Supporting Information for

Modulation of Electronic and Self-Assembly Properties of a Donor-Acceptor-Donor Based Molecular Material *via* Atomistic Approach

Joydeep Dhar,^a K. Swathi,^b Durga Prasad Karothu,^a K. S. Narayan,^b and Satish Patil^{*a}

^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

^bChemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India

E-mail: satish@sscu.iisc.ernet.in

Table of contents	page no
Synthesis of T4BT and T4BSe	2
Figure S1, S2: ¹ H and ¹³ C NMR spectra of T4BT	3
Figure S3, S4: ¹ H and ¹³ C NMR spectra of T4BSe	4
Figure S 5: General device configuration for CP-AFM studies	5
Figure S6: Temperature dependent absorption spectra of T4BT	5
Figure S7: ORTEP representation of T4BT (a) and T4BSe (b)	5
Figure S8: FESEM images of T4BSe microstructures from solvent of different polar	cities 6
Figure S9: FESEM images of T4BT microstructures from solvent of different polar	ities 6
Figure S10: TGA plot of T4BT and T4BSe	7
Figure S11: DSC plot of T4BT and T4BSe (a) and POM image of T4BSe (b)	7
T1: Summary of fluorescent excited states amplitude and lifetime	7
References	8

Synthesis:

4,7-dibromo-2,1,3-benzothiadiazole, 4,7-dibromo-2,1,3-benzoselenadiazole and 4-hexyl-2tributylstannylthiophene were synthesized following the reported synthetic procedure from literature.¹ Then by coupling 4-hexyl-2-tributylstannylthiophene with 4,7-dibromo-2,1,3-benzothiadiazole and 4,7-dibromo-2,1,3-benzoselenadiazole 4,7-bis(3'hexylthiophen-2-yl)-2,1,3-benzothiadiazole (T4BT) and 4,7-bis(3'-hexylthiophen-2-yl)-2,1,3-benzoselenadiazole (T4BSe) were synthesized, respectively.

4,7-Bis(3'-hexylthiophen-2-yl)-2,1,3-benzothiadiazole (T4BT): To a 100 mL two-neck round-bottomed flask 4-hexyl-2-tributylstannylthiophene (4.85 g, 10.3 mmol), 4,7-dibromo-2,1,3-benzothiadiazole (1.0 g, 3.9 mmol), Pd(PPh₃)₂Cl₂ (4 mg), toluene (60 mL) were taken in inert atmosphere. The solution mixture was heated to 110 °C overnight. After cooling to room temperature, the reaction mixture was poured into water and extracted with dichloromethane (3 × 50 mL). The organic phase was dried over anhydrous Na₂SO₄ and evaporated to dryness. The crude product was then loaded on a silica gel column and eluted with hexane affording the desired product as the orange colored solid. Yield: 73%

¹H NMR (400 MHz, CDCl₃) δ : 7.96 (d, 2H), 7.83 (s, 2H), 7.04 (d, 2H), 2.72-2.68 (t, *J* = 7.6 Hz, 4H), 1.71-1.69 (m, 4H), 1.40-1.33 (m, 12H), 0.92-0.89 (t, *J* = 6.8 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 153.04, 144.79, 139.45, 129.43, 126.41, 125.93, 121.96, 32.18, 31.12, 30.94, 29.53, 23.11, 14.59 ppm. (ESI-MS) calculated for C₂₆H₃₂N₂S₃ (M)⁺: m/z: 469.21

4,7-Bis(3'-hexylthiophen-2-yl)-2,1,3-benzoselenadiazole (T4BSe): Following same reaction condition as it was followed to synthesize T4BT, 4,7-Bis(3'-hexylthiophen-2-yl)-2,1,3-benzoselenadiazole (T4BSe) was synthesized using 4-hexyl-2-tributylstannylthiophene and 4,7-dibromo-2,1,3-benzoselenadiazole. (Yield: 69%)

