Copper(I)-Catalyzed Cycloaddition of 4-Bromo-Sydnones and Alkynes for the Regioselective Synthesis of 1,4,5-Trisubstituted Pyrazoles.

Elodie Decuypere, Simon Specklin, Sandra Gabillet, Davide Audisio, Hui Liu, Lucie Plougastel, Sergii Kolodych, Frédéric Taran*

Service de Chimie Bioorganique et de Marquage and Service de Chimie Moléculaire, Commissariat à I'Energie Atomique, Gif Sur Yvette, F-91191 France
frederic.taran@cea.fr

Supporting Information

Table of Contents

Synthesis and analytical data of ligands L9-L12 p 2
Procedure and analytical data of 5-bromopyrazoles 3 p 5
Optimization of Suzuki coupling of 5-bromopyrazoles 3 p 14
Procedure and analytical data of 1,4,5-trisubstituted pyrazoles 6 p 14
Mechanism study of the CuSAC reaction p18
NMR Spectra of compounds p 22

General

Organic solvents (Aldrich) were used without further purification. Purifications of reactions products were carried out by flash chromatography using Merck silica gel (40-63 $\mu \mathrm{m}$). Infrared spectra (IR) were obtained on a Perkin Elmer UATR TWO FTIR spectrophotometer and are reported as wavelength numbers $\left(\mathrm{cm}^{-1}\right)$. Infrared spectra prepared with a KBr or NaCl pellet containing the title compound were obtained on a Perkin Elmer system 2000 FTIR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}),{ }^{13} \mathrm{C}$ NMR (100 MHz) were measured on a Brucker Avance 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm, δ) downfield from residual solvents peaks and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), doublet (d), triplet (t), Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m). Electrospray mass spectra were obtained using an ESI/TOF Mariner Mass Spectrometer. High resolution mass spectra were obtained using a LCT PREMIER/XE WATERS TOF. Isotopic enrichments were calculated using direct injection ESI mass spectrometer. Unless otherwise noted, all other commercially available reagents and solvents were used without further purification.

Synthesis and analytical data of ligands L9-L12

Ligands L9-L12 were synthesised according to a described synthetic route (scheme S1). ${ }^{1}$

Scheme S1. General route to ligands L9-12

- 1-[2-(1H-imidazol-1-yl)phenyl]-1H-imidazole (LO)

$\mathrm{M}=210.23 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}$

In a round-bottom flask were added 1,2-dibromobenzene ($10.0 \mathrm{~g}, 42.4 \mathrm{mmol}$), imidazole (7.21 g , $106 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(11.7 \mathrm{~g}, 84.8 \mathrm{mmol}), \mathrm{Cu}_{2} \mathrm{O}(0.303 \mathrm{~g}, 2.12 \mathrm{mmol})$, and DMSO (20 mL). The mixture was stirred at $150{ }^{\circ} \mathrm{C}$ overnight. The resultant mixture was cooled to room temperature and filtered off through Celite with EtOAc. To the organic solution was added $\mathrm{H}_{2} \mathrm{O}$ and the mixture was extracted with EtOAc. The combined organic layer were dried over MgSO_{4} and evaporated under vacuum. A recristallisation was performed with CHCl_{3} and heptane to give 3.30 g of compound $\mathbf{L O}$ (white powder) with 45% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.53-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H})$, 6.74 (s, 2 H) ppm ;

[^0]${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): $\delta=136.7$ (2C), 132.1 (2C), 130.5 (2C), 129.7 (2C), 127.1 (2C), 119.4 (2C) ppm;
IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$) : 3101, 2919, 2850, 1682, 1600, 1520, 1487, 1368, 1304, 1247, 1177, 1112, 1090, 1065, 965, 904, 835, 780 ;
MS (ESI) $m / z: 211[M+H]^{+}$.

- diimidazo[1,2-a:2', 1^{\prime}-c]quinoxaline (L9)

$$
\mathrm{M}=208.07 \mathrm{~g} / \mathrm{mol}
$$

$$
\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4}
$$

LO ($400 \mathrm{mg}, 1.90 \mathrm{mmol}$) was dissolved in 8 mL of dried THF. The reaction was cooled to $-78^{\circ} \mathrm{C}$ and BuLi (1.6 M solution, 2.85 mL) was added dropwise. The reaction mixture was stirred for 60 min , then a solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(43.9 \mathrm{mg}, 0.0380 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added. The solution was slowly warmed to room temperature, and stirred for 19 h under argon atmosphere. Then a solution of brine was added and extraction was carried out with ethyl acetate. The organic layer was dried with magnesium sulfate, and then evaporated under vacuum. A recrystallization was performed in CHCl_{3} and heptane to give 341 mg of compound $\mathbf{L 9}$ (bright yellow powder) in 86% yield.
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): \delta=7.89-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.628-7.625(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}^{\text {NMR }}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=135.8$ (2C), 132.6 (2C), 126.3 (2C), 124.4 (2C), 116.6 (2C), 112.4 (2C) ppm ;
IR ($\mathrm{NaCl}_{\mathrm{cm}}{ }^{-1}$) : 1633, 1574, 1509, 1463, 1410, 1348, 1326, 1116, 931, 759, 685 ;
MS (ESI) $\mathrm{m} / \mathrm{z}: 231[\mathrm{M}+\mathrm{Na}]^{+}$.

General Procedure A for arylation of compound L9:

Into a round bottom flask, dried $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4 equiv.), L9 (1 equiv.), bromoaryl (3 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.1 equiv.) and dppe (0.2 equiv.) were mixed in DMF (final concentration 0.1 M). The mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 48 h under argon atmosphere. The resultant mixture was cooled down to room temperature and subsequently filtered off through celite with CHCl_{3} three times. To the organic solution was added brine. The combined mixture was extracted with CHCl_{3}. The combined organic layers were dried over magnesium sulfate and evaporated. A column chromatography was performed (EtOAc/Heptane: 9/1).

