Supporting Information

Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II)

Xiao-Yu Xu, Bing Yan*

Department of Chemistry, Tongji University, Shanghai 200092, China Corresponding author: Prof. Dr. Bing Yan, Email: <u>byan@tongji.edu.cn</u>

Figure S1SEM image of MIL-124.

Figure S2 Representation of the structure of MIL-124 viewed along c axis.

Figure S3 FTIR spectra of MIL-124.

Figure S4 UV–vis absorption spectra of suspended MIL-121 and Eu^{3+} @MIL-121 in H₂O solution.

Figure S5 The fluorescence emission spectra of H_3 btc and MIL-124 (a) and the excitation and emission spectra of MIL-124 (b).

Figure S6 Day-to-day fluorescence stability of Eu³⁺@MIL-124 under excitation at 298 nm.

Figure S7 Luminescence intensity of Eu^{3+} @MIL-124 upon the addition of Fe³⁺ in the presence of background of metal cations in aqueous solution ($\lambda_{ex} = 298$ nm; $\lambda_{em} = 615$ nm).

Figure S8Responses of the fluorescence of pure MOF towards aqueous solution of Fe^{3+} and Fe^{2+} .

Figure S9 PXRD patterns of the Eu³⁺@MIL-124 after immersing in aqueous solution with various metal ions.

Figure S10PXRD patterns of synthesized Fe(III)-MOF and Fe(II)-MOF.

Figure S11 PXRD patterns of the Eu³⁺@MIL-124 after immersing in aqueous solution with various anions.

Figure S12 Fluorescence lifetime of Eu^{3+} @MIL-124 in the absence (red) and presence (black) of $Cr_2O_7^{2-}$ in aqueous solution.

Figure S13 Emission spectra (a) and Ksv curve (b) of Eu^{3+} @MIL-124 in aqueous solutions in the presence of various concentrations of $Cr_2O_7^{2-}$ under excitation at 298 nm.

Figure S14 PXRD patterns of the Eu³⁺@MIL-124 after immersing in different organic small molecules.

Figure S15 PL spectra (a) and luminescence intensity of the ${}^{4}D_{0}{}^{-7}F_{2}$ of Eu ${}^{3+}$ @MIL-124(b) in the presence of various ratios of Eu ${}^{3+}$ @MIL-124 and acetoneunder excitation at 298 nm.

Figure S16Liqiud UV-vis absorption of different anions.

Figure S17 UV-visabsorption spectra of Eu^{3+} @MIL-124 and target solvents (CH₃OH and acetone).

Table S1 The detailed ICP studies of MIL-124, Eu^{3+} @MIL-124 and target metal ions $(K^+, Co^{2+}, Fe^{2+} \text{ and } Fe^{3+})$

Samples	Ga ³⁺ (ppm)	Eu ³⁺ (ppm)	M ⁿ⁺ (ppm)	Ga ³⁺ :Eu ³⁺ :M ⁿ⁺
MIL-124	35.02			
Eu ³⁺ @MIL-124 (1a)	33.24	0.56		
K+@1a	32.45	0.60	0.23	141:3:1
Co ²⁺ @1a	30.72	0.23	0.84	134:1:4
Fe ²⁺ @1a	31.56	0.07	0.58	451:1:8
Fe ³⁺ @1a	13.41	0.04	3.84	335:1:96