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Model Description

To model solvent-assisted block copolymer self-assembly, we rely on a Theoretically Informed

Coarse Grained (TICG) simulation method, which has been successfully applied to study

the phase behavior of block copolymer thin films. Polymers are represented by discretized

Gaussian chains composed by N beads. At temperature T , the bonded energy associated to
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where bk(i) is bond vector of the bond i in the kth chain, kB is Boltzmann’s constant and Re is

the end-to-end distance for an ideal chain. We adopt a non-bonded interaction Hamiltonian

through functional expansion in terms of number densities up to third order, according to
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where ρα is the number density of species α per unit volume, R3
e. This allows us to predict

phenomena occurring at the interface between the polymer film and the solvent vapor. ναβ

and ωαβγ are second and third-order virial coefficients. The indices α, β and γ run over the

segment species A, B and solvent. This type of energy functional has been used to predict

the phase behavior of mixed polymer brushes,1 and it has been applied to various prob-

lems including the stability of polymer solution droplets and solvent evaporation from free

standing polymer solutions.2 Our approach considers three classes of interactions between

polymer-polymer, solvent-solvent and polymer-solvent molecules. We choose virial coeffi-

cients for polymer-polymer interactions νpp and ωppp such that the vapor pressure of polymer

molecules is negligible, and that the polymer has a finite coarse-grained compressibility;3

νpp = −2
κN + 3√

N̄
and ωppp =

3

2

κN + 2
√
N̄

2 . (3)

As shown by the sign of each parameter, νpp leads to an attraction between particles, while

the third-order term ωppp is dominated by repulsions. Solvent-solvent interaction parameters,

vss and wsss, are determined by fitting the equation of state for the solvent. Fitting the

isotherm for acetone at 300K gives values of νss = −0.1399; and ωsss = 3.0246 · 10−5. Cross-

interaction coefficients between different polymer species A and B in the block copolymer
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(νAB, ωAAB and ωABB) and between polymer and solvent (νps, ωpps and ωpss) are estimated

by equating entalphic terms of ∂µ
∂ϕ

with that of the Flory-Huggins model, where µ is the

mean-field exchange chemical potential of the homogeneous mixed system, which represents

the change in free energy of the solution when N solvent particles are replaced by a polymer

chain. For simplicity, we have also assumed isometric mixing. The entalphic part in ∂µ
∂ϕ

for the Flory-Huggins model is −2χαβN , while for our model it is
√
N̄ [ναα + νββ − 2ναβ] +

√
N̄

2
[2ωαααϕα +2ωααβ − 6ωααβϕα − 4ωαββ +6ωαββϕα +2ωβββ − 2ωβββϕα]. If we choose cross

terms as an arithmetic mean of ωααα and ωβββ, such as, ωααβ =
2ωααα+ωβββ

3
the third-order

term in ∂µ
∂ϕ

cancels out. We are then left with only the second-order term, which can be

chosen to be compatible with the Flory-Huggins model

ναβ = χN/
√
N̄ +

ναα + νββ
2

. (4)

Since the volumes of the coarse-grained polymer beads and solvent particles are modeled

differently, interaction coefficients are modified with an asymmetric factor of the form

νps = χN/
√

N̄ +
1

2
[
vps
Cs

+ vssCs] (5)

where Cs is the volume ratio between polymer beads and solvent particles.

Table S1: Explicit numerical values of the virial coefficients that have used for
√
N̄ = 112,

κN = 100, χABN = 100 and Cs=30.

νAA = νBB -1.8393 ωAAA = ωBBB 0.012197 νAB -0.94643
ωABB = ωAAB 0.012197 νss -0.1399 νsss 3.0246 · 10−5

νAs = νBs -2.1292 ωAss = ωBss 6.0944 · 10−4 ωAAs = ωBBs 9.3448 · 10−3

Deviations from the simple dilution approximation, namely α = 1 in χeffN = ϕp
αχABN ,

are known to happen due to the reduction of intermolecular contacts that arises from the

increase of the excluded-volume screening length upon solvent addition, leading to the the-

oretical prediction of α = 1.6 in semi-dilute block copolymer solutions in nonselective good
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solvents.4–6 This asymptotic value of the scaling exponent was confirmed even for concen-

trated regimes for nearly symmetric PS-b-PI copolymers in a neutral good solvent by Lodge

et al.7,8 However, it is difficult to observe the asymptotic value of the exponent α in the

simulation for small N .9 In order to estimate the exponent α in our model, we measure the

number of intermolecular neighbors inside the range of the non-bonded interactions for a

disordered system χABN = 0 in Figure S1. The number of intermolecular neighbors scales

linearly to ϕp, confirming that the reduction of intermolecular contacts due to the increase

of the excluded volume screening length upon solvent addition is negligible in our model, im-

plying that α is close to unity in our model. Note that in our coarse-grained representation

a bead corresponds to many monomeric repeat units in a chemically realistic model, and

that our range of interaction (set by the bead size) is large compared to the typical range of

atomistic interactions.