- 3,10-bis(4-nitrophenyl)diimidazo[1,2-a:2',1'-c]quinoxaline (L10)

Compound L10 was obtained in 59% yield, 127 mg (orange solid) from compound $\mathbf{L 9}$ (100 mg , 0.48 mmol), 1-bromo-4-nitrobenzene ($388 \mathrm{mg}, 1.92 \mathrm{mmol}$), using general procedure \mathbf{A} and purified by column chromatography (Heptane/ Ethyl acetate :1/9).

Mp : decomp. $>315^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.42(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{~s}, 2 \mathrm{H}), 7.49-7.47$ (m, 2 H), 7.22-7.20 (m, 2 H) ppm ;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=147.8$ (2C), 138.3 (2C), 136.5 (2C), 135.6 (2C), 129.5 (4C), 128.4 (2C), 126.1 (2C), 125.6 (2C), 124.5 (4C), 118.9 (2C) ppm ;

IR ($\mathbf{v}, \mathrm{cm}^{-1}$): 3102, 1916, 1596, 1515, 1492, 1474, 1375, 1342, 1299, 1139, 1108, 1014, 973, 909, 852, 753, 731, 697 ;
MS (ESI) $m / z: 451[\mathrm{M}+\mathrm{H}]^{+}$.

- 3,10-diphenyldiimidazo[1,2-a:2',1'-c]quinoxaline (L11)

$\mathrm{M}=360.14 \mathrm{~g} / \mathrm{mol}$ $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4}$

Compound L11 was obtained in 84% yield, 400 mg (yellow solid) from compound L 9 (275 mg , 1.32 mmol) and bromobenzene ($416 \mu \mathrm{~L}, 3.96 \mathrm{mmol}$), using general procedure \mathbf{A} and purified by column chromatography (Heptane/ Ethyl acetate : 1/9).

Mp : 219-221 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.45-7.59(\mathrm{~m}, 14 \mathrm{H}), 6.99-7.07(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=137.2(2 \mathrm{C}), 133.6(2 \mathrm{C}), 130.6$ (2C), 130.2 (2C) , 129.6 (4C), 129.1 (6C), 126.0 (2C), 125.2 (2C), 118.5 (2C) ppm

IR ($\mathbf{v}, \mathrm{cm}^{-1}$): 3057, 1708, 1623, 1572, 1523, 1494, 1476, 1445, 1376, 1347, 1283, 1161, 1073, 953, 848, 761, 731, 702, 645 ;
MS (ESI) m/z : $361[\mathrm{M}+\mathrm{H}]^{+}$.

- 3,10-bis(4-methoxyphenyl)diimidazo[1,2-a:2',1'-c]quinoxaline (L12)

Compound L12 was obtained in 40% yield, 82 mg (brown solid) from compound $\mathbf{L 9}$ (100 mg , 0.48 mmol) and bromoanisole ($240 \mu \mathrm{~L}, 1.92 \mathrm{mmol}$), using general procedure \mathbf{A} and purified by column chromatography (Heptane/ Ethyl acetate : 1/9).

Mp : 189-191 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.53-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 6 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H})$ ppm;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=160.2$ (2C), 136.9 (2C), 133.3 (2C), 131.1 (4C), 129.8 (2C), 126.2 (2C), 125.1 (2C), 122.8 (2C), 118.3 (2C), 114.5 (4C), 55.6 (2C) ppm ;

IR (v, cm$\left.{ }^{-1}\right)$: 3004, 2960, 2838, 2545, 2231, 2045, 1894, 1681, 1610, 1573, 1556, 1505, 1494, 1473, 1463, 1441, 1416, 1376, 1347, 1297, 1249, 1177, 1109, 1083, 1029, 954, 909, 8333, 754, 731, 678 ; MS (ESI) $m / z: 421[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis and analytical data of 5-bromopyrazoles:

Sydnones were synthesized according to our previously described procedure. ${ }^{2}$

General procedure B:

To a solution of sydnone (1 equiv.) in acetone, NBS (1.2 equiv.) was added. The reaction mixture was stirred 2 h and acetone was removed by evaporation under vacuum. To the latter flask containing the bromosydnone a solution of alkyne (1.2 equiv.) and sodium ascorbate (2 equiv.) in tertbutanol/water (55/45) were added a freshly prepared aqueous solution of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ (0.2 equiv., 0.1 M final concentration), ligand (0.2 equiv., 0.1 M final concentration) and triethanolamine (1 equiv., 0.5 M final concentration). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight. Afterwards the reaction mixture was quenched with an aqueous solution of HEDTA (0.05 M) and extracted with dichloromethane. The organic layer were combined, dried over anhydrous magnesium sulfate and evaporated under vacuum. The crude mixture was purified by column chromatography.

General Procedure C:

To a solution of sydnone (1 equiv.) in acetone, NBS (1.2 equiv.) was added. The reaction mixture was stirred 2 h and acetone was removed by evaporation under vacuum. To the latter flask containing bromosydnone a solution of alkyne (1.2 equiv.) and sodium ascorbate (2 equiv.) in tertbutanol/water (55/45) were added in four subsequent equal portions a freshly prepared aqueous solution of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ (0.2 equiv., 0.1 M final concentration), ligand (0.2 equiv., 0.1 M final concentration) and triethanolamine (1 equiv., 0.5 M final concentration) every 2 hours. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. Afterwards the reaction mixture was quenched with an aqueous solution of HEDTA (0.05 M) and extracted with dichloromethane. The organic layer were combined, dried over anhydrous magnesium sulfate and evaporated under vacuum. The crude mixture was purified by column chromatography.

