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 Section A presents mathematical details of the theory and analytic derivations that 

underlie the results discussed in the main text. Section B presents an analytic analysis and 

numerical results for the needle localization transition, including physical discussion and 

interpretation. 

 A. Mathematical Derivations 

 We briefly summarize the derivation of Eqs. (3a) and (3b) and a few analytic relations 

given in the main text. The derivation of Eq. (1) is sketched in Ref. 
1
 and will be discussed in 

depth in a future article. A general approach to solve Eq. (1) is to find a vector function such that 

   ( )† ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ( ) ( ) ( )r r r r r r

e f r T D D f r T r           
 

,   (A1) 

so the inverse operator in Eq. (1) can be replaced by substituting 
1

( )† ( ) ( )( ) ( )r r r

e T r f r  


    . 

The rod-rod component was discussed and derived in Ref. 
2
, while the rod-sphere component is 

most conveniently expressed in a cylindrical coordinate system where the origin is at the tagged 

rod center-of-mass and the z -axis is aligned with rod orientation. The rod-sphere T-operator, 

( ) ( )rsT r , is formally derived as the derivative of the non-overlapping condition between a rod 

and a sphere as introduced in Ref. 
1
. Each vector function is expressed as 

( ) ( ( (ˆ ˆ) ) )rs

zT r T r z T r      and ( ) ( ) ( )(ˆ ˆ( ) ) ( )rs rs rs

zf r f r z f r      , and one can express the 

components of ( ) ( )rsT r  as 

     2 21 1
| ( 1) (| | ) 1| | |T z z

R R
z                      ,  (A2a) 

     2 2(| | ) 1
1

| | | |
| |

z z
z

T z
z R

z    



   


      ,   (A2b) 
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where the  and z axes are re-scaled as / R    and /z z R   , and ( ) ( )

||/r rD D   . 

Substituting Eq. (A2) in Eq. (1), one obtains a Laplace equation from its regular part, 

2 ( ) ( ) 0rsf r   , and the following boundary condition from the singular part: 

        ( )

2 ( )

|
| | | | |

|

|
|

|

r

z

s

r

R
z z

z z
zf

Dz
 


    






 
     





  
     


        

  
, (A3a) 

      ( )

2 ( )
| |

| |
( | | |

| | | |
| )

rzz

rs R
z z z

z z z
f

Dz z



   

 




  
    

 



  
     

  


     , (A3b) 

where the boundary   corresponds to a “distorted” spherocylinder of length   and oblate 

spheroidal caps of unit equatorial radius and polar radius  . While the left-hand side of Eqs. 

(A3a) and (A3b) formally involve two derivatives, they in fact represent normal derivatives to 

the boundary on both the cylindrical and spheroidal domains; the former is trivial, and the latter 

can be verified for each cap by shifting the z  -axis via z z     and changing to an 

appropriate spheroidal coordinate. However, obtaining a closed analytic form is not possible 

without an approximation for the boundary shape. Thus, we replace the distorted spherocylinder 

by a spheroid with the same aspect ratio, (1 )  . The appropriate orthogonal coordinate for this 

boundary is the prolate (or oblate, when applicable) spheroidal coordinate, defined via 

2 2 1 2 21 1 , , tan ( / ), (1 ) 1a z a y x a                ,  (A4) 

where 1   , 1 1   , and 2 2

0 | (1( |1 ) / ) 1         now represents the 

boundary. Equation (A4) applies only if ( ) ( )

|| (/ 11/ )r rD D    , otherwise an equivalent 

oblate spheroidal coordinate is required. In the former case, the Laplace equation is given by 
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       2 2 2 ( )

2 2 2 2 22

1 1
1) (1 ) , ) 0

( ) ( 1)(1
(

)
(rsf

a a
       

   

 
           


  

, (A5) 

whereas the boundary conditions can be expressed as 

0

2
( ) 20

( )

0

1
, ) 1 |( |

1 1
| |rs

r
f

R

D
 

 

  
    

  

      
           

     


 
, (A6a) 

0

2
( )0

( )

0

(
|

1 (1 )
, ) | | | |

| 1 1

rs

rz

R

D
f

 

    
   

   




     
        

     
.  (A6b) 

Note that we used the following form for the gradient:  

2 2

2 2

2 2 2 2

( 1)(1 )
ˆ ˆ( ) ( 1) (1 )

)) ((

1

a
z

a
   

 
      

   

  
          

  


. (A7) 

For the oblate coordinate system, one simply replaces 
2 1   and 2 2   with 

2 1   and 

2 2  , respectively, in Eqs. (A5), (A6) and (A7).  

