s), 1453 (m), 1375 (w), 1252 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right.$): $\delta 7.11-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~s}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 207.3,205.6,161.0,144.5,137.9,134.1,129.7,129.6,128.0,127.3,52.4$, 40.5, 19.5, 11.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClO}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 271.0502$, Found: 271.0505; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-13.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 95:5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n -Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$, $254 \mathrm{~nm}, \tau_{\text {minor }}=7.2 \mathrm{~min}, \tau_{\text {major }}=$ 7.8 min). See Supporting Information: Part B for HPLC chromatograms.

Compound 3ia: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Light yellow oil ($20 \mathrm{mg}, 0.080 \mathrm{mmol}, 80 \%$ yield); FT-IR (Thin film): 2928 (m), 1717 (s), 1700 (s), 1490 (w), 1252 (m); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathrm{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $206.7,205.2,160.6,148.4,143.8,133.8,132.1,129.9,128.6,126.6,51.5,37.9,18.5,11.4$; HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClO}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 271.0502, Found: 271.0501; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-10.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 87:13 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=11.7 \mathrm{~min}, \tau_{\text {major }}=13.3 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3ja: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Light yellow oil ($24 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%$ yield); FT-IR (Thin film): 2923 (m), 1743 (m), 1699 (s), 1616 (m), 1488 (m), 1374 (w); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13}$ C-NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 207.4,205.8,161.0,144.5,134.9,131.4,131.4,121.1,52.4,40.2,19.6,11.2 ;$

HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 314.9997, Found: 314.9995; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-39.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 93.5:6.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=7.4 \mathrm{~min}, \tau_{\text {major }}=8.9 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3ka: Purified by silica-gel flash column chromatography (1-2\% EtOAc in petroleum ether); Light yellow oil ($15 \mathrm{mg}, 0.084 \mathrm{mmol}, 84 \%$ yield); FT-IR (Thin film): 2927 (m), 1710 (s), 1640 (s), 1437 (m), 1248 (w); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 2.07$ (s, 3H), $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.7,206.3,160.6,144.2$, $140.5,116.0,51.1,42.9,23.9,19.9,11.4$; HRMS (ESI+): Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 179.1072, Found: 179.1073; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-7.4\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 92:8 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 2{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=6.3$ $\mathrm{min}, \tau_{\text {major }}=7.0 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3la: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Yellow oil ($20 \mathrm{mg}, 0.073 \mathrm{mmol}, 73 \%$ yield); FT-IR (Thin film): 2922 (m), 1640 (s), 1427 (m), 1261 (w); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ (s, 3H), 1.15 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}\right.$): $\delta 207.1,205.6,160.8,143.9,143.1,138.5$, 133.8, 128.5, 128.4, 119.0, 51.3, 40.9, 19.5, 11.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 275.0839$, Found: 275.0840; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+1.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 97.5:2.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20$ ${ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=9.6 \mathrm{~min}, \tau_{\text {major }}=11.1 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. [Note: This compound is sensitive to silica-gel and rapid chromatographic purification is necessary.]