- 5-bromo-4-phenethyl-1-phenyl-1H-pyrazole (3a)

$$
\mathrm{M}=327.22 \mathrm{~g} / \mathrm{mol}
$$

$$
\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2}
$$

Compound 3a was obtained in 74% yield, 111 mg (yellow solid) from 3-phenyl-4-bromo-sydnone ($110.8 \mathrm{mg}, 0.46 \mathrm{mmol}$) using general procedure \mathbf{B} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.38-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H}), 2.89-2.95$ (m, 2 H), 2.77-2.83 (m, 2 H) ppm ;
${ }^{13}{ }^{\mathbf{C}}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=141.4,140.9,139.4,129.0,128.6,128.6,128.3,126.3,125.6,122.3$, 112.6, 36.3, 26.7 ppm ;

IR ($\mathrm{NaCl} \mathrm{cm}^{-1}$) : 3062, 3027, 2923, 2856, 1598, 1556, 1499, 1455, 1407, 1391, 1241, 1087, 1068, 961, 911, 851, 836, 760, 694 ;
MS (ESI) $m / z: 327\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 329\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m/z calcd for C17H16N2Br [M+H] + (79Br): 327.0497; found: 327.0499.

[^1]- 5-bromo-1-(4-methylphenyl)-4-(2-phenylethyl)-1H-pyrazole (3b)

$\mathrm{M}=341.25 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2}$

Compound 3b was obtained in 80% yield, 85 mg (yellow solid) from 3-tolyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).

Mp : $114-116{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.50(\mathrm{~s}, 1 \mathrm{H}), 7.4(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}$, $3 \mathrm{H}), 2.96-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=141.2,140.4,138.2,136.8,129.4$ (2C), 128.4 (2C), 128.3 (2C), 126.0, 125.3 (2C), 121.8, 112.5, 36.1, 26.5, 21.1 ppm ;

IR (v, cm ${ }^{-1}$): 3026, 2922, 2858, 1603, 1516, 1496, 1453, 1390, 1241, 1077, 961, 904, 818, 724, 697, 650 ;
MS (ESI) $m / z: 341\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 343\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right)$: 341.0653; found: 341.0648.

- 5-bromo-1-(4-methoxyphenyl)-4-(2-phenylethyl)-1H-pyrazole (3c)

$\mathrm{M}=357.24 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}$

Compound 3c was obtained in 70\% yield, 78 mg (yellow solid) from 3-(p-methoxy-phenyl)-4-bromosydnone ($84.0 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{B} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5)

Mp : $139-141^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.49(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H})$, 6.95-7.01 (m, 2 H), 3.86 (s, 3 H), 2.88-2.95 (m, 2 H), 2.75-2.82 (m, 2 H) ppm;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=159.4,141.3,140.3,132.4,128.6$ (2C), 128.4 (2C), 127.0 (2C), 126.1, $121.7,114.0(2 \mathrm{C}), 112.9,55.6,36.1,26.7 \mathrm{ppm}$;
IR (v, cm${ }^{-1}$) : 3004, 2911, 2634, 1609, 1588, 1512, 1493, 1453, 1440, 1395, 1302, 1244, 1174, 1149, 1110, 1029, 960, 853, 834, 800, 765, 748, 719, 667, 654 ;
MS (ESI) $m / z: 357\left[M\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 359\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right)$: 357.0602; found: 357.0601.

- 5-bromo-1-(4-fluorophenyl)-4-(2-phenylethyl)-1H-pyrazole (3d)

$\mathrm{M}=345.22 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrFN}_{2}$

Compound 3d was obtained in 55\% yield, 59 mg (yellow solid) from 3-(p-fluoro-phenyl)-4-bromosydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5)

Mp: 120-122 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.14$ (m, 2 H), 2.94-2.90 (m, 2 H), 2.82-2.78 (m, 2 H) ppm ;
${ }^{13} C_{\text {NMR }}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=162.1\left(\mathrm{~d}, J_{C-F}=247 \mathrm{~Hz}, 1 \mathrm{C}\right), 141.1,140.1,135.4\left(\mathrm{~d}, J_{C-F}=3.1 \mathrm{~Hz}, 1 \mathrm{C}\right)$, $128.43(2 \mathrm{C}), 128.37(2 \mathrm{C}), 127.3\left(\mathrm{~d}, J_{C-F}=8.5 \mathrm{~Hz}, 2 \mathrm{C}\right), 126.1,122.3,115.8\left(\mathrm{~d}, J_{C-F}=23.1 \mathrm{~Hz}, 2 \mathrm{C}\right), 112.6$, 36.0, 26.5 ppm ;

IR (v, cm ${ }^{-1}$): 3061, 3024, 2921, 2852, 1740, 1604, 1512, 1453, 1394, 1290, 1231, 1151, 1098, 1078, 1028, 1012, 963, 836, 817, 752, 735, 718, 653 ;
MS (ESI) $\mathrm{m} / \mathrm{z}: 345\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 347\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrFN} \mathrm{N}_{2}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right)$: 345.0403; found: 345.0400.

- 5-bromo-1-(4-iodophenyl)-4-(2-phenylethyl)-1H-pyrazole (3e)

Compound 3 e was obtained in 72% yield, 101 mg (yellow solid) from 3-(p-iodo-phenyl)-4-bromosydnone ($113.8 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{B} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).
Mp : 108- $110^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.8(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.5(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.21(\mathrm{~m}$, $3 \mathrm{H}), 2.93-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=141.1,141.0,138.9,137.9$ (2C), 128.41 (2C), 128.37 (2C), 126.9 (2C), 126.1, 125.6, 112.2, 93.3, 35.9, $26.5 \mathrm{ppm} ;$

IR (v, cm ${ }^{-1}$) : 3086, 3026, 2923, 2857, 1603, 1586, 1495, 1454, 1387, 1303, 1240, 1055, 1009, 959, 824, 740, 698 ;
MS (ESI) $m / z: 454\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 456\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$.

- ethyl 5-bromo-1-phenyl-1H-pyrazole-4-carboxylate (3f)

$\mathrm{M}=295.14 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}$

Compound 3 f was obtained in 38% yield, 35 mg (white solid) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).