¹H NMR (400 MHz, CDCl₃) δ : 7.87 (s, 2H), 7.73 (s, 2H), 7.04 (s, 2H), 2.70-2.66 (t, *J* = 7.6 Hz, 4H), 1.71-1.68 (m, 4H), 1.41-1.32 (m, 12H), 0.92-0.89 (t, *J* = 6.8 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 158.68, 144.48, 139.76, 129.35, 127.91, 126.25, 122.31, 32.17, 31.10, 30.94, 29.53, 23.10, 14.59 ppm. (ESI-MS) calculated for C₂₆H₃₂N₂S₂Se (M)⁺: m/z: 517.34

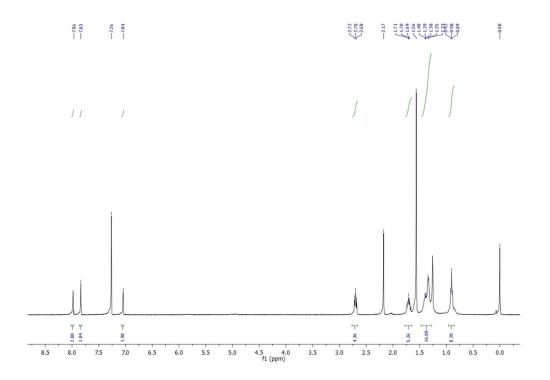


Figure S1. ¹H NMR spectrum of T4BT

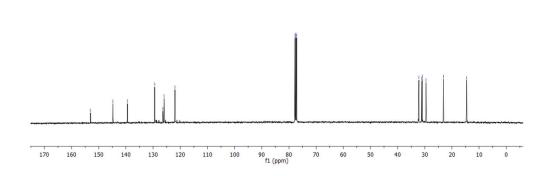


Figure S2. ¹³C NMR spectrum of T4BT

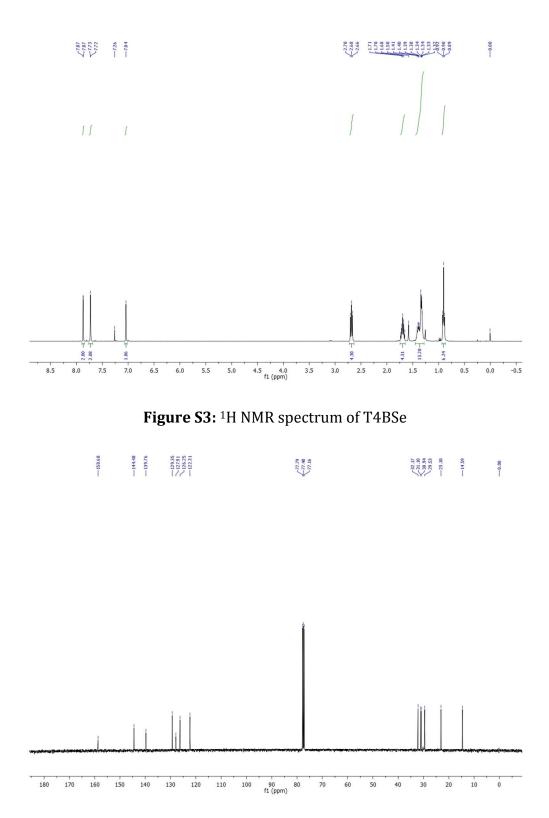
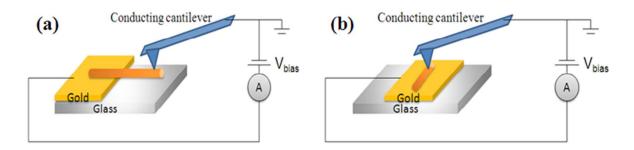



Figure S4: ¹³C NMR spectrum of T4BSe

Figure S5. General device configuration for CP-AFM measurements in vertical (a) and in horizontal (b) geometries