Compound 3ma: Purified by silica-gel flash column chromatography (1-2\% EtOAc in petroleum ether); Yellow oil ($14 \mathrm{mg}, 0.078 \mathrm{mmol}, 78 \%$ yield); FT-IR (Thin film): 2962 (m), 1745 (m), 1702 (s), 1457 (m), 1375 (w), 1256 (m); ${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.93(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.60(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 208.4,207.0,160.2,143.9,50.4,43.8,25.4,24.0,23.9,21.4,11.5$; HRMS (ESI+): Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 203.1048$, Found: 203.1047; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-2.7\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 90:10 er. The
enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=5.8 \mathrm{~min}, \tau_{\text {major }}=6.8 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 2na: Purified by silica gel-flash column chromatography (2-3\%
 EtOAc in petroleum ether); Yellow oil ($22 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%$ yield); FTIR (Thin film): 2931 (m), 1749 (m), 1705 (s), 1464 (m), 1271 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.99(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H})$, $0.72(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 6 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.4,205.9,161.6,145.4,65.9$, 52.7, 25.6, 18.0, 14.0, 11.4, -5.7, -5.8; HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 291.1392, Found: 291.1393; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-5.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 96:4 er. The enantiomeric ratio was determined (after removal of TBS with 1: $1 \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$ at r.t. for 24 h) by HPLC analysis using Phenomenex Cellulose-2 column (90:10 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {major }}=11.9 \mathrm{~min}, \tau_{\text {minor }}=15.8 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3oa: Purified by silica-gel flash column chromatography ($2-4 \%$ EtOAc in petroleum ether); Light yellow oil ($18 \mathrm{mg}, 0.090 \mathrm{mmol}, 90 \%$ yield); FT-IR (Thin film): 2929 (m), 1701 (s), 1541 (w), 1262 (w); ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 205.4,204.1,160.5,144.2,137.3,128.8,127.7,126.5,54.5$, 19.9, 11.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 223.0735$, Found: 223.0739; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-16.0$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 83.5:16.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=13.0 \mathrm{~min}, \tau_{\text {major }}=$ $13.7 \mathrm{~min})$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3pa: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Yellow solid ($25 \mathrm{mg}, 0.086 \mathrm{mmol}, 86 \%$ yield); m.p. $131-132{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2927 (m), 1741 (m), 1697 (s), 1492 (m), 1450 (m), 1375 (m), 1268 (w); ${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l ~ 3): ~ \delta ~ 7.43-~$ $7.38(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~s}$, $1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 208.0,206.3,160.7,144.3$, 139.8, 129.6, 129.6, 128.5, 127.0, 57.7, 55.3, 18.6, 11.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ ($\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$: 313.1204 , Found: 313.1210 ; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+14.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $98: 2$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IE column (99:1 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}$, $\tau_{\text {major }}=7.9 \mathrm{~min}, \tau_{\text {minor }}=11.2 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3qa: Purified by silica-gel flash column chromatography (4\%
 EtOAc in petroleum ether); Yellow thick oil ($30 \mathrm{mg}, 0.083 \mathrm{mmol}, 83 \%$ yield); FT-IR (Thin film): 2928 (m), 1717 (m), 1698 (s), 1490 (m), 1265 (w); ${ }^{1} \mathbf{H}-N M R\left(400 ~ M H z, \mathbf{C D C l}_{3}\right): \delta 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.19(\mathrm{~m}$, $4 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 207.5,205.7,160.9,144.4,137.9,137.8,133.2,130.9$, 130.9, 128.8, 55.8, 54.9, 19.0, 11.3; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 381.0425, Found: 381.0421; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-4.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {major }}=7.2$ $\left.\mathrm{min}, \tau_{\mathrm{minor}}=7.7 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ra: Purified by silica-gel flash column chromatography (2%
 EtOAc in petroleum ether); Yellow amorphous solid ($28 \mathrm{mg}, 0.090 \mathrm{mmol}$, 90\% yield); m.p. $121-122^{\circ} \mathrm{C}$; FT-IR (Thin film): 2930 (m), 1695 (s), 1638 (m), 1455 (m), 1260 (w); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.42-7.37(\mathrm{~m}, 4 \mathrm{H})$, 7.25-7.20 (m, 4H), 7.17-7.14 (m, 2H), $6.73(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$, 1.75 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$-NMR (100 MHz, CDCl ${ }_{3}$): $\delta 208.2,206.5$, 162.4, 146.0, 139.8, 129.6, 129.6, 128.5, 127.0, 60.5, 57.7, 26.3, 11.1, 9.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 327.1361 , Found: 327.1362; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+8.4(c$ $1.0, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample with $94: 6$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IE Column (99:1 n-Hexane/EtOH, 1.0 $\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {major }}=6.5 \mathrm{~min}, \tau_{\text {minor }}=11.4 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Typical procedure for the organocatalytic enantioselective $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathrm{H}$ alkylation with other nitroalkanes:

In an oven-dried Schlenk tube $\mathrm{Na}_{2} \mathrm{CO}_{3}(16.0 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv.) was taken and heated to $150{ }^{\circ} \mathrm{C}$ under high-vacuum for 15 min , cooled to r.t. under vacuum and purged with argon. Catalyst \mathbf{V} ($5.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv.) and 2-benzyl-2-methylcyclopent-4-ene-1,3dione 1a ($20.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv.) was introduced under a positive argon pressure
followed by 0.1 mL of absolute PhCF_{3} and the suspension was cooled to $-10{ }^{\circ} \mathrm{C}$. After 10 min , a solution of nitroalkane ($0.400 \mathrm{mmol}, 4.0$ equiv.) in 0.1 mL of absolute PhCF_{3} was added to it and the resulting mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ until $\mathrm{TLC}(3 \times 5 \% \mathrm{EtOAc}$ in petroleum ether) revealed complete conversion of $\mathbf{1 a}$. The reaction mixture was diluted with 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 mL of distilled water and slowly warmed to r.t. The resulting biphasic solution was transferred to a 50 mL separating funnel, organic phase was separated from aqueous phase. Aqueous phase was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a reddish-brown oil. The crude reaction mixture was purified by silica-gel flash column chromatography.