Mp : $86-88^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.14(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.94(\mathrm{~m}, 5 \mathrm{H}), 4.37(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.4(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=161.7,143.1,138.3,129.2,129.0(2 \mathrm{C}), 126.1$ (2C), 117.8, 115.1, 60.5, 14.3 ppm ;

IR (v, cm ${ }^{-1}$): 2981, 1713, 1597, 1530, 1499, 1458, 1399, 1372, 1296, 1238, 1222, 1171, 1066, 1047, 955, 904, 833, 762, 727, 692, 650 ;
MS (ESI) $m / z: 295\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 297\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right)$: 295.0082; found: 295.0076.

- 5-bromo-1,4-diphenyl-1H-pyrazole (3g)

$\mathrm{M}=299.17 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrN}_{2}$

Compound 3 g was obtained in 63% yield, 58 mg (yellow solid) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{B} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).

Mp: $161-163^{\circ} \mathrm{C}$;
${ }^{1} \mathbf{H}$ NMR $(\mathrm{CDCl} 3,400 \mathrm{MHz}): \delta=7.89(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2$ H), 7.48-7.44 (m, 3 H) ppm ;
${ }^{13} \mathrm{C}$ NMR (CDCl3, 101MHz) : $\delta=140.4,139.1,131.4,129.4,128.9$ (2C), 128.6 (2C), 127.7 (2C), 127.3, 125.9 (2C), 125.7, 119.0 ppm ;

IR (v, cm ${ }^{-1}$) : 2920, 1768, 1597, 1553, 1499, 1385, 1073, 981, 945, 862, 756, 717, 693, 642 ;
MS (ESI) $\mathrm{m} / \mathrm{z}: 299\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 301\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right.$): 299.0184; found: 299.0193.

- 5-bromo-4-(6-methoxynaphthalen-2-yl)-1-phenyl-1H-pyrazole (3h)

Compound 3 h was obtained in 77% yield, 91 mg (white solid) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).

Mp : $145-147^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.03(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=1.3 \mathrm{~Hz}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=157.9,140.6,139.2,133.7,129.5,129.0$ (2C), 128.6, 127.1, 126.6, 126.4, 126.3, 126.0 (2C), 123.6, 119.2, 111.3, 105.7, 55.4 ppm ;

IR (v, cm-1): 3053, 2955, 1773, 2629, 1597, 1499, 1479, 1386, 1359, 1262, 1218, 1198, 1165, 1026, 961, 903, 890, 851, 843, 756, 694, 654, 533, 476 ;
MS (ESI) $m / z: 379\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 381\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right)$: 379.0446; found: 379.0446.

- 5-bromo-4-(4-methoxyphenyl)-1-phenyl-1H-pyrazole (3i)

$$
\begin{aligned}
& \mathrm{M}=329.20 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}
\end{aligned}
$$

Compound $3 i$ was obtained in 44% yield, 45 mg (yellow solid) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{D} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).

Mp : 174-176 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.85(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.45(\mathrm{~m}, 7 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$ ppm;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=158.9,140.2,139.2,128.92$ (2C), 128.87 (2C), 128.7, 128.5, 125.9 (2C), 123.8, 123.2, 114.1 (2C), 55.3 ppm ;

IR (v, cm ${ }^{-1}$) : 2952, 1598, 1556, 1497, 1456, 1396, 1366, 1306, 1283, 1252, 1180, 1112, 1070, 1031, 948, 907, 835, 756, 730, 693, 645 ;
MS (ESI) $m / z: 329\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 331\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right.$): 329.0289; found: 329.0294.

- tert-butyl N-[(5-bromo-1-phenyl-1H-pyrazol-4-yl)methyl]carbamate (3j)

$\mathrm{M}=352.23 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}$

Compound 3 j was obtained in 69% yield, 75 mg (yellow solid) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).

Mp: $11-113^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.74$ (s br., 1 H), $7.56-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.84$ (s br., 1 H), $4.22(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}$, 2 H), 1.47 ($\mathrm{s}, 9 \mathrm{H}$) ppm ;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=155.6,140.9,138.9,128.9$ (2C), 128.4, 125.4 (2C), 120.2, 112.5, 79.6, 35.3, 28.4 (3C) ppm ;

IR (v, cm ${ }^{-1}$) : 3355, 2985, 1689, 1598, 1523, 1499, 1388, 1366, 1344, 1275, 1247, 1166, 1140, 1087, 1064, 1043, 1026, 963, 914, 812, 755, 692, 645 ;
MS (ESI) $\mathrm{m} / \mathrm{z}: 374\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}, 376\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}$.

- (5-bromo-1-phenyl-1H-pyrazol-4-yl)methyl benzoate (3k)

$$
\begin{aligned}
& \mathrm{M}=357.21 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}
\end{aligned}
$$

Compound 3k was obtained in 52% yield, 58 mg (white solid) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{B} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5

Mp : $111-113^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.42(\mathrm{~m}, 8 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H})$ ppm;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=166.4,141.9,138.8,133.0,129.9,129.7$ (2C), 128.9 (2C), 128.6, 128.3 (2C), 125.6 (2C), 117.9, 114.7, 57.5 ;
IR (v, cm-1): 3059, 2922, 1713, 1595, 1556, 1498, 1541, 1404, 1385, 1343, 1314, 1178, 1103, 1069, 1025, 960, 951, 851, 767, 751, 710, 697, 690, 649, 551 ;
MS (ESI) $m / z: 357\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 359\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right)$: 357.0239; found: 357.0255.

- 5-(4H-sydnone)quinoline

$$
\begin{aligned}
& \mathrm{M}=213.2 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}
\end{aligned}
$$

5-(4H-sydnone)quinoline was obtained in 71% yield, 74 mg (red solid) according our previously described procedure using 5 -aminoquinoline ($100 \mathrm{mg}, 0.49 \mathrm{mmol}$), tert-butylnitrite ($65 \mu \mathrm{~L}, 0.54$ mmol) and trifluoroacetic acid ($173 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) and purified by column chromatography (Dichloromethane/Ethyl acetate : 4/6). ${ }^{3}$

Mp : 172-173 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): 9.10(\mathrm{~d}$ br., $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93-7.87$ (m, 1 H), $7.83-7.81$ (m, 1 H), 7.62 (dd, J = 4.3, $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.61 (s, 1 H$) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): 168.4,152.2,148.1,134.5,130.6,129.6,128.3,123.7,123.6,122.4,98.1$ ppm;
IR (v, cm ${ }^{-1}$): 3104, 1775, 1620, 1596, 1567, 1506, 1423, 1346, 1317, 1249, 1208, 1183, 1170, 1122, 1068, 1029, 971, 937, 870, 826, 801, 727, 644 ;
MS (ESI) $m / z: 214[\mathrm{M}+\mathrm{H}]^{+}$.