 A general solution to Eqn. (A5) is obtained via separation of variables, and the one that is 

axially symmetric and convergent at    is given by 

( )

0

( , () ( ) ( ), , )rs

i n n n

n

Pf q iA z    




     (A8) 

where ( )nP   is the Legendre polynomial of the first kind, and ( )nq   is essentially the Legendre 

function of the second kind, defined via
3
 

  
2 1

(2

0

1)

1 2( ) (2 1)
( )

2 (2 1)(

1
( ) ( ) log

1 )

m n

m

n n n m

n m m
q

x
x P x

m m
P

nx
x



 



   



 
  

  
 .  (A9) 
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Note ( )nq x  is replaced by 
( 1) ( )n

ni q ix
 for the oblate spheroidal coordinate. The coefficients nA  

are determined by substituting Eq. (A8) into Eqs. (A6a) and (A6b) and using the orthogonality 

relation for the Legendre polynomials, 
1

0
( ) ( ) 1/ (2 1)n m nmd P P n     . Then we find 

     
( ) 0

2 2 2( ) 2
00 2 0

(4 1)
(

(
, ) ( ) ( )

1 ) 1

rs

n n nr
n n

R
c q P

D

n
f

q


 
   

  






   
    

  
 ,   (A10a) 

     
( ) 0

2 1 2 1 2 1( ) 2
00 2 1 0

(1 )
, ) ( ) ( )

1

(4 )

)

3

( 1
(rs

n n nr
n n

z

n
f

q

R
c q P

D

 
   

  



  
 

   
    

  
  , (A10b) 

where ( )nc x  is defined in the main text, and the minus or plus symbol corresponds to the prolate 

[ (1 ) 1   ] and oblate [ (1 ) 1   ] coordinate system, respectively.  

 The final results for Eq. (2) and (3) in the main text are obtained by substituting 

1
( )† ( ) ( )( ) ( )r r r

e T r f r  


     into Eq. (1) and taking the tensor contraction of Eq. (1) with 

1 1(1 ) / 2Tu u  and 1 1

Tu u : 

( ) ( )1 1

( ) ( )
,,0

(1 )
( ( (

1 1
: ) ) )

2

T
r r T

rsr r
r s

u u
dr g r T r f r

D D

 






 


    ,   (A11a) 

( ) ( )

1 1( ) ( )
,||,0||

1 1
: )( ( ( ( )) )T r r T

rsr r
r s

u u dr g r T r f r
D D

 








    ,   (A11b) 

Re-organizing Eqs. (A11a) and (A11b) yields Eq. (2). Note, for the rod-sphere term, the tensor 

contraction can be done in cylindrical coordinates where 1 1
ˆ ˆ(1 ) / 2 (1 ) / 2T Tu u z z     and 

1 1
ˆ ˆT Tu u z z  , while the integral is easily manipulated in the spheroidal coordinate. To do so, one 

expresses the pair correlation function as 0) (( )rsg r     and the T-operator as: 
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2 2 2
0 0( ) 0

0 02 2 2 2

0 0

1 1 ( 1)
ˆ ˆ( ) ( ) ( )

( ) ( )

rsT r z
aR aR

    
      

   


    ,  (A12)  

where we follow the sign convention discussed above. Finally, substituting Eqs. (A10a), (A10b) 

and (A12) into Eqs. (A11a) and (A11b) yields 

( ) 2 ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,0 |

||

|| |, ||0

1 1 1 1 1
( ) ( ; ) , ( ; )

1rr rs rs

r s sr r r r r r
F

D D D D D
F F

D
        

 

  

       , (A13) 

where 
( ) ( ; )rsF    and 

( )

|| ( ; )rsF    are given as Eq. (3a) and (3b) in the main text.  

 Approximate expressions for Eqs. (3a) and (3b) can be derived in the limit of large aspect 

ratio and high dynamical anisotropy, 1   and (1 ) 1   , conditions which imply 

|

( ) ( ) 2 2

|/ 1/ (1 ) ~ (2 / )r rD D R L  . Since 0 ~ (1 ) 1    , the Legendre functions ( )nq x  are 

given in the oblate form and satisfy 0 0 0( ) / ( ) ~ (0) / (0) ( )n n n nq q q q     , and it is 

straightforward to then show 

1 3

2 ,0 2 1 2

1
( ), ( )

1 1 2
n n nc c

 
  

  

 



   
     

    
 .   (A14) 

Thus one has 

( )
( ) ( ) 2 ( ) ( )

( )

,0

~ 1 (1 ) ~ 1 (1 )
r

rr rs rr rs

r s r sr

D

D
a a a a           
   



      ,  (A15a) 

2( ) ( ) ( )

( )

||,0

|| || ||1
~ 1 ~ 1

r rs rs

s sr

aD a

D


 

  

 
  

 
,     (A15b) 

where higher order terms in (1 )   and 1/   have been neglected, and 
( )rra , 

( )rsa , 
)

||

(rsa  are 

numerical constants defined by 
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1