Compound 3ab: Purified by silica-gel flash column chromatography (2%
 EtOAc in petroleum ether); Thick yellow oil ($17 \mathrm{mg}, 0.074 \mathrm{mmol}, 74 \%$ yield); FT-IR (Thin film): 2920 (m), 1681 (s), 1527 (s), 1443 (m), 1220 (w); ${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.13-7.11$ (m, 3H), 6.91-6.89 (m, 2H), 6.61 ($\mathrm{s}, 1 \mathrm{H}$), 2.95 ($\mathrm{s}, 2 \mathrm{H}$), 2.32-2.14 (m, 2H), $1.23(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 207.5,206.3,166.7,142.9,135.9,129.7,128.3,127.0,53.1,41.4,19.2,18.8,11.2$; HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 251.1048$, Found: 251.1047; Optical rotation: $[\alpha]_{\mathrm{D}}^{21}+10.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 95:5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=6.4 \mathrm{~min}, \tau_{\text {major }}=6.9 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3ac: Purified by silica-gel flash column chromatography (2\% EtOAc in petroleum ether); Yellow oil ($21 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%$ yield); FTIR (Thin film): 2930 (m), 1742 (m), 1698 (s$), 1453$ (m), 1248 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 2.97$ (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.22$ (s, 3H), 1.20-1.15 (m, 1H), 1.10-1.03 (m, 2H), $0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.6,206.4,165.3,143.5,135.9,129.7,128.3,127.0,52.9,41.3,29.1,25.0,22.1$, 19.4, 13.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 279.1361, Found: 279.1360; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{25}+0.95\left(c\right.$ 1.5, $\left.\mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 85:15 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-3 column (99:1 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {major }}=5.6 \mathrm{~min}, \tau_{\text {minor }}=$ $6.4 \mathrm{~min})$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ad: Purified by silica-gel flash column chromatography (1-2\% EtOAc in petroleum ether); Yellow oil ($25 \mathrm{mg}, 0.086 \mathrm{mmol}, 86 \%$ yield); FTIR (Thin film): 2927 (m), 1743 (m), 1700 (s), 1452 (m), 1249 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.22-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.88(\mathrm{~m}$,
$2 \mathrm{H}), 6.84-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (s, 2H), 1.26 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 207.0,205.9,164.1,144.5,135.9,135.8$, 129.6, 128.9, 128.8, 128.4, 127.0, 127.0, 53.3, 41.5, 31.7, 19.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 313.1204$, Found: 313.1210; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{24}+51.4$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with $94: 6$ er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column (99:1 n-Hexane/EtOH, 1.0 $\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {major }}=9.3 \mathrm{~min}, \tau_{\text {minor }}=11.4 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3ae: Purified by silica-gel flash column chromatography (2% EtOAc in petroleum ether); Thick yellow oil ($24 \mathrm{mg}, 0.078 \mathrm{mmol}$, 78% yield); FT-IR (Thin film): 2923 (m), 1743 (m), 1700 (s), 1455 (m), 1248 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.02$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 207.1,205.9,164.5,144.4,136.6,135.9,132.8,129.6,129.5,128.8,128.4$, 127.0, 53.3, 41.5, 31.3, 21.1, 19.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 327.1361, Found: 327.1364; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{24}+25.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 94:6 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column ($99: 1 n$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254$ $\mathrm{nm}, \tau_{\text {major }}=8.3 \mathrm{~min}, \tau_{\text {minor }}=9.1 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 3af: Purified by silica-gel flash column chromatography (10% CHCl_{3} in petroleum ether and then 2% EtOAc in petroleum ether); Yellow oil ($27 \mathrm{mg}, 0.088 \mathrm{mmol}, 88 \%$ yield); FT-IR (Thin film): 2926 (m), 1741 (m), 1699 (s), 1454 (m), 1252 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.23-7.15$ (m, $6 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.50-$ $2.42(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.4,206.2,163.7,144.0,139.9$, 136.0, 129.8, 128.6, 128.4, 128.3, 127.1, 126.5, 52.8, 41.2, 33.0, 26.8, 19.5; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 327.1361$, Found: 327.1360; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{24}+17.2$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 92.5:7.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 nHexane $\left./ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=8.5 \mathrm{~min}, \tau_{\text {major }}=9.1 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ag: Purified by silica-gel flash column chromatography (10% CHCl_{3} in petroleum ether and then 1% EtOAc in petroleum ether); Yellow oil $(15 \mathrm{mg}, 0.051 \mathrm{mmol}, 51 \%$ yield); FT-IR (Thin film): 2943 (m), 1698 (s),
$1448(\mathrm{~m}), 1412(\mathrm{w}) ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.92-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.19-6.18(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J$ $=13.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.3,206.2,163.3,153.4,144.0,141.4,135.9,129.8,128.4,127.1,110.2,106.0$, 52.9, 41.2, 25.4, 23.8, 19.4; HRMS (ESI+): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 317.1154, Found: 317.1160; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{25}+10.5$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 93:7 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column (99:1 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 210 \mathrm{~nm}, \tau_{\text {major }}=$ $\left.10.4 \mathrm{~min}, \tau_{\text {minor }}=12.1 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ah: Purified by silica-gel flash column chromatography (40$50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in petroleum ether); Yellow oil ($23 \mathrm{mg}, 0.072 \mathrm{mmol}, 72 \%$ yield); FT-IR (Thin film): 2921 (m), 1698 (s), 1629 (s), 1448 (m), 1219 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.19-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.96-6.95(\mathrm{~m}, 2 \mathrm{H})$, 6.70-6.67 (m, 1H), $6.62(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.25-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=13.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.7$, 206.1, 162.1, 146.8, 145.7, 136.2, 129.9, 129.5, 128.5, 127.3, 117.8, 112.9, 52.8, 41.6, 40.9, 25.1, 19.0; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 320.1651$, Found: 320.1652 ; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{25}+88.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 90:10 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (80:20 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20$ $\left.{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=6.1 \mathrm{~min}, \tau_{\text {major }}=6.9 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. [Note: This compound is sensitive to silica-gel and rapid chromatographic purification is necessary.]

