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Computational Methodology 

In order to model the hydrodynamics of a microswimmer made of a responsive polymeric gel in a 

viscous solvent, we used dissipative particle dynamics (DPD).
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 DPD is a mesoscale, coarse-grained 

approach in which clusters of molecules are represented by beads that interact via “soft” pair-wise 

potentials. The soft interacting potential makes simulating polymeric systems, in which processes are 

characterized by relatively large time and space scales, possible. Furthermore, the pair-wise potentials 

locally conserve linear and angular momentum and therefore allow for accurate hydrodynamic 

simulations. 

In DPD, bead dynamics is governed by three interactions: conservative forces 
C
ijF , dissipative 

forces 
D

ijF , and stochastic (or random) forces 
R

ijF . The total force acting on a single DPD bead i  is a sum 

of these forces over j  neighboring beads within a cutoff radius Cr . The conservative force, 

  ijijij
C
ij ra rF ˆ , accounts for compressibility. Here, ija  sets the “soft” repulsion between any two given 

beads ( i  and j ) and   ijij rr ˆ1  is the weighting function. Moreover, Cijij rrr ˆ , jiijr rr   is the 

separation distance between interacting beads, and   ijjiij rrrr ˆ . The combination of dissipative and 

random forces defines a thermostat that keeps the system in thermal equilibrium. The dissipative force is 

given by    ijijijij
D
ij r rvrF ˆˆ2    which introduces viscosity, while the stochastic force 

    ijijij
R
ij tr rF ˆ2/1

   accounts for random thermal fluctuations.
1
 The factors   and  TkB2  

characterize the strength of the respective forces, and jiij vvv   is the relative velocity of bead i  with 

respect to bead j . Furthermore, Bk  is the Boltzmann constant, T  is the temperature, and ij  is a 

standard normal random variable with zero mean. In our simulations, we used a time step of 01.0t  

and set other parameters to 5.4 , 25ija , 1TkB , 1m , 3 , and 1Cr , all in DPD units. These 

parameters effectively simulate a solvent with shear viscosity 849.0 . Our simulations were carried 

out in an 808080   periodic cubic domain. 
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The responsive gel polymer network is modeled as a random network of interconnected elastic 

filaments.
4, 5

 We generate this polymer network in three steps. First, we randomly distribute seed DPD 

beads with number density 5.0sn  within a   LLdd PR   box at the center of the computational 

domain. Next, we connect closest seed beads with elastic filaments with an average connectivity of 8. 

Then we remove triangular portions out of the sides of the rectangular network to form the X-shaped 

geometry of the swimmer. In our simulations, we keep constant 40L  and 4Rd , whereas Pd  is 

varied to alter swimmer thickness. 

The elastic filaments forming the gel network consists of DPD beads chained by harmonic 

bending and stretching springs. The stretching spring potential is given by  eq
s

s rr
k

U 
2

, where 

3.0eqr  is the equilibrium length and 30sk  is the spring constant. The bending rigidity for the 

polymer network is governed by the bending potential,  cos1 bb kU , where   is the angle between 

two interacting beads and 50bk  is the bending stiffness. The swelling response of the bifaced 

hydrogel swimmer is modeled by instantaneously increasing both the equilibrium length eqr  and the 

repulsion ija  between beads forming the responsive gel layer to yield a desired value of the gel swelling 

ratio  . When the stimulus is removed, the altered eqr  and ija  are restored to their initial values. We 

have recently showed that this model allows us effectively to simulate the kinetics of volume transition in 

responsive gels.
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Scaling Analysis of Bilayered Hydrogel Swimmer 

We use scaling analysis to estimate the bending and stretching time scales, bt  and et , that define 

swimmer kinetics. The time of stretching can be evaluated by balancing elastic forces due to gel swelling 

and the viscous forces imposed by the solvent. To this end, we first evaluate the magnitude of stretching 

induced by the swelling of the responsive layer. The elastic force on each layer can be estimated as 

LsEAFe ~ , where Lss  max  and max
3/1 sLs    for the passive and responsive layers, 

respectively. Here, maxs  is the swimmer size in the swollen state, in which case the elastic forces in the 

passive and responsive layers are equal, i.e. eReP FF  . From this force balance we find that 

   RRLs  1~ 3/1
max  . This scaling suggests that when R  increases, the swollen length ratio 

decreases and approaches unity, meaning that the swimmer with large R  is unable to expand due to larger 

resistance of the passive layer. On the other hand, when R  approaches zero, 
3/1

max ~ Ls , which is the 
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swollen length of the responsive layer without the presence of the passive layer. Note that maxs  does not 

depend explicitly on Young’s modulus E  in this linear scaling argument. The viscous force on the 

swimmer during extension is LUCF eev ~ , where the extensional velocity is ee tsU ~  and eC  is the 

drag coefficient due to the fluid flow along the extending swimmer. Thus, balancing elastic and viscous 

forces yields an estimate for the swimmer expansion time EALCt ee
2~  . 

The combination of compressive and extensional forces in the bilayered swimmer creates an 

internal moment that induces swimmer bending. This internal moment can be estimated as 

 PReb ddFM 3/15.0~  . Because bending moment is proportional to curvature, EIMb max , where 

EI  is the bending rigidity, we estimate the maximum curvature as 
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 . This 

scaling shows that the curvature depends on the aspect ratio RdL , thickness ratio R , and swollen length 

ratio 
3/1 . Just like the swollen swimmer size, the curvature does not explicitly depend on E . When R  

is either large or small, the curvature approaches zero indicating that the swimmer does not bend. Indeed, 

for small R , the thin passive layer is unable to resist the expansion, generating a weak internal bending 

moment. For large R , the thick passive layer with large EI  suppresses the bending of the swimmer. The 

scaling indicates an optimum value of 
3/15.0 R  that maximizes the swimmer curvature.  

Similar to the extensional time scaling, we can determine the time scale for bending by balancing 

the moments due to the elastic force and the viscous drag force on the moving swimmer arm given by 

4~ 2LUCM bbv  . Here, the bending velocity bb tLU 8~ 2
max  is estimated as the velocity of the arm 

tips, and bC  is the drag coefficient associated with swimmer bending. By equating the internal moments 

due to elastic and viscous forces, we estimate the swimmer bending time as EILCt bb 32~ 4 . Thus, the 

ratio of the extensional and bending time scales is 
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. The scaling shows that 

the time ratio depends on the ratio of the drag coefficients 5.0~be CC ,
6
 the swimmer aspect ratio LdR  

that is defined by the swimmer geometry, and 
3/1R , the thickness ratio of the swollen swimmer. There 

is no dependence on material properties other than the swelling ratio  .  

A difference between time scales associated with swimmer bending and extension leads to time 

irreversible motion. Thus, be tt  should be relatively small to generate swimmer unidirectional motion in 

a viscous fluid. To obtain this condition the aspect ratio LdR  should be small and the swollen thickness 

ratio 
3/1R  should be about 0.5. 
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