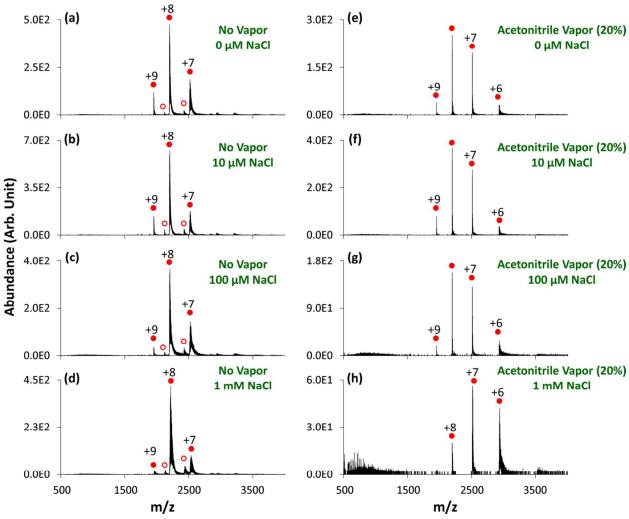
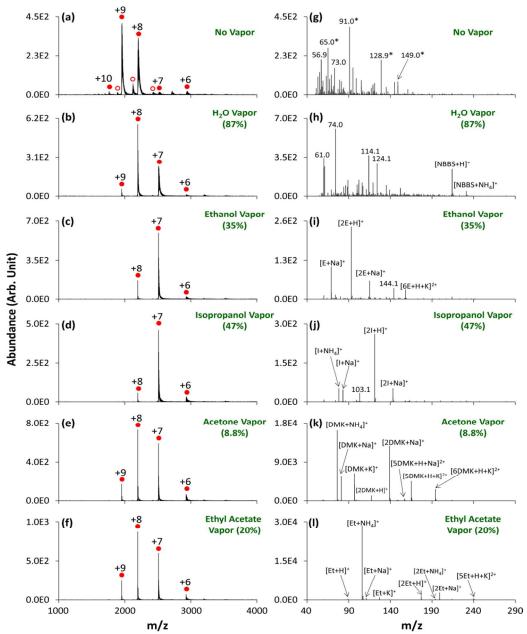
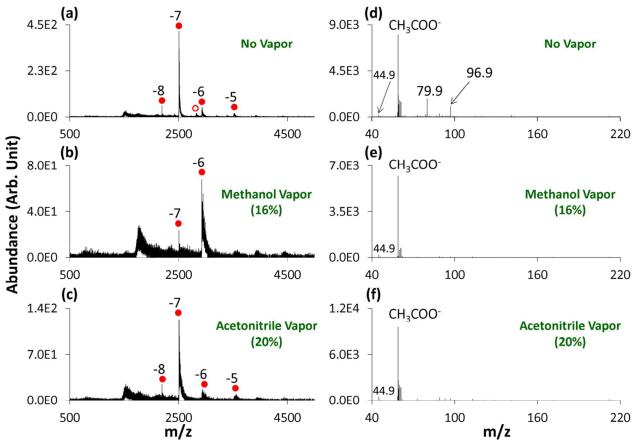

Supporting Information for

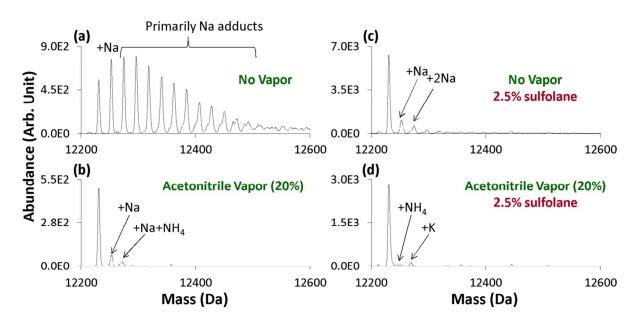
Electrospray Droplet Exposure to Organic Vapors: Metal Ion Removal from Proteins and Protein Complexes


J. Corinne DeMuth and Scott A. McLuckey*

Department of Chemistry Purdue University West Lafayette, IN 47907-2084


Supporting Information: Supplemental Figures S1-S5


Supplemental Figure S-1. Diagram of Vapor Introduction Setup. Using Swagelok valve 1, a desired amount of N_2 curtain gas is directed across a 125-mL Erlenmeyer flask containing reagent. Above the flask, there is tubing, which allows N_2 to enter the flask and tubing that allows N_2 entrained with reagent vapor to exit the flask. A secondary N_2 gas line, which is controlled using Swagelok valve 2, is used to bring the total flow rate of curtain gas/reagent vapor to 1.1 L/min as measured using a flow meter. The curtain gas containing reagent vapor is exposed to nanoelectrospray ionized (nESI) droplets between the curtain plate and the orifice plate of a QqTOF.


Supplemental Figure S-2. Positive nESI of 10 μ M holomyoglobin prepared in (a) 1 mM ammonium acetate with no added NaCl, (b) 10 μ M NaCl, (c) 100 μ M NaCl, and (d) 1 mM NaCl with no reagent vapor exposure and with acetonitrile vapor (20%) exposure, respectively (e)-(h). Holomyoglobin peaks are denoted with the red filled circle symbol (\bullet) while apomyoglobin peaks are denoted with the red open circle symbol (\bullet).

Supplemental Figure S-3. Positive nESI of 10 μ M holomyoglobin prepared in 1 mM ammonium acetate with (a) no vapor, (b) 87% water vapor, (c) 35% ethanol vapor where E denotes an ethanol molecule, (d) 47% isopropanol vapor where Ip deonotes an isopropanol molecule, (e) 8.8% acetone vapor where DMK denotes an acetone molecule, and (f) 20% ethyl acetate vapor where Et represents an ethyl acetate molecule with spectra obtained at the respective low m/z range (g)-(l). Holomyoglobin peaks are denoted with the red filled circle symbol (\odot) while apomyoglobin peaks are denoted with the red open circle symbol (\odot). N-butylbenzenesulfonamide (NBBS) is a plasticizer contaminant present in the tubing within the instrument. * In spectrum (f), the m/z 65 is $C_5H_5^+$, the m/z 91.0 is $C_7H_7^+$, the m/z 128.9 is protonated naphthalene, and m/z 149.0 is protonated phthalic anhydride. These peaks are most likely contaminates derived from the instrument tubing.

Supplemental Figure S-4. Negative nESI mass spectra of holomyoglobin (10 μ M) present in ammonium acetate (1 mM) with (a) no vapor, (b) 16% methanol vapor, and (c) 20% acetonitrile vapor with spectra obtained for respective low m/z ions (d-f). In spectra (d)-(f), the m/z 44.9 ion is attributed to $[HCO_2]^T$. In spectrum (d), the m/z 96.9 ion is either $[H_2PO_4]^T$ or $[HSO_4]^T$ whereas m/z 79.9 is $[SO_3^{\bullet}]^T$. The m/z 44.9, 79.9, and 96.9 ions are attributed to contaminants derived from the myoglobin stock purchased from Sigma. Holomyoglobin peaks are denoted with the red filled circle symbol (\bullet) while apomyoglobin peaks are denoted with the red open circle symbol (\bullet).

Supplemental Figure S-5. Deconvoluted positive nESI mass spectra of cytochrome c (10 μ M) prepared in NaCl (1 mM) and ammonium bicarbonate (10 mM) (a) and (b) in addition to 2.5% sulfolane (c) and (d). The nESI droplets were exposed to no vapors (a) and (c) and 20% acetonitrile vapor (b) and (d).