Compound 3ai: Purified by silica-gel flash column chromatography
 ($80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in petroleum ether); Thick yellow oil ($38 \mathrm{mg}, 0.090 \mathrm{mmol}$, 90\% yield); FT-IR (Thin film): 2924 (m), 1699 (s), 1647 (s), 1457 (m), 1395 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.22-7.11$ (m, 11H), 6.92-6.89 (m, 4H), $6.75(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.68-2.60 (m, 1 H$), 2.58-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.2$, 206.1, 170.6, 161.7, 144.2, 142.7, 135.9, 135.5, 129.9, 129.7, 129.4, 128.7, 128.3, 127.8, 127.8, 127.1, 127.0, 52.7, 47.6, 41.2, 24.1, 19.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 446.1732, Found: 446.1726; Optical rotation: $[\alpha]_{D}{ }^{25}-26.6$ (c 3.0, CHCl_{3}) for an enantiomerically enriched sample with 91:9 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (80:20 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254$ $\left.\mathrm{nm}, \tau_{\text {minor }}=14.0 \mathrm{~min}, \tau_{\text {major }}=15.6 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3aj: Purified by silica-gel flash column chromatography (80% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in petroleum ether); Thick yellow oil ($20 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%$ yield); FT-IR (Thin film): 2933 (m), 1670 (s), 1525 (m), 1443 (m); ${ }^{1}$ H-NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.16-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.54$ $(\mathrm{m}, 1 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.47(\mathrm{~m}$, 2H), 1.25 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 207.9,206.2,161.7,145.9,136.0,129.8$, 128.4, 127.2, 59.7, 52.8, 41.6, 29.1, 19.0; HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 267.0997, Found: 267.0997; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{24}+11.5$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 77.5:22.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (95:5 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20$ $\left.{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {major }}=20.0 \mathrm{~min}, \tau_{\text {minor }}=20.9 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3ak: Purified by silica-gel flash column chromatography (5\% CHCl_{3} in petroleum ether and then 2% EtOAc in petroleum ether); Yellow oil ($33 \mathrm{mg}, 0.092 \mathrm{mmol}, 92 \%$ yield); FT-IR (Thin film): 2930 (m), 1647 (s), 1577 (w), 1260 (m); ${ }^{\mathbf{1}} \mathbf{H}-N M R\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.12-7.11$ (m, 3H), 6.90-6.88 (m, 2H), $6.76(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J$ $=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.6,206.4,162.0,144.8,135.9,129.7,128.3,127.0,60.0,52.6$, 41.3, 28.6, 25.9, 19.3, 18.2, -5.3; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 381.1862, Found: 381.1867; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+6.3$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 94:6 er. The enantiomeric ratio was determined (after the removal of TBS with $1: 1 \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$ at r.t. for 18 h) by HPLC analysis using Phenomenex Cellulose-2 column ($95: 5 \mathrm{n}$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {major }}=20.1 \mathrm{~min}, \tau_{\text {minor }}=$ 21.0 min). See Supporting Information: Part B for HPLC chromatograms.

Compound 3al: Purified by silica-gel flash column chromatography (5\% EtOAc in petroleum ether); Yellow oil ($25 \mathrm{mg}, 0.080 \mathrm{mmol}, 80 \%$ yield); FT-IR (Thin film): 2930 (m), 1701 (s), 1455 (m), 1225 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.11-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.58$ (m, 2H), $5.97(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 207.3,206.1,198.4,164.0,146.4,143.8,135.8,131.8,129.7,128.3$, $127.0,52.9,41.3,31.4,27.1,25.3,24.7,19.3$; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 333.1467$, Found: 333.1465; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{24}-1.9\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $88: 12$ er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (90:10 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20$
$\left.{ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=15.9 \mathrm{~min}, \tau_{\text {major }}=17.5 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Compound 3fb: Purified by silica-gel flash column chromatography (2$3 \%$ EtOAc in petroleum ether); Thick yellow oil ($22 \mathrm{mg}, 0.079 \mathrm{mmol}$, 79% yield); FT-IR (Thin film): 2930 (m), 1698 (s), 1457 (m), 1216 (w);
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 2 \mathrm{H})$, 1.28 (s, 3H), 0.78 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.4,206.1,166.5$, $142.9,133.5,133.2,132.3,128.5,127.9,127.8,127.7,127.5,126.0,125.7,53.1,41.4,19.4,18.7$, 11.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 301.1204$, Found: 301.1205; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}-4.0\left(c 2.2, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 92.5:7.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (99:1 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=8.2 \mathrm{~min}, \tau_{\text {major }}=9.4 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Procedure for hydrogenation of 3ab:

3ab (93:7 er)

4a

In an oven-dried 10 mL round-bottom flask, $\mathbf{3 a b}(80 \mathrm{mg}, 0.350 \mathrm{mmol}, 1.0$ equiv.) was taken in 3.5 mL of absolute MeOH . To this was added $10 \% \mathrm{Pd} / \mathrm{C}(18.6 \mathrm{mg}, 0.0175 \mathrm{mmol}, 0.05$ equiv.) and the resulting suspension was stirred at r.t. under H_{2}-balloon pressure. After 3 h , the reaction mixture was diluted with 5 mL of MeOH and filtered through a pad of celite. The filtrate was collected and concentrated under reduced pressure. The crude mass was purified by silicagel flash column chromatography ($1-2 \%$ EtOAc in petroleum ether) to obtain 4a as a colorless oil as a single diastereoisomer ($18 \mathrm{mg}, 0.078 \mathrm{mmol}, 22 \%$ yield); FT-IR (Thin film): 2928 (m), 1723 (s), 1451 (m), 1320 (w), 1229 (w); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.21-7.16$ (m, 3H), $7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=18.3,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.85-0.75(\mathrm{~m}, 1 \mathrm{H}), 0.70(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 218.6,216.8,136.3,130.0,128.4,127.1,59.0,47.9$, 42.5, 41.6, 22.6, 21.6, 11.6; HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ ([M+Na] ${ }^{+}$): 253.1204, Found: 253.1204; The absolute configurations of $\mathbf{4 a}$ was assigned as $(2 R, 4 S)$ by comparing the NMR and specific rotation with the known compound. ${ }^{8}$ Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{25}+47.5$ (c 2.0, $\left.\mathrm{CHCl}_{3}\right)\left[\mathrm{Lit}^{8}+53.5\left(c 1.1, \mathrm{CHCl}_{3}\right)\right.$ for an enantiomerically enriched sample with 94:6 er].
(8) Aikawa, K.; Okamoto, T.; Mikami, K. J. Am. Chem. Soc. 2012, 134, 10329.

Compound 4b: The above mentioned procedure was followed starting from 3fb (with 92.5:7.5 er). Purified by silica-gel flash column chromatography ($1-3 \%$ EtOAc in petroleum ether); Colorless oil (38 mg , $0.135 \mathrm{mmol}, 47 \%$ yield); FT-IR (Thin film): 2927 (m), 1720 (s), 1450 (m), 1320 (m), 1224 (w); ${ }^{1} \mathbf{H}-N M R\left(400 ~ M H z, ~ \mathbf{C D C l}_{3}\right): \delta 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=18.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.26(\mathrm{~s}, 3 \mathrm{H}), 0.83-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 218.6$, $216.6,134.0,133.3,132.3,128.8,128.2,128.0,127.8,127.6,126.2,125.8,59.1,47.9,42.7,41.6$, 22.6, 21.9, 11.6; HRMS (ESI+): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 303.1361, Found: 303.1361; The absolute configurations of $\mathbf{4 b}$ was assigned as ($2 R, 4 S$) by comparing the NMR and specific rotation with the known compound. ${ }^{8}$ Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}+76.4\left(c 2.0, \mathrm{CHCl}_{3}\right)$ $\left[\mathrm{Lit}^{8}+61.2\left(c 0.45, \mathrm{CHCl}_{3}\right)\right.$ for an enantiomerically enriched sample with 85:15 er].

Procedure for the selective reduction of 3aa:

In an oven dried 10 mL 2-necked round-bottom flask, 3aa ($50 \mathrm{mg}, 0.233 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$ ($174 \mathrm{mg}, 0.467 \mathrm{mmol}, 2.0$ equiv.) was taken in 2.3 mL of absolute methanol under Argon and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this was added NaBH_{4} ($18 \mathrm{mg}, 0.467 \mathrm{mmol}, 2.0$ equiv.) at once and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$. After 10 min , reaction mixture was quenched with 2 mL of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with 5 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic phase was separated from aqueous phase, aqueous phase was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. Combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude reaction mixture (with rr 65:1 and dr $=5: 1$, as obtained from ${ }^{1} \mathrm{H}-\mathrm{NMR}$) was purified by silica-gel flash column chromatography ($10 \% \mathrm{EtOAc}$ in petroleum ether) to obtain the major diastereoisomer in pure form as a colorless thick oil (28 mg , $0.129 \mathrm{mmol}, 55 \%$ yield); FT-IR (Thin film): 2924 (m), 1685 (s), 1647 (s), 1457 (w), 1260 (w), 1211 (w); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $4.48(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 210.6,154.3,141.8,138.0,130.6,128.2,126.5,78.7,53.3,39.6$, 22.2, 10.3; HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 239.1048$, Found: 239.1046; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-87.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $97: 3$ er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column ($90: 10 n$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}$, $\tau_{\text {major }}=6.5 \mathrm{~min}, \tau_{\text {minor }}=7.2 \mathrm{~min}$).