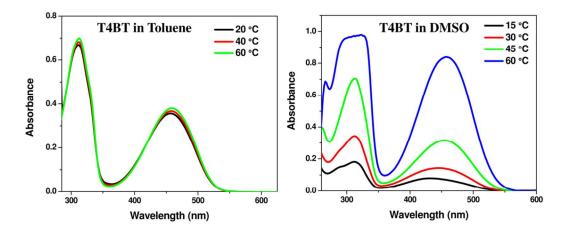


Figure S6: Temperature dependent absorption spectra of T4BT in toluene and DMSO

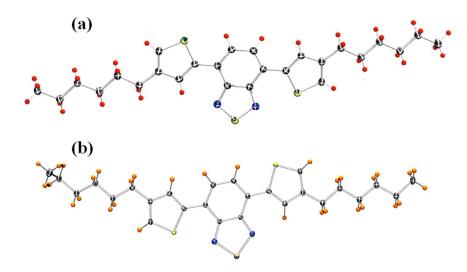
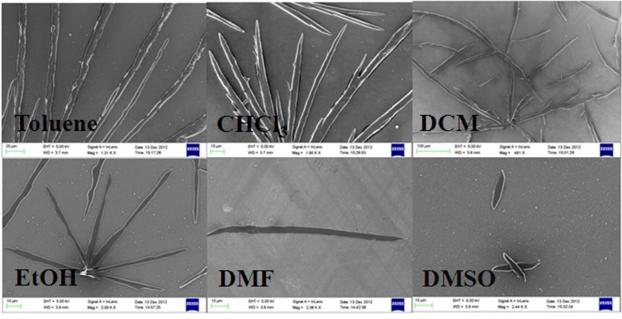



Figure S7. ORTEP representation of T4BT (a) and T4BSe (b)

Figure S8. FESEM images of T4BSe microstructures drop-casted from solvent of different polarities

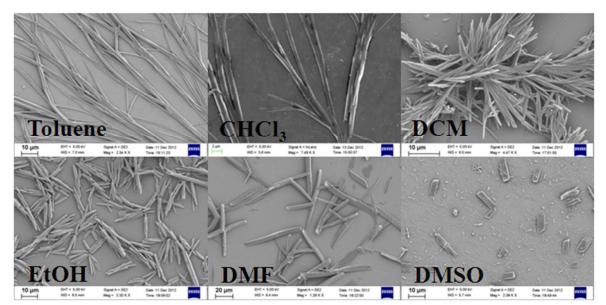
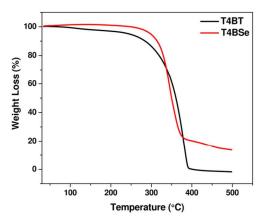



Figure S9. FESEM images of T4BT microstructures in solvent of different polarities

Figure S10. TGA plot of T4BT and T4BSe recorded at 10 °C/min heating rate in nitrogen atmosphere

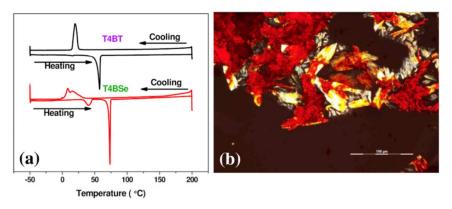


Figure S11. DSC thermograms of both the semiconductors (a) and polarizing microscopic image (b) of T4BSe at 50 $^{\circ}\text{C}$

T1. Excited state fluorescence lifetime and corresponding amplitude of T4BT and T4BSe in solvent of different polarities

	T4BT				T4BSe			
Solvent	Amp. (%)	$ au_1$ (ns)	Amp. (%)	$ au_2$ (ns)	Amp. (%)	$ au_1$ (ns)	Amp. (%)	τ ₂ (ns)
Toluene	100	10.88	-	-	100	6.64	-	-
EtOH	100	4.27	-	-	90.22	1.07	9.78	2.25
DMSO	62.61	9.73	37.39	5.43	100	4.8	-	-

References.

Yang, R. Q.; Tian, R. Y.; Yan, J. G.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao,
Y. Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New
Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic
Devices *Macromolecules* 2005, *38*, 244-253.