Figure S1: Number of beads that belong to a different polymers within the non-bonding
interaction range (intermolecular contacts) as a function of polymer volume fraction ϕp

(N=32)
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Simulation methods

We conducted diffusive Monte Carlo calculations, which can capture the dynamics of col-

lective densities that we are interested in, even if a MC scheme does not formally include

hydrodynamics. This method has been used successfully to predict the phase separation

kinetics of block copolymer thin films.10,11 Simulations are conducted in a rectangular simu-

lation box with dimensions Lx=3.46, Ly=6 and Lz=6, in units of Re, the average end-to-end

distance of reference block copolymer chains in the melt. Periodic boundary conditions are

used in the lateral (x and y) directions. In the normal (z) direction, on the bottom and top,

we use impenetrable walls. The bottom wall represents the substrate and its interaction can

be tuned depending on the experimental conditions of interest (e.g. chemically patterned

substrate). Lz=6 is chosen to be well above the swollen film thickness; therefore the top

wall is virtual, and does not interact with the block copolymer film and does not affect the

film morphology; At each MC move, trial positions of polymer chains are generated for an

individual bead or a group of beads using single-bead displacements or reptation moves. For

solvent particles, only single bead displacements are performed. At each MC iteration step

(MCS), each particle experiences one trial move on average. The probability of accepting

the move is determined by the difference in total energy between the original and the trial

configuration, and the weight factor as a function of polymer composition ϕ:2

Pacc =
1

(1 + ϕ8
o)

4(1 + ϕ8
n)

4
min [1, exp[−∆H/kBT ]] (6)

where ϕo and ϕn are the polymer compositions at the original position r and the trial new

location r+∆r. The weight function is defined to be less than unity, so it does not change the

equilibrium distribution but suppresses the probability of accepting moves at high polymer

concentration. The weight function captures the effect of varying mobility of the chain as

a function of composition, such that systems with larger solvent volume fraction experience

a larger probability of accepting a trial move. During a solvent annealing process, solvent
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particles diffuse in and out of the polymer film, thus varying the polymer composition ϕp as a

function of time. Moreover, depending on the relative speed between solvent particle diffusion

through the film and solvent evaporation on the top of the film, ϕp can exhibit a gradient

along the normal direction. Polymer composition becomes a time-dependent scalar field.

The above mentioned rules reproduce the ϕp-dependent diffusivity, as shown in Figure S2.

Diffusivity is measured from the mean-square displacement of bulk homopolymer solutions

from simulations using the same rules for MC moves as in our block copolymer thin film

simulations. There is a pronounced change in diffusivity for higher polymer concentration

regions; for larger solvent volume fractions the diffusivity is nearly constant. This enables

us to reproduce the fact that polymer chain mobility in the first region above Tg should vary

rapidly, and it should level off as a function of solvent concentration. The profile we have

chosen here can be tuned through the rules for proposing MC moves, and one can implement

any realistic diffusivity provided by experiments.

Figure S2: Diffusivity of polymer chains as a function of polymer volume fraction ϕp (N=32)

In order to evaluate the non-bonded energy, which is a functional of the local densities, a

particle-to-mesh (PM) technique is employed. Local densities are defined from the positions

of the beads.12 In our model, solvent particles occupy a smaller volume than coarse-grained

polymer beads. The radius of polymer beads is three times larger than that of solvent
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particles when we chose Cs = 30 for PS and acetone. Thus the interaction range of solvent

particles is smaller than that of polymer beads. A coarse-grained polymer bead corresponds

to multiple monomeric repeating units and a solvent bead also corresponds to multiple

acetone molecules. However, large Cs = 30 (thus the number of acetone molecules lumped

into a solvent bead is smaller than that in a polymer bead) is chosen to keep the entropic

contribution to the pressure (first order in particle number density) large enough to reproduce

the solvent vapor phase under a wide range of pressures. We mapped beads onto a grid

density using PM0 (the zeroth-order scheme where a bead is assigned to the nearest grid

site with the entire weight) for the solvent, and using PM1 (the first-order scheme where

a bead contributes to its eight neighboring sites, with linearly varying weights dictated by

the distance between a grid site and a bead position) for polymer beads; solvent particles

therefore have half the interaction range than polymer beads. Since 30 solvent particles

occupy the volume of one polymer bead, computations with large numbers of solvent particles

represent the most computationally demanding step in our model. An advantage of using

a different PM scheme for polymer and solvent is that the computational load for solvent

particles is reduced considerably by the simpler PM0 scheme. Throughout the simulations,

we used a grid cell size to be 0.16 Re. Following past work, we also randomly displace the

grid cell every 10 MC iterations in order to remove discretization artifacts introduced by the

grid approach.12
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