- 5-(5-bromo-4-phenethyl-1H-pyrazol-1-yl)quinoline (3I)

Compound 31 was obtained in 33% yield, 37 mg (red oil) from 4-bromo-sydnone-5-quinoline (87.7 $\mathrm{mg}, 0.3 \mathrm{mmol}$) using general procedure \mathbf{B} and purified by column chromatography (Heptane/ Ethyl acetate : 7/3
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.98-8.96$ (dd, $\left.J=1.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.27-8.25(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.81$ (dd, $J=7.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{dd}, J=4.5,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 3.01-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): 150.9,148.4,141.2,140.9,135.2,131.8,131.3,128.6$ (2C), 128.4 (2C), 128.3, 126.2, 126.1, 125.8, 122.1, 121.4, 115.2, 36.1, 26.4 ppm

IR (v, cm ${ }^{-1}$): 3062, 3026, 2923, 2856, 1720, 1619, 1596, 1570, 1496, 1474, 1453, 1422, 1390, 1316, 1257, 1209, 1119, 940, 828, 801, 749, 699 ;
MS (ESI) $m / z: 378\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 380\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;

- 5-bromo-4-(2-bromoethyl)-1-phenyl-1H-pyrazole (3m)

$$
\begin{aligned}
& \mathrm{M}=330.02 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}
\end{aligned}
$$

[^2]Compound 3 m was obtained in 63% yield, 65 mg (beige oil) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.67(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 5 \mathrm{H}), 3.55(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=140.8,139.0,128.9$ (2C), 128.4, 125.4 (2C), 119.8, 112.9, 31.3, 28.4 ppm;
IR (v, cm ${ }^{-1}$): 3062, 2963, 1596, 1555, 1498, 1457, 1446, 1429, 1407, 1388, 1268, 1212, 1175, 1085, 1024, 1002, 959, 912, 876, 853, 759, 715, 691, 652 ;
MS (ESI) $\mathrm{m} / \mathrm{z}: 329\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 331\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right)$: 328.9289; found: 332.89286 .

- 5-\{2-oxo-hexahydro-1H-thieno[3,4-d]imidazolidin-4-yl\}-N-(prop-2-yn-1-yl)pentanamide.

$$
\begin{aligned}
& \mathrm{M}=281.37 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}
\end{aligned}
$$

Into a dried round bottom flask, ester succinimide activated biotine ($341 \mathrm{mg}, 1.0 \mathrm{mmol}$) and propargylamine ($70.5 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) were stirred in DMF overnight at room temperature. The reaction mixture was then evaporated under vacuum, and a column chromatography was performed in AcOEt/MeOH (9/1). 273 mg of a white powder was obtained (97% yield)

Mp : $163-165{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (MeOD , 400MHz): $\delta=4.51-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-$ $3.18(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}), 2.69-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$;
${ }^{13}$ C NMR (MeOD ,101MHz): $\delta=174.4,164.6,79.2,70.6,61.9,60.2,55.5,39.6,35.0,28.2,27.99$, 27.92, 25.2 ppm ;

IR (v, cm ${ }^{-1}$): 3285, 1689, 1637, 1541, 1465, 1322, 1263, 1158, 1062, 950, 825, 655 ;
MS (ESI) $m / z: 304[\mathrm{M}+\mathrm{Na}]^{+}$.

- N -[(5-bromo-1-phenyl-1H-pyrazol-4-yl)methyl]-5-\{2-methylidene-hexahydro-1H-thieno[3,4-d]imidazolidin-4-yl\}pentanamide (3n)

$$
\begin{aligned}
& \mathrm{M}=478.41 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrN}_{5} \mathrm{O}_{2} \mathrm{~S}
\end{aligned}
$$

Compound $3 n$ was obtained in 65% yield, 96 mg (white solid) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).

Mp : 157-159 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (MeOD , 400MHz) : $\delta=7.74(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 5 \mathrm{H}), 4.47(\mathrm{dd}, \mathrm{J}=4.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-$ 4.27 (m, 3 H), 3.19 (ddd, J = 4.5, 5.9, $8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.91(\mathrm{dd}, J=4.9,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.770-1.40(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$;
${ }^{13}{ }^{1}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=174.4,164.6,140.8,136.7,128.8(2 \mathrm{C}), 125.5$ (2C), 120.0, 113.5, 61.9, 60.1, 55.5, 39.6, 35.1, 33.3, 28.3, 28.0, 25.4, 7.8 ppm ;

IR (v, cm ${ }^{-1}$) : 3287, 1695, 1664, 1629, 1542, 1498, 1459, 1389, 1263, 1068, 959, 756, 692.
MS (ESI) $\mathrm{m} / \mathrm{z}: 478\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 480\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrN}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right)$: 478.0912; found: 478.0905.