See Supporting Information: Part B for HPLC chromatograms. The relative stereochemistry was determined by 1D NOE experiment (See Supporting Information: Part B).

Procedure for epoxidation of 3aa:

In a 10 mL round-bottom flask, Зaa ($21.4 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv.) was taken in 1.0 mL of acetone $/ 20 \%$ aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(1: 1)$. To this was added $30 \% \mathrm{v} / \mathrm{v}$ aq. $\mathrm{H}_{2} \mathrm{O}_{2}(120 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$, 10 equiv.) and the resulting solution was vigorously stirred at $0^{\circ} \mathrm{C}$. After 4 h at $0^{\circ} \mathrm{C}$, the reaction mixture was brought to r.t. and concentrated under reduced pressure. The residue was diluted with 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 5 mL of distilled water. Organic phase was separated from the aqueous phase. The aqueous phase was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. Combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude reaction mixture was purified by silica-gel flash column chromatography (1% EtOAc in petroleum ether) to obtain 6 as a colorless oil, essentially as a single diastereoisomer ($18 \mathrm{mg}, 0.078 \mathrm{mmol}, 78 \%$ yield); FT-IR (Thin film): 2926 (m), 1736 (m), 1693 (s$), 1450$ (m), 1373 (m), 1255 (m); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 206.3,205.8,135.0,130.0,128.6,127.4,64.4,62.1,55.1,43.3,21.8,9.1$; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{25}-14.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The relative stereochemistry was determined by 1D NOE experiment (See Supporting Information: Part B).

Typical procedure for the second alkylation:

In an oven and vacuum-dried 10 mL round-bottom flask, equipped with a reflux condenser, $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(95 \mathrm{mg}, 0.291 \mathrm{mmol}, 2.5\right.$ equiv.) was taken and heated at $150{ }^{\circ} \mathrm{C}$ under vacuum for 2 h , cooled to r.t. and flashed with Ar. To this was added 3aa ($25 \mathrm{mg}, 0.116 \mathrm{mmol}$, 1.0 equiv.) followed by 1.2 mL of nitroethane and the resulting suspension was refluxed at 120 ${ }^{\circ} \mathrm{C}$ under Ar. After 4 h , reaction mixture was cooled to r.t., diluted with 2 mL of distilled water and 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic phase was separated from aqueous phase, aqueous phase was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. Combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude reaction mixture was purified by
silica-gel flash column chromatography ($2-3 \%$ EtOAc in petroleum ether) to obtain 7 as a yellow oil ($25 \mathrm{mg}, 0.104 \mathrm{mmol}, 90 \%$ yield); FT-IR (Thin film): 2931 (m), 1739 (m), 1694 (s), 1636 (m), 1454 (m), 1339 (m), 1249 (w); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.10-7.08$ (m, 3H), 6.87$6.86(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.08$ $(\mathrm{m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 207.2, 206.4, 159.9, 154.2, 136.1, 129.6, 128.2, 126.9, 51.5, 41.7, 19.1, 17.0, 11.9, 8.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 265.1204$, Found: 265.1204; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-20.2\left(c 2.0, \mathrm{CHCl}_{3}\right)$.

The enantiomeric compound (+)-7 was synthesized from 3ab (with 95:5 er) and nitromethane following the above procedure (87% yield). Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+18.4$ (c 1.5, CHCl_{3}).

Procedure for the alkylation of 3na:

In an oven and vacuum-dried 10 mL round-bottom flask, equipped with reflux condenser, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($78 \mathrm{mg}, 0.222 \mathrm{mmol}, 2.0$ equiv.) was taken and heated at $150^{\circ} \mathrm{C}$ under vacuum for 2 h , cooled to r.t. and flashed with Ar. To this was added a solution of 3 an ($30 \mathrm{mg}, 0.111 \mathrm{mmol}, 1.0$ equiv.) and 1-nitrobutane ($58 \mathrm{mg}, 0.555 \mathrm{mmol}, 5.0$ equiv.) in 1.1 mL of absolute toluene and the resulting suspension was refluxed at $120^{\circ} \mathrm{C}$ under Ar. After 12 h , reaction mixture was cooled to r.t., diluted with 5 mL of distilled water and 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic phase was separated from the aqueous phase. The aqueous phase was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. Combined organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude reaction mixture was purified by silica-gel flash column chromatography ($2-4 \%$ EtOAc in petroleum ether) to obtain $\mathbf{8}$ as a light yellow oil ($29 \mathrm{mg}, 0.089 \mathrm{mmol}, 80 \%$ yield); FTIR (Thin film): 2931 (m), 2859 (m), 1743 (m), 1698 (s$), 1460$ (m), 1383 (m), 1289 (m); ${ }^{1} \mathbf{H}-$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.50-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H})$, 1.38-1.28 (m, 2H), $0.93(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~s}, 9 \mathrm{H}),-0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 206.7,206.3,159.5,155.2,66.0,51.6,30.0,25.6,23.9,22.9,18.0,14.3$, 13.9, 9.2, -5.7, -5.8; HRMS (ESI+): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 347.2018$, Found: 347.2014; Optical rotation: $[\alpha]_{D}{ }^{23}+1.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 96:4 er. The enantiomeric ratio was determined (after removal of TBS with 1:1 $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$ at r.t. for 36 h) by HPLC analysis using Phenomenex Cellulose-2 column (90:10 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 254 \mathrm{~nm}, \tau_{\text {minor }}=7.3 \mathrm{~min}, \tau_{\text {major }}=7.8 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Single crystal X-ray diffraction analysis of 3aa:

A single crystal of 3aa (recrystallized from $1: 1$ petroleum ether/EtOAc at $0{ }^{\circ} \mathrm{C}$) was mounted and the diffraction data were collected at 100 K on a Bruker SMART APEX CCD diffractometer using SMART/SAINT software. Intensity data were collected using graphitemonochromatized Mo-Ka radiation ($0.71073 \AA$). The structures were solved by direct methods using the SHELX-97 and refined by full-matrix least-squares on F^{2}. Empirical absorption corrections were applied with SADABS. All Non-hydrogen atoms were refined anisotropically and hydrogen atoms were included in geometric positions. Structure was drawn using Olex-2 and ORTEP-3. The crystallographic refinement parameters are given below:

Table 6. Crystal data and structure refinement for 3aa

Identification code	3aa
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$
Formula weight	214.25
Temperature	$100(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Orthorhombic
Space group	$\mathrm{P} 2_{12} 2_{1}$
Unit cell dimensions	$\mathrm{a}=7.0960(10) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=10.3820(15) \AA \quad \beta=90^{\circ}$
	$\mathrm{c}=15.619(2) \AA \quad \gamma=90^{\circ}$
Volume	$1150.6(3) \AA^{3}$
Z	4
Density (calculated)	$1.237 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.082 \mathrm{~mm}{ }^{-1}$
$\mathrm{~F}(000)$	456
Crystal size	$0.50 \times 0.12 \times 0.10 \mathrm{~mm}{ }^{3}$
Theta range for data collection	2.36 to 27.52°
Limiting indices	$-8 \leq \mathrm{h} \leq 9,-13 \leq \mathrm{k} \leq 13,-20 \leq 1 \leq 19$
Reflections collected	18045
Independent reflections	$2633\left[\mathrm{R}_{\mathrm{int}}=0.0589\right]$
Completeness to $\Theta=27.52$	99.5%
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints $/$ parameters	$2633 / 0 / 147$
Goodness-of-fit on F^{2}	1.070
Final R indices [I $>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0387, \omega \mathrm{R} 2=0.1000$
R indices (all data)	$\mathrm{R} 1=0.0408, \omega \mathrm{R} 2=0.1016$

Absolute structure parameter
Largest diff. peak and hole
-0.01(4)
0.381 and -0.367 e. A^{-3}

Table 7. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters (\AA^{2} $\times 10^{3}$) for $3 \mathrm{aa} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$-776(2)$	$1742(1)$	$-6258(1)$	$30(1)$
$\mathrm{O}(2)$	$-1083(2)$	$-2778(1)$	$-5984(1)$	$33(1)$
$\mathrm{C}(1)$	$-3901(2)$	$1256(2)$	$-4995(1)$	$35(1)$
$\mathrm{C}(2)$	$-2748(2)$	$284(1)$	$-5455(1)$	$24(1)$
$\mathrm{C}(3)$	$-1182(2)$	$648(1)$	$-6051(1)$	$21(1)$
$\mathrm{C}(4)$	$-194(2)$	$-570(1)$	$-6360(1)$	$20(1)$
$\mathrm{C}(5)$	$-232(2)$	$-681(1)$	$-7349(1)$	$22(1)$
$\mathrm{C}(6)$	$-2179(2)$	$-597(1)$	$-7742(1)$	$20(1)$
$\mathrm{C}(7)$	$-3361(2)$	$-1668(1)$	$-7773(1)$	$28(1)$
$\mathrm{C}(8)$	$-5152(2)$	$-1569(2)$	$-8131(1)$	$36(1)$
$\mathrm{C}(9)$	$-5766(2)$	$-425(2)$	$-8480(1)$	$37(1)$
$\mathrm{C}(10)$	$-1371(2)$	$-1625(1)$	$-5925(1)$	$23(1)$
$\mathrm{C}(11)$	$-2848(2)$	$-1003(1)$	$-5408(1)$	$27(1)$
$\mathrm{C}(12)$	$1855(2)$	$-605(2)$	$-6035(1)$	$30(1)$
$\mathrm{C}(13)$	$-2823(2)$	$558(1)$	$-8091(1)$	$26(1)$
$\mathrm{C}(14)$	$-4604(2)$	$640(2)$	$-8461(1)$	$33(1)$

Table 8. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 3aa

$\mathrm{O}(1)-\mathrm{C}(3)$	$1.2149(16)$
$\mathrm{O}(2)-\mathrm{C}(10)$	$1.2183(16)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.4841(19)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9600
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9600
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9600
$\mathrm{C}(2)-\mathrm{C}(11)$	$1.340(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.4978(18)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5247(17)$
$\mathrm{C}(4)-\mathrm{C}(10)$	$1.5363(18)$
$\mathrm{C}(4)-\mathrm{C}(12)$	$1.5407(17)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5492(16)$

$\mathrm{C}(5)-\mathrm{C}(6)$	$1.5139(17)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9700
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9700
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.3935(19)$
$\mathrm{C}(6)-\mathrm{C}(13)$	$1.3947(19)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.393(2)$
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9300
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.378(2)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9300
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.380(2)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9300
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.472(2)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9300
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9600
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9600
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9600
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.392(2)$
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9300
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9300
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(1)$	$128.46(13)$
$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(3)$	$108.97(11)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$122.55(12)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$125.25(12)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$125.56(12)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$109.20(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	$101.58(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(12)$	$110.43(11)$
$\mathrm{C}(10)-\mathrm{C}(4)-\mathrm{C}(12)$	$110.51(11)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.70(10)$
$\mathrm{C}(10)-\mathrm{C}(4)-\mathrm{C}(5)$	$112.30(10)$

$\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.08(11)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$114.54(10)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.6
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.6
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.6
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(13)$	$118.39(12)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$121.17(12)$
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.44(11)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.28(14)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$120.76(14)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.6
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$119.54(13)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.2
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{H}(9)$	120.2
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$126.32(13)$
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(4)$	$125.16(13)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(4)$	$108.49(11)$
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$111.70(12)$
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{H}(11)$	124.2
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	124.2
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(6)$	$120.81(13)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.6
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13)$	119.6
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.19(14)$
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{H}(14)$	119.9
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.9

Table 9. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3aa. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}^{11}+\ldots+2 h k \mathbf{a}^{*} \mathbf{b}^{*} \mathbf{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$35(1)$	$22(1)$	$32(1)$	$-2(1)$	$-2(1)$	$-4(1)$
$\mathrm{O}(2)$	$36(1)$	$23(1)$	$40(1)$	$5(1)$	$-8(1)$	$2(1)$
$\mathrm{C}(1)$	$37(1)$	$42(1)$	$28(1)$	$-4(1)$	$5(1)$	$9(1)$
$\mathrm{C}(2)$	$21(1)$	$33(1)$	$17(1)$	$-1(1)$	$-3(1)$	$2(1)$
$\mathrm{C}(3)$	$20(1)$	$23(1)$	$20(1)$	$-2(1)$	$-5(1)$	$-1(1)$
$\mathrm{C}(4)$	$17(1)$	$22(1)$	$22(1)$	$0(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(5)$	$17(1)$	$27(1)$	$22(1)$	$-3(1)$	$3(1)$	$1(1)$
$\mathrm{C}(6)$	$18(1)$	$24(1)$	$18(1)$	$-5(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(7)$	$31(1)$	$27(1)$	$25(1)$	$-2(1)$	$0(1)$	$-7(1)$
$\mathrm{C}(8)$	$29(1)$	$53(1)$	$25(1)$	$-3(1)$	$-1(1)$	$-20(1)$
$\mathrm{C}(9)$	$19(1)$	$72(1)$	$21(1)$	$-1(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(10)$	$23(1)$	$23(1)$	$24(1)$	$4(1)$	$-7(1)$	$-1(1)$
$\mathrm{C}(11)$	$24(1)$	$33(1)$	$23(1)$	$6(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(12)$	$18(1)$	$37(1)$	$35(1)$	$-1(1)$	$-5(1)$	$2(1)$
$\mathrm{C}(13)$	$28(1)$	$27(1)$	$22(1)$	$-3(1)$	$1(1)$	$0(1)$
$\mathrm{C}(14)$	$31(1)$	$44(1)$	$26(1)$	$0(1)$	$1(1)$	$12(1)$

ORTEP representation of the X-ray structure of enantiopure 3aa (thermal ellipsoids at 30\% probability)

[^0]: (5) Yang, S. H.; Chang, S. Org. Lett. 2001, 3, 4209.

[^1]: (7) Jhuo, D.-H.; Hong, B.-C.; Chang, C.-W.; Lee, G.-H. Org. Lett. 2014, 16, 2724.