2

( ) ( ) ( ) ( )0
|0

0

|

1

1 3
(

(0) (0)3 3
, (0) 3

(0) 2 (0)
0) ,

2 43 2

rr rr rs rsq q
a a a

q
F c

q




    

 
       

 
. (A16) 

Solving Eq. (A15) for  gives 

2

0

2

4 1
~ 1 ~1 ( 1)

2 2


 

 

 
  

 
 

 ,   (A17) 

where 

( ) 2 ( ) 2 ( )

0 || 0(1 )rs rs rr

s ra a a            .   (A18) 

The opposite signs of the 
( )rsa  and 

)

||

(rsa  terms in Eq. (A18) reflect the competing effect of the 

two diffusivities on the diffusion anisotropy, but the latter contribution is 
2( )  weaker than the 

former.  

The renormalized reptation form of Eq. (4) is obtained by further assuming 1r
   (or 

40r
   in practice) where the pure rod fluid reptation regime is well-defined and the diffusion 

anisotropy and the tube diameter scale as 
( ) ( ) ( ) 2

||/ ~1 ( )/r r rr

r aD D 

   and ,0 / ~16 2 / ( )T rd L  , 

respectively
2
. Applying these relations to Eq. (A18) and using Eq. (A16) yields 

2
( ) ( )

|| ||

3/2 ( )
,0

( ) ( )

pure rods

3
1 1

4 4 2 2

r r rs
T

sr r

da L

R

D

D R

D

D






  
      

             

  ,  (A19a)  

which can be expressed as 

 

2
( ) ( ) ( )

2

e

|| ||

ff( ) ( ) ( )

|| ,0pure rods pure rods

1 (1.93)
r r r

T

r r r

T

D D D

D D D

d

d


   
     

          
    

,  (A19b) 
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where 
1

,0 eff/ ~ [1 (1.93) ]T Td d    is the effective tube diameter in the composite
1
. Thus, Eq. 

(A18b) establishes the renormalized reptation law discussed in the main text.  

 B. Needle Localization Transition 

Our numerical results for the needle dynamic localization transition are shown in Fig. S1. 

We first summarize and discuss our findings in physical terms.  

As expected, the sphere critical volume fraction for needle localization, c , always 

decreases with   and r
 . However, all parameter dependences can be understood in a universal 

manner as follows. First, Fig. S1 shows that ,0 0) 1/(c c r       for 0r
   and 1  . 

This implies needle localization occurs at a critical volume fraction of an “effective object” of 

sphero-cylindrical geometry with volume 2~ R L  (ala a rod-sphere “cross” virial coefficient), 

which can be interpreted as a needle surrounded by spheres in contact with it. Second, the effect 

of finite rod concentration enters only via a multiplicative factor, 
,0/c c  , which is entirely 

controlled by / (1 )r   , as shown in the inset of Fig. S1. At high aspect ratio, the latter quantity 

scales as 
  
2R / d

T ,0
 in the entangled regime, an intuitive ratio that characterizes the ability of 

spheres to “cap” the tube. Thus, dynamic localization in entangled needle liquids is understood 

as an extreme consequence of the blocked reptation effect.  

Analytic derivations of the above results can be obtained by analyzing Eqns. (A15a) and 

(A15b). First, for the single-rod ( 0r
  ) case, equating both diffusivities in Eq. (A15a) and 

(A15b) to zero readily provides 1

,0 ( 0) 4 / [3 (1 )] ~ 4 / (3 )c c r           . Such simple 

scaling relations are not generally available for finite r
 , but its parameter dependence can be 
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determined by using the above form of ,0c  to express Eqs. (A15a) and (A15b) in terms of 

,0/c c  . This readily leads to 

,0( ) 2

|| ,0 ,0 ,0 ,0

) ,
1

0 1 ( 0 1
crrc c c cr

c

c c c c c

F
a

a

   


     






       
          

   
           

, (A20) 

where ( )c s c      and ,0c  represents its single-rod limit. Equation (A20) indicates that 

,0/c c   is a function of / (1 )r   , which provides theoretical support for the essentially perfect 

collapse seen in the inset of Fig. S1. Also, one generally obtains ( )

||/ rs

c c a   from Eq. (A15b), 

leading to ( ) ( ) 2

||/r r

cD D    at localization.  
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FIG. S1: Critical rod localization volume fraction as a function of aspect ratio for 
r
   0 (black), 

20 (red), 40 (blue), 80 (pink). The green dashed curve shows the asymptotic result in the dilute 

single rod limit where 1/c   for 1  . (Inset) Master plot. Ratio of the critical volume 

fraction relative to the dilute rod limit value as a function of rod number density divided by 1  . 

Each curve corresponds to    1 (black), 2 (red), 4 (blue) and 8 (pink).  

 