- 5-bromo-1-phenyl-1H-pyrazol-4-yl-2-\{4-[(5-chloro-3-fluoropyridin-2-yl)oxy]phenoxy\} propanoate (30)

Compound 30 was obtained in 55% yield, 94 mg (yellow oil) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptan/ Ethyl acetate : 95/5).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.83(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.06-7.02(\mathrm{~m}$, $2 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.12\left(\mathrm{ABq}, \Delta \delta_{A B}=0.03, J_{A B}=12.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.77(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=168.8,151.7,148.2(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}), 143.9,143.8(\mathrm{~d}, \mathrm{~J}=266.8 \mathrm{~Hz}), 138.7$, 136.9 (d, $J=6.2 \mathrm{~Hz}), 135.7,125.8(2 \mathrm{C}), 125.6,122.4$ (2C), 121.8 (d, $J=3.8 \mathrm{~Hz}$), 121.7, 119.2 (2 C), 114.1, 112.9 (2C), 111.8, 69.9, 54.7, 15.4 ppm ;

IR ($\mathbf{v} \mathrm{cm}^{-1}$): 1752, 1734, 1688, 1597, 1576, 1556, 1530, 1500, 1445, 1412, 1288, 1272, 1235, 1193, 1157, 1128, 1091, 1040, 1009, 953, 927, 886, 862, 843, 760, 734, 692, 650 ;
MS (ESI) $\mathrm{m} / \mathrm{z}: 546\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 548\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrClFN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+}\left({ }^{79} \mathrm{Br}\right): 546.0231$; found: 546.0233.

- N -[(5-bromo-1-phenyl-1H-pyrazol-4-yl)methyl]-5-(dimethylamino)naphthalene-1sulfonamide (3p)

$$
\begin{aligned}
& \mathrm{M}=485.40 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}
\end{aligned}
$$

Compound 3p was obtained in 52% yield, 78 mg (bright green solid) from 3-phenyl-4-bromo-sydnone ($74.7 \mathrm{mg}, 0.31 \mathrm{mmol}$) using general procedure \mathbf{C} and purified by column chromatography (Heptane/ Ethyl acetate : 95/5).
$\mathrm{Mp}: 121-123{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$;
${ }^{13}{ }^{2}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=151.9,140.7,138.5,134.6,130.6,129.8,129.7,129.5,128.8$ (2C), $128.45,128.38,125.3$ (2C), 123.0, 118.5, 117.8, 115.1, 112.9, 53.4, 45.2, 37.8 ppm ;
IR ($\mathbf{v}, \mathbf{c m}^{-1}$): 1575, 1501, 1395, 1338, 1313, 1141, 1093, 1056, 969, 942, 856, 797, 757, 698, 650.
MS (ESI) $m / z: 486\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 488\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right)$: 485.0647; found: 485.0663.

Optimization of Suzuki coupling on 5-bromopyrazoles

Table S1. Suzuki coupling of bromopyrazole 3 with boronic acids. ${ }^{\text {a }}$

Entry	Catalyst	Base	Conditions	$\mathbf{6}(\%)^{\mathbf{b}}$	$\mathbf{5}(\%)^{\mathbf{b}}$
$\mathbf{1}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	Dioxane $/ \mathrm{H}_{2} \mathrm{O}(1 / 1)-100^{\circ} \mathrm{C}$	50	50
$\mathbf{2}$	$\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{P}(\text { cyhexyl })_{3}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	Dioxane $/ \mathrm{H}_{2} \mathrm{O}(1 / 1)-100^{\circ} \mathrm{C}$	60	40
$\mathbf{3}$	$\mathrm{Pd}(\mathrm{OAc})_{2} /$ XPhos	$\mathrm{K}_{3} \mathrm{PO}_{4}$	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1 / 1)-60^{\circ} \mathrm{C}$	42	58
$\mathbf{4}$	$\mathrm{Pd}(\mathrm{OAc})_{2} /$ SPhosG2	$\mathrm{K}_{3} \mathrm{PO}_{4}$	Dioxane $/ \mathrm{H}_{2} \mathrm{O}(1 / 1)-100^{\circ} \mathrm{C}$	67	33
$\mathbf{5}$	$\mathrm{Pd}($ dbpf $) \mathrm{Cl}_{2}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	$\mathbf{M e C N} / \mathrm{H}_{2} \mathrm{O}(1 / 1)-60^{\circ} \mathrm{C}$	$\mathbf{7 5}$	$\mathbf{2 5}$
$\mathbf{7}$	$\mathrm{Pd}(\mathrm{dbpf}) \mathrm{Cl}_{2}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1 / 1)-25^{\circ} \mathrm{C}$	0	40

${ }^{\text {a }}$ reactions were conducted at 0.1 M using 1 equiv. of reactant, $10 \% \mathrm{~mol}$ of Pd and 1.5 equiv. of base.
${ }^{\mathrm{b}}$ LCMS yields

Procedure and analytical data of 1,4,5-trisubstituted Pyrazoles

General Procedure D:

In a screw cap tube, bromopyrazole (1 equiv.), phenylboronic acid (1.2 equiv.), $\mathrm{Pd}(\mathrm{dtbpf}) \mathrm{Cl}_{2}(0.1$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv.), were added in acetonitrile/water ($1 / 1,0.1 \mathrm{M}$). The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ overnight, then filtered on celite and washed with ethyl acetate. The filtrate was then washed with brine. The organic layer were collected, dried over anhydrous magnesium sulfate and evaporated under vacuum. The crude mixture was purified by column chromatography.

- 1-(4-methylphenyl)-5-phenyl-4-(2-phenylethyl)-1H-pyrazole (6a)

$$
\begin{aligned}
& \mathrm{M}=338.45 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2}
\end{aligned}
$$

Compound 6a was obtained with $41 \mathrm{mg}, \mathbf{7 5 \%}$ yield (bright yellow solid) from $\mathbf{3 b}$ ($55 \mathrm{mg}, 0.16 \mathrm{mmol}$) and phenylboronic acid ($24 \mathrm{mg}, 0.20 \mathrm{mmol}$) using general procedure \mathbf{D} and purified by column chromatography (Heptane/Ethyl acetate : 95/05).

Mp : 119-121 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.61(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.05(\mathrm{~m}, 14 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$ ppm;
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=141.6,139.9,139.8,137.8,136.5,130.7,129.9$ (2C), 129.2 (2C), 128.5 (2C), 128.4 (2C), 128.3 (2C), 128.0, 125.9, 124.4 (2C), 120.7, 31.1, 26.0, 21.0 ppm ;
IR (v, cm-1): 3027, 2921, 2857, 1604, 1516, 1496, 1444, 1454, 1384, 1090, 1071, 964, 819, 772, 697, 659, 583, 551, 515 ;
MS (ESI) $m / z: 339[M+H]^{+}$.

- 1-(4-methylphenyl)-5-[(E)-2-phenylethenyl]-4-(2-phenylethyl)-1H-pyrazole (6b)

Compound 6b was obtained in 38 mg , $\mathbf{6 6 \%}$ yield (bright yellow solid) from $\mathbf{3 b}$ ($55 \mathrm{mg}, 0.16 \mathrm{mmol}$) and vinylphenylboronic acid ($30 \mathrm{mg}, 0.20 \mathrm{mmol}$) using general procedure \mathbf{D} and purified by column chromatography (Heptane/Ethyl acetate : 95/05).

Mp: $114-116^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.55(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.21(\mathrm{~m}, 14 \mathrm{H}), 6.85-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.97(\mathrm{~m}$, $4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=141.6,140.1,137.7,137.5,136.9,136.8,132.1,129.7$ (2C), 128.7 (2C), 128.5 (2C), 128.4 (2C), 128.1, 126.4 (2C), 126.1, 125.0 (2C), 120.1, 116.6, 36.6, 27.2, 21.1 ppm ;

IR (v, cm ${ }^{-1}$): 3026, 2923, 2859, 1603, 1516, 1496, 1454, 1390, 1089, 970, 822, 750, 697, 508 ;
MS (ESI) $m / z: 365[\mathrm{M}+\mathrm{H}]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 365.2018; found: 365.2020.

- 5-cyclopropyl-1-(4-methylphenyl)-4-(2-phenylethyl)-1H-pyrazole (6c)

Compound 6c was obtained in 54% yield, 26 mg (red oil) from $\mathbf{3 b}$ ($55 \mathrm{mg}, 0.16 \mathrm{mmol}$) and cyclopropylboronic acid ($16 \mathrm{mg}, 0.19 \mathrm{mmol}$) using general procedure \mathbf{D} and purified by column chromatography (Heptane/Ethyl acetate : 95/05).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.44(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}$, $5 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 1 \mathrm{H}), 0.79-0.75(\mathrm{~m}, 2 \mathrm{H})$, 0.41-0.37 (m, 2 H) ppm ;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): ~ \delta=141.89,139.8,139.4,138.0,136.7,129.1$ (2C), 128.5 (2C), 128.3 (2C), 125.1, 124.4 (2C), 120.9, 37.2, 26.2, 21.0, 6.6 (2C), 5.9 ppm ;

IR ($\mathbf{v}, \mathrm{cm}^{-1}$): 3025, 2922, 2857, 1720, 1603, 1516, 1496, 1453, 1386, 1207, 1091, 1029, 976, 904, 818, 729, 698, 660 ;
MS (ESI) $m / z: 303[\mathrm{M}+\mathrm{H}]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 303.1861; found: 303.1868.

- 1-(4-fluorophenyl)-5-phenyl-4-(2-phenylethyl)-1H-pyrazole (6d)

Compound 6d was obtained in 75% yield, 37 mg (bright yellow solid) from 3d ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) and phenylboronic acid ($21 \mathrm{mg}, 0.17 \mathrm{mmol}$) using general procedure \mathbf{D} and purified by column chromatography (Heptane/Ethyl acetate : 95/05).

Mp: 114-116 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.60(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H})$, 7.12-7.10 (m, 2 H), 7.06-7.03 (m, 2 H), 6.97-6.93 (m, 2 H$), 2.88-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 2 \mathrm{H})$ ppm;
${ }^{13} \mathrm{C}^{\mathrm{C}}$ NMR $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): $\delta=161.2\left(\mathrm{~d}, J_{C-F}=247 \mathrm{~Hz}, 1 \mathrm{C}\right), 141.5,140.2,139.9,136.3\left(\mathrm{~d}, J_{C-F}=3.1 \mathrm{~Hz}\right.$, $1 \mathrm{C}), 130.2,129.8,128.5,128.4(2 \mathrm{C}), 128.3(2 \mathrm{C}), 128.2,126.3\left(\mathrm{~d}, J_{C-F}=8.5 \mathrm{~Hz}, 2 \mathrm{C}\right), 125.9,120.5,115.5$ (d, $J_{C-F}=23.1 \mathrm{~Hz}, 2 \mathrm{C}$), 37.1, 25.9 ppm ;
IR (v, cm ${ }^{-1}$) : 3061, 3026, 2924, 2857, 1603, 1510, 1453, 1444, 1385, 1218, 1153, 1087, 1070, 963, 909, 836, 819, 773, 731, 696 ;
MS (ESI) $m / z: 343[\mathrm{M}+\mathrm{H}]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 343.1611; found: 343.1607.

- tert-butyl N-[(1,5-diphenyl-1H-pyrazol-4-yl)methyl]carbamate (6e)

Compound $6 \mathbf{e}$ was obtained in 42% yield, 16 mg (red oil) from $\mathbf{3 j}$ ($40 \mathrm{mg}, 0.11 \mathrm{mmol}$) and phenylboronic acid ($17 \mathrm{mg}, 0.14 \mathrm{mmol}$) using general procedure \mathbf{D} and purified by column chromatography (Heptane/Ethyl acetate : 7/3).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.77(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 7 \mathrm{H}), 4.66(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, 4.21 (d, J = $4.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=155.5,140.4,140.2,139.8,129.8(2 \mathrm{C}), 129.5,128.7$ (2C), 127.1, 124.7 (2C), 118.7, 79.6, 34.9, 28.3 (3C) ppm ;
IR (\mathbf{v} cm $^{-1}$):3334, 3056, 2976, 2930, 1693, 1597, 1503, 118, 1384, 1365, 1268, 1248, 1165, 1069, 1046, 1021, 963, 914, 864, 772, 762, 736, 698 ;
MS (ESI) $\mathrm{m} / \mathrm{z} 350[\mathrm{M}+\mathrm{H}]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 350.1869$; found: 350.1860 .

- 5-(dimethylamino)-N-[(1,5-diphenyl-1H-pyrazol-4-yl)methyl]naphthalene-1-sulfonamide (6f)

Compound 6 f was obtained with 55% yield, 40 mg (bright yellow solid) from 3 p ($74 \mathrm{mg}, 0.15 \mathrm{mmol}$) and phenylboronic acid ($22 \mathrm{mg}, 0.18 \mathrm{mmol}$) using general procedure \mathbf{D} and purified by column chromatography (Heptane/Ethyl acetate : 7/3).

Mp : 181- $183^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): \delta=8.55-8.53(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.24-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{dd}, \mathrm{J}=8.3$ $\mathrm{Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51-7.47 (dd, J = $8.0 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 ($\mathrm{s}, 1 \mathrm{H}$), $7.24-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.05(\mathrm{~m}$, $4 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.72-4.70(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.97(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H})$ ppm ;
${ }^{13} \mathrm{C}$ NMR $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): $\delta=140.8,140.3,139.5,134.2,130.6,129.9,129.8,129.5,129.4$ (2C), 128.7, 128.6 (2C), 128.5, 128.48 (2C), 128.43, 127.2, 124.7 (2C), 123.1, 118.6, 116.2, 115.9, 115.1, 45.4 (2C), 37.7 ppm ;

IR ($\mathbf{v} \mathbf{~ c m}^{-1}$): 1574, 1504, 1450, 1385, 1329, 1229, 1161, 1141, 1060, 962, 948, 836, 785, 696, 624 ;
MS (ESI) $\mathrm{m} / \mathrm{z}: 483[\mathrm{M}+\mathrm{H}]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 483.1855$; found: 483.1855.

- N -[(1,5-diphenyl-1H-pyrazol-4-yl)methyl]-5-\{2-methylidene-hexahydro-1H-thieno[3,4-d]imidazolidin-4-yl\}pentanamide (6g)

$$
\begin{aligned}
& \mathrm{M}=475.61 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}
\end{aligned}
$$

Compound 6 g was obtained in 34% yield, 25 mg (white oil) from 3 n ($75 \mathrm{mg}, 0.16 \mathrm{mmol}$) and phenylboronic acid ($23 \mathrm{mg}, 0.19 \mathrm{mmol}$) using general procedure \mathbf{D} and purified by column chromatography (Ethyl acetate/Methanol : 9/1).
${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz): $\delta=8.42$ (br. S, 2 H), 7.77 ($\mathrm{s}, 1 \mathrm{H}$), $7.38-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H})$, $4.49-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.92$ (dd, J = 5.0, $13 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.68(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.45-1.37(\mathrm{~m}$, $2 \mathrm{H})$ ppm ;
${ }^{13}$ C NMR (MeOD, 101MHz): $\delta=174.3,164.6,141.1,140.0,139.5,129.7$ (2C), 129.2, 128.5 (2C), 128.4, 128.3 (2C), 127.4, 125.0 (2C), 118.2, 61.9, 60.2, 55.5, 39.6, 35.1, 33.1, 28.3, 28.0, 25.3 ppm ;

IR (v, cm ${ }^{-1}$): 3357, 2479, 2242, 2071, 1671, 1451, 119, 972, 822 ;
MS (ESI) $\mathrm{m} / \mathrm{z}: 476[\mathrm{M}+\mathrm{H}]^{+}$;
HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 476.2120$; found: 476.2118 .

Mechanism study of the CuSAC reaction

This experiment was conducted with procedure B in deuterated solvents.

	$\mathbf{M + 1}$	$\mathbf{M + 2}$ (1D)	$\mathbf{M + 3}$ (2D)	$\mathbf{M + 4}$ (3D)	$\mathbf{M + 5}$ (4D)	$\mathbf{M + 6}$ (5D)
	263	264	265	266	267	268
area tot	1274248	13968427	5780796	912161		
Σ contrib	0	262495	2848907	878088	65657	-12844
area D	0	13705932	2931889	34073	-65657	12844
\% $\mathbf{0}$	0	$76,6 \%$	$16,4 \%$	$0,2 \%$	$-0,4 \%$	$0,1 \%$

This experiment was conducted with procedure B using deuterated solvents.

	M+1	M+2 (1D)	M+3 (2D)	M+4 (3D)	M+5 (4D)	M+6 (5D)
	341	342	343	344	345	346
area tot	452107	10438404	2513561	10107113	2025830	209610
Σ contrib	0	92230	2557301	10304377	2005435	-199568
area D	0	10346174	-43740	-197264	20395	409178
\% D	0	97,3\%	-0,4\%	-1,9\%	0,2\%	3,8\%

NMR spectra of Imidazoquinoxalines

${ }_{\text {ppm }}{ }^{\prime}$	170	160	150	140	130	120	110	100	90	80	70	60	50	10				

L10

NMR spectra of Pyrazoles

Tillil 1 II

N N N N Nivin
 \iint

Held

IIl|liII

\square

틀

N

W.

自 自 细崊森

$\begin{aligned} & \infty \\ & \text { 毋 } \\ & \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \text { N } \end{aligned}$

[^3]

6b

ஜi N O \&
$\overbrace{5}^{N}$

| ppm | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

6,5

$$
\int \quad \int
$$

[^0]: ${ }^{1}$ Matsumoto, S., Batmunkh, E., Akazome, M., Takata, Y., Tamano, M. Org. Bio. Chem. 2011, 9, 5941.

[^1]: ${ }^{2}$ S. Specklin, E. Decuypere, L. Plougastel, S. Aliani, F. Taran. J. Org. Chem. 2014, 79 (16), 7772-7777

[^2]: ${ }^{3}$ S. Specklin, E. Decuypere, L. Plougastel, S. Aliani, F. Taran. J. Org. Chem. 2014, 79 (16), 7772-7777

[^3]:

