Catalytic Divergent Synthesis of 3H or 1H Pyrroles by [3+2] Cyclization of Allenoates with Activated Isocyanides

Jia-Yu Liao, ${ }^{\dagger}$ Pan-Lin Shao, ${ }^{\dagger}$ and Yu Zhao*

Supporting Information

Table of Contents Page
I. General information S2
II. Ag-catalyzed enantioselective [3+2] cyclization of $\mathbf{1}$ and 2a S3
III. Characterization of compounds 3 S3
IV. Ag-catalyzed enantioselective cyclization of substituted isocyanoacetate S14
V. Characterization of compounds 6 S14
VI. X-ray crystallographic analysis and determination of configuration of $\mathbf{6 a}$ S26
VII. Pyrrole synthesis by PPh_{3}-catalyzed [3+2] cyclization of $\mathbf{1}$ and $\mathbf{2}$ S28
VIII. Characterization of compounds 4 S28
IX. X-ray crystallographic analysis of $\mathbf{4 v}$ S38
X. References S39
XI. NMR spectra of the products S40

I. General information

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR spectra were recorded on a Bruker AFC $300(300 \mathrm{MHz})$ or AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: ${ }^{1} \mathrm{H}$ (chloroform $\delta 7.26$; DMSO $\delta 2.50$; Acetone $\delta 2.05$), ${ }^{13} \mathrm{C}$ (chloroform $\delta 77.0$; DMSO δ 39.5; Acetone $\delta 29.8$, 206.3). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{dd}=$ doublet of doublets), coupling constants (Hz) and integration. ${ }^{19} \mathrm{~F}$ NMR was measured at 282 MHz , and $\mathrm{CFCl}_{3}(0 \mathrm{ppm})$ was used as an external standard. Melting point (MP) was obtained on Buchi B-540. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm . High resolution mass spectra (HRMS) were obtained on a Finnigan/MAT 95XL-T spectrometer. Optical rotations were recorded on an mrc AP81 automatic polarimeter. Enantiomeric excesses (ee) were determined by HPLC analysis on Agilent HPLC units, including the following instruments: pump, LC-20AD; detector, SPD-20A; column, Chiralcel OD-H, Chiralpak AD-H, AS-H and IA, IB, IC, IE.

Unless otherwise noted, all the reactions were carried out open to air. Dichloromethane (DCM), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, tetrahydrofuran (THF), and toluene were dried over a Pure Solv solvent purification system. Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as received without further purification. Methyl isocyanoacetate (2a), ethyl isocyanoacetate and p-toluenesulfonylmethyl isocyanide were purchased from Alfa Aesar company and used without further purification. tert-Butyl isocyanoacetate ${ }^{1}$ and all allenoates were prepared according to literature procedures. ${ }^{2}$ Other chemicals were purchased from commercial suppliers and used as received without further purification.

II. Ag-catalyzed enantioselective [3+2] cyclization of 1 and 2a

General procedure. To a 10 mL vial charged with $\mathbf{5} \mathbf{b}^{3}(12 \mathrm{mg}, 0.020 \mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}(2.3 \mathrm{mg}, 0.010 \mathrm{mmol})$ was added anhydrous $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$. The mixture was allowed to stir at ambient temperature for 5 min , then allenoate $\mathbf{1}(0.10 \mathrm{mmol})$ was added in one portion. After the mixture was cooled to $-20{ }^{\circ} \mathrm{C}$, isocyanoacetate 2a (0.10 mmol) in anhydrous $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was added via syringe pump over 2 h . The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 48 h , concentrated and purified by flash chromatography (hexanes/ethyl acetate) to afford the product 3 .

III. Characterization of compounds 3

(S)-dimethyl 3-benzyl-4-methyl-3H-pyrrole-3,5-dicarboxylate (3a)

The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 84% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 8.21$ (s, 1H), 7.21-7.17 (m, 3H), 7.10-7.09 (m, 2H), 3.69 (s, 3H), 3.63 (d, J = 13.9 Hz , $1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO): $\delta 170.4,167.3,162.7,148.0,141.9,134.3,129.2,127.9,127.0,74.5,53.0$, 51.4, 36.5, 11.4; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]^{-}: 286.1085$; found: 286.1071.

Optical Rotation: $[\alpha]^{25}{ }_{D}=86.5\left(c=0.4, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3a was assigned by analogy to $\mathbf{6 a}$. 92% ee (HPLC condition: Chiralpak IC column,
n-hexane $/ i-\operatorname{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=31.6 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=42.5 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 4-methyl-3-(4-methylbenzyl)-3H-pyrrole-3,5-dicarboxylate (3b)

3b

The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 92\% yield. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 7.19$ (s, 1H), 7.01-6.96 (m, 4H), 3.69 (s, 3H), $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.13 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,167.3,162.7,148.1,141.8,136.1,131.2,129.1$, 128.5, 74.6, 53.0, 51.5, 36.2, 20.6, 11.4; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}\right.$, M-H] ${ }^{-}$: 300.1241; found: 300.1243.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=82.8\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3b was assigned by analogy to 3a. 94\% ee (HPLC condition: Chiralcel IC column, n-hexane $/ i-\operatorname{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=33.0 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=42.2 \mathrm{~min}$ for minor isomer).

Signal 1: VWD1 A, Wavelength=254 nm					Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$						
$\begin{aligned} & \text { Peak RetTime Type } \\ & \quad \# \quad[\mathrm{~min}] \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area
132.985 BB	0.7958	1.04640 e 4	190.81758	97.0669	1	33.261		1.0634	4229.10645	59.06289	53.2572
242.172 BB	0.7611	316.18893	4.86621	2.9331	2	41.735		1.2138	3711.79834	45.78618	46.7428

(S)-dimethyl 3-(4-methoxybenzyl)-4-methyl-3H-pyrrole-3,5-dicarboxylate (3c)

3c The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 74% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 8.19$ (s, 1H), 7.01 (d, J $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, 3 H), 3.63 (s, 3H), 3.56 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5,167.3,162.7,158.1$, 148.1, 141.8, 130.3, 126.1, 113.3, 74.7, 54.9, 53.0, 51.5, 35.8, 11.4; HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{5}, \mathrm{M}-\mathrm{H}\right]^{-}: 316.1190$; found: 316.1191.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=62.2\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3c was assigned by analogy to 3a. 91\% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=31.7 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=38.6 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 3-(4-bromobenzyl)-4-methyl-3H-pyrrole-3,5-dicarboxylate (3d)

[^0]$=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): δ $170.3,167.1,162.6,147.8,142.0,133.7,131.5,130.8,120.3,74.2,53.1,51.5,35.5$, 11.4; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 388.0155; found: 388.0165.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=64.3\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3d was assigned by analogy to 3a. 88% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=29.3 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=35.2 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 3-(4-fluorobenzyl)-4-methyl-3H-pyrrole-3,5-dicarboxylate (3e)
yield. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}, \mathrm{DMSO}): \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.12$
$(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=13.9 \mathrm{~Hz}$, NMR (125 MHz, DMSO): $\delta 170.4,167.2,162.7,161.2(\mathrm{~d}, J=$ $241.4 \mathrm{~Hz}), 147.8,142.0,131.2(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=$ 21.0 Hz), $74.4,53.0,51.5,35.5,11.4 ; \mathbf{1 9}^{\text {F }} \mathbf{~ N M R ~ (D M S O , ~} 282 \mathrm{MHz}$): $\delta-115.52$;

HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 328.0956 ; found: 328.0971 .

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=39.4\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3e was assigned by analogy to 3a. 96% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.4 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=17.0 \mathrm{~min}$ for minor isomer).

(S)-dimethyl

4-methyl-3-(4-(trifluoromethyl)benzyl)-3H-pyrrole-3,5-dicarboxylate (3f)

$$
\begin{aligned}
& \text { The crude reaction mixture was purified by flash column } \\
& \text { yield. }{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}, \mathrm{DMSO}): \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J} \\
& =8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=13.2 \mathrm{~Hz}, \\
& \\
& \\
& \\
& \text { (s, } 3 \mathrm{H}), 3.69(\mathrm{H}), 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30
\end{aligned}
$$ 147.7, 142.1, 139.2, 130.1, 127.6 (q, $J=31.9 \mathrm{~Hz}), 124.7(\mathrm{q}, J=4.6 \mathrm{~Hz}), 124.2(\mathrm{q}, J=$ 270.5 Hz), 74.2, 53.1, 51.5, 35.7, 11.3; ${ }^{19}$ F NMR (282 MHz, DMSO): $\delta-60.94$; HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 378.0924$; found: 378.0932 .

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=50.2\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3f was assigned by analogy to 3a. 91% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=35.1 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=51.0 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 3-(3-bromobenzyl)-4-methyl-3H-pyrrole-3,5-dicarboxylate (3g)

3g The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 94\% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 8.24$ (s, 1H), 7.38-7.33 (m, 2H), $7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.70 (s, 3H), 3.63 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (s, 3H), 3.23 (d, J $=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 170.2,167.1,162.6$, 147.7, 142.1, 137.0, 132.0, 130.0, 128.3, 121.0, 74.2, 53.1, 51.5, 35.5, 11.4; HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 388.0155$; found: 388.0159.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=48.2\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of $\mathbf{3 g}$ was assigned by analogy to 3a. 87% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=31.5 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=35.9 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 4-methyl-3-(2-methylbenzyl)-3H-pyrrole-3,5-dicarboxylate (3h)

3h
The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 84\% yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.08$ (m, 2H), $7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (s, 3H), 3.63 (s, 3H), 3.62 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (d, J $=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 170.1$, $167.5,162.8,148.2,141.6,136.1,133.1,130.4,129.2,127.2,125.5,74.5,53.1,51.5$, 33.4, 19.4, 11.5; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]$: 300.1241 ; found: 300.1233 .

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=52.5\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3h was assigned by analogy to 3a. 96\% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\operatorname{PrOH}=80: 20$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.5 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=15.8 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 3-(2-bromobenzyl)-4-methyl-3H-pyrrole-3,5-dicarboxylate (3i)

7.11 (dd, $J=7.6 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, 3.35 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 169.1,167.0$, 162.7, 147.7, 142.0, 134.0, 132.8, 131.0, 129.4, 127.5, 124.4, 74.3, 53.3, 51.6, 36.0, 11.6; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 388.0155; found: 388.0148.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=71.3\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3i was assigned by analogy to 3a. 96% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=35.3 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=42.8 \mathrm{~min}$ for minor isomer).

(S)-dimethyl

4-methyl-3-(2-(trifluoromethyl)benzyl)-3H-pyrrole-3,5-dicarboxylate (3j)

 $(\mathrm{s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO): $\delta 169.5,167.1,162.7,148.1,142.3,133.2,132.3,130.3,127.9,127.1(q, J=$ $29.2 \mathrm{~Hz}), 126.1(\mathrm{q}, J=5.5 \mathrm{~Hz}), 124.3(\mathrm{q}, J=272.4 \mathrm{~Hz}), 73.7,53.4,51.6,31.7,11.3$;
${ }^{19}$ F NMR (282 MHz, DMSO): $\delta-56.90$; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{4}\right.$, M-H] ${ }^{-}$: 354.0959; found: 354.0952.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=-31.6\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3j was assigned by analogy to 3a. 94\% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=19.1 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=23.5 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 3-allyl-4-methyl-3H-pyrrole-3,5-dicarboxylate (3k)

$\mathrm{Me} \quad \mathrm{CO}_{2} \mathrm{Me}$ The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 88% yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 8.11$ (s, 1H), 5.30-5.22 (m, 1H), $5.12(\mathrm{dd}, J=17.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.96(\mathrm{~m}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.8 \mathrm{~Hz}$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 170.4,167.1,162.9,148.4$, 141.6, 130.5, 119.5, 73.3, 53.0, 51.5, 34.4, 11.0; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}: 260.0893$; found: 260.0900.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=5.1\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$. The absolute configuration of $\mathbf{3 k}$ was assigned by analogy to $\mathbf{3 a}$. 83% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=31.0 \mathrm{~min}$
for major isomer, $\mathrm{t}_{\mathrm{R}}=35.3 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 3-ethyl-4-methyl-3H-pyrrole-3,5-dicarboxylate (3I)

31

The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 73\% yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 8.12$ ($\mathrm{s}, 1 \mathrm{H}$), 3.78 (s , $3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, 1.88-1.81 (m, 1H), $0.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO): $\delta 171.0$, 167.7, 162.9, 148.5, 141.5, 74.3, 52.9, 51.5, 23.9, 10.8, 7.9; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NNaO}_{4}, \mathrm{M}+\mathrm{Na}\right]^{+}$: 248.0893; found: 248.0905.

Optical Rotation: $[\alpha]^{25}{ }_{D}=6.5\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 31 was assigned by analogy to 3a. 80\% ee (HPLC condition: Chiralpak IC column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=32.4 \mathrm{~min}$ for major isomer, $\mathrm{t}_{\mathrm{R}}=34.6 \mathrm{~min}$ for minor isomer).

(S)-dimethyl 3-heptyl-4-methyl-3H-pyrrole-3,5-dicarboxylate (3m)

3m

The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 89\% yield. ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O\right): ~ \delta 8.14$ (s, 1H), 3.78 (s , $3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO): $\delta 171.1,167.6,162.9,148.6,141.3,73.9,52.9,51.5,31.1,30.6$, 28.9, 28.2, 23.2, 22.0, 13.8, 10.9; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{4}\right.$, $\mathrm{M}+\mathrm{Na}]^{+}$: 318.1676; found: 318.1679 .

Optical Rotation: $[\alpha]^{25}{ }_{D}=+21.1\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 3m was assigned by analogy to 3a. 93\% ee (HPLC condition: Chiralcel IB column, n-hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=9.3 \mathrm{~min}$ for major isomer).

IV. Ag-Catalyzed enantioselective cyclization of substituted isocyanoacetate

General procedure. To a 10 mL vial charged with $\mathbf{5 b}(12 \mathrm{mg}, 0.020 \mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}$ $(2.3 \mathrm{mg}, 0.010 \mathrm{mmol})$ was added anhydrous $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$. The mixture was allowed to stir at ambient temperature for 5 min , then allenoate $\mathbf{1}(0.10 \mathrm{mmol})$ was added in one portion. After the mixture was cooled to $-20^{\circ} \mathrm{C}$, isocyanoacetate $\mathbf{2 b}$ or 2c $(0.10 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was added via syringe pump over 2 h . The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 48 h , concentrated and purified by flash chromatography (hexanes/ethyl acetate) to afford the product 6 . The pure major diastereomer was isolated and characterized.

V. Characterization of compounds 6

(2R,4S)-dimethyl

2,4-dibenzyl-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxylate (6a)

6a

6:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). White solid, 85% yield. MP: $87-89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO): $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14$ (m, $3 \mathrm{H}), ~ 7.01-6.98(\mathrm{~m}, 4 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.36$ (s, $3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=$ $13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 170.9$,
$170.1,166.9,147.3,135.3,135.2,130.8,130.0,128.0,127.3,126.7,126.2,112.5$, 84.9, 66.4, 52.6, 52.4, 44.1, 42.7; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}$: 378.1700; found: 378.1711 .

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=51.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) .92 \%$ ee (HPLC condition: Chiralpak IB column, n-hexane $/ i$ - $\mathrm{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=$ $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.4 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=9.1 \mathrm{~min}$ for major isomer).

The trans relative configuration of 6a was determined by the NOE (Figure S1), and reconfirmed by X-ray crystallographic analysis of a single crystal of $\mathbf{6 a}$ (Figure S2).

Figure S1. NOESY spectra of $\mathbf{6 a}$.
(2R,4S)-4-ethyl-2-methyl-2,4-dibenzyl-3-methylene-3,4-dihydro-2H-pyrrole-2,4-d icarboxylate (6b)

6b
$11: 1 \mathrm{dr}$ (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 90% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~s}, 1 \mathrm{H})$, 7.23-7.01 (m, 10H), $5.74(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.88(\mathrm{~m}$, $1 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6,170.0,167.5,147.5,135.3,135.1,131.2,130.1$, 128.2, 127.5, 126.9, 126.4, 112.9, 85.3, 66.7, 61.6, 52.7, 45.0, 44.4, 13.7; HRMS
(ESI): m / z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}: 392.1856$; found: 392.1867.

Optical Rotation: $[\alpha]^{23}{ }_{\mathrm{D}}=38.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The absolute configuration of $\mathbf{6 b}$ was assigned by analogy to 6a. 90% ee (HPLC condition: Chiralpak IB column, n-hexane $/ i-\mathrm{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=7.2 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=8.0 \mathrm{~min}$ for major isomer).

Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$	Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$
$1 \begin{array}{lllllll}1.196 & \mathrm{VB} & 0.1464 & 120.59810 & 12.63223 & 4.9254\end{array}$	$1 \begin{array}{lllllll}1 & 7.138 & \mathrm{VB} & 0.1458 & 181.94548 & 19.15106 & 49.6595\end{array}$
$28.028 \mathrm{BV} \quad 0.1900 \quad 2327.91309 \quad 182.03169 \quad 95.0746$	$28.068 \mathrm{BB} \quad 0.1645 \quad 184.44064 \quad 16.99959 \quad 50.3405$

($2 R, 4 S$)-4-ethyl
2-methyl
2-benzyl-4-(2-fluorobenzyl)-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxyla te (6c)

8:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 78% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-6.90(\mathrm{~m}, 9 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H})$, 4.03-3.92 (m, 1H), 3.84-3.73 (m, 1H), 3.46-3.27 (m, 5H), 3.12-2.99 (m, 2H), $1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6$, $169.8,166.9,161.1(\mathrm{~d}, J=246.2 \mathrm{~Hz}), 147.0,135.3,132.7(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 131.1$, $129.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 127.6,126.5,123.7(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 122.3(\mathrm{~d}, J=15.8 \mathrm{~Hz})$, $115.4(\mathrm{~d}, J=22.5 \mathrm{~Hz}$), 113.4, 85.3, 66.7, 61.8, 52.7, 45.5, 36.3, 13.7; HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{FNO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}: 410.1762$; found: 410.1777.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=37.6\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of $\mathbf{6 c}$ was assigned by analogy to $\mathbf{6 a}$. 94% ee (HPLC condition: Chiralpak IB column, n-hexane $/ i-\mathrm{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=7.8 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}$ for major isomer).

Signal 1: VWD1 A, Wavelength=254 nmPeak RetTime Type \# [midth Area Height Area [min] [mAU*s] [maU]	Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$
$17.798 \mathrm{VV} \quad 0.1635 \quad 86.97683 \quad 8.08093 \quad 2.7800$	$1 \begin{array}{llllllll}1 & 7.729 & \text { BB } & 0.1577 & 1223.94080 & 117.80592 & 49.9724\end{array}$
$28.577 \mathrm{VB} \quad 0.1949 \quad 3041.72290 \quad 234.71327 \quad 97.2200$	$2 \quad 8.597 \mathrm{BB} \quad 0.18021225 .29333103 .65217 \quad 50.0276$

(2R,4S)-4-ethyl
2-methyl
2-benzyl-4-(2-bromobenzyl)-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxyl ate (6d)

7:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 70% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}$), 7.56-7.43 (m, 1H), 7.16-7.06 (m, 8H), $5.78(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.02-3.91 (m, 1H), 3.78-3.66 (m, 1H), 3.52 (s, 3H), 3.45 (dd, J $=13.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6,169.9,166.8,147.4,135.2,133.1$, 132.0, 131.1, 128.7, 127.5, 127.1, 126.4, 125.4, 113.5, 85.2, 77.2, 66.8, 61.8, 52.6, 45.2, 42.9, 13.7; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrNO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}: 470.0961$; found: 470.0964.

Optical Rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=22.1\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 6d was assigned by analogy to 6a. 96% ee (HPLC condition: Chiralpak IB column,
n-hexane $/ i-\operatorname{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=9.3 \mathrm{~min}$ for major isomer).

(2R,4S)-4-ethyl
2-methyl
2-benzyl-4-(2-methylbenzyl)-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxyl ate (6e)

>20:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless wax, 67% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.52(\mathrm{~s}, 1 \mathrm{H}), 7.22-6.98(\mathrm{~m}, 9 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H})$, 4.00-3.89 (m, 1H), 3.72-3.55 (m, 4H), $3.48(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.8,170.3$, $168.0,148.3,136.6,135.3,133.9,131.3,130.6,130.2,127.5,127.2,126.4,125.8$, 112.7, 85.3, 66.7, 61.6, 52.7, 44.4, 41.3, 19.7, 13.7; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}: 406.2013$; found: 406.2024.

Optical Rotation: $[\alpha]^{24}{ }_{\mathrm{D}}=36.5\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 6e was assigned by analogy to $\mathbf{6 a}$. 94% ee (HPLC condition: Chiralpak IB column, n-hexane $/ i-\mathrm{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=6.2 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=6.9 \mathrm{~min}$ for major isomer).

(2R,4S)-4-ethyl

2-methyl

2-benzyl-4-(4-fluorobenzyl)-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxyla te (6f)

8:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 87% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~s}, 1 \mathrm{H})$, 7.21-6.97 (m, 7H), 6.92-6.86 (m, 2H), $5.75(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}$, $1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.42$ $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, CDCl_{3}): $\delta 171.6,169.9,167.2,162.0(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 147.3,135.2,131.8(\mathrm{~d}, J=8.0$ $\mathrm{Hz})$, 131.1, $130.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 127.6,126.5,115.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 113.1,85.4$, 66.8, 61.7, 52.7, 45.3, 43.3, 13.8; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{FNO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}$: 410.1762; found: 410.1769.

Optical Rotation: $[\alpha]^{25}{ }_{\mathrm{D}}=23.1\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 6f was assigned by analogy to 6a. 83% ee (HPLC condition: Chiralpak IB column, n-hexane $/ i-\mathrm{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=7.2 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=8.2 \mathrm{~min}$ for major isomer).

(2R,4S)-4-ethyl

2-methyl

2-benzyl-4-(4-methylbenzyl)-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxyl ate (6 g)

7:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless wax, 58% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~s}, 1 \mathrm{H})$, 7.19-7.05 (m, 5H), $7.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 1 \mathrm{H})$, 3.77-3.66 (m, 1H), $3.51(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7$, 170.1, 167.7, 147.6, 136.5, 135.3, 132.0, 131.2, 130.0, 128.9, 127.6, 126.4, 112.8, 85.3, 66.8, 61.6, 52.7, 45.1, 44.0, 21.0, 13.7; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}$: 406.2013; found: 406.2020.

Optical Rotation: $[\alpha]^{24}{ }_{\mathrm{D}}=50.1\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$. The absolute configuration of $\mathbf{6 g}$ was assigned by analogy to $\mathbf{6 a}$. 91% ee (HPLC condition: Chiralpak IB column, n-hexane $/ i-\mathrm{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=6.8 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=7.6 \mathrm{~min}$ for major isomer).

(2R,4S)-4-ethyl

2-methyl

2-benzyl-4-(3-bromobenzyl)-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxyl ate (6h)

6h

10:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 74% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~s}, 1 \mathrm{H})$, 7.36-7.30 (m, 1H), 7.20-7.19 (m, 1H), 7.17-7.04 (m, 6H), 7.00-6.97 (m, 1H), $5.75(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}$, $1 \mathrm{H}), 3.77-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.5,169.8,167.0,147.3,137.5,135.2,133.0,131.2$, $130.2,129.8,128.9,127.6,126.5,122.3,113.1,85.4,66.6,61.8,52.8,45.0,43.7,13.8 ;$ HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrNO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}: 470.0961$; found: 470.0974 .

Optical Rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=29.8\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$. The absolute configuration of 6h was assigned by analogy to 6a. 82% ee (HPLC condition: Chiralpak IB column, n-hexane $/ i-\mathrm{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=7.7 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=8.9 \mathrm{~min}$ for major isomer).

(2R,4S)-4-ethyl

2-methyl

2-benzyl-4-(3,5-dimethoxybenzyl)-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicar boxylate (6i)

$11: 1 \mathrm{dr}$ (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 86% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.64(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{t}$, i $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.72$ $(\mathrm{s}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 7 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.23(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.8,170.0,167.6,160.6,147.8$, $137.4,135.3,131.2,127.6,126.5,112.9,108.0,99.2,85.4,66.6,61.6,55.2,52.7,45.1$, 44.8, 13.8; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{6}, \mathrm{M}+\mathrm{H}\right]^{+}: 452.2068$; found: 452.2084.

Optical Rotation: $[\alpha]^{23}{ }_{\mathrm{D}}=52.5\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$. The absolute configuration of $\mathbf{6 i}$ was assigned by analogy to 6a. 88% ee (HPLC condition: Chiralpak IE column, n-hexane $/ i-\operatorname{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=25.3 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=34.4 \mathrm{~min}$ for major isomer).

(2R,4S)-4-ethyl

2-methyl

4-allyl-2-benzyl-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxylate (6j)

4:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 67% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~s}, 1 \mathrm{H})$, 7.18-7.09 (m, 5H), 5.71-5.47 (m, 3H), 5.11-5.06 (m, 1H), 5.04-4.99 (m, 1H), 4.02-3.91 (m, 1H), 3.82-3.64 (m, 4H), $3.46(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.16(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=13.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=13.8,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7$, 169.8, 167.7, $147.4,135.3,131.7,131.2,127.6,126.5,119.5,112.5,85.5,65.5,61.6,52.6,44.7$, 42.6, 13.8; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}: 342.1700$; found: 342.1710 .

Optical Rotation: $[\alpha]^{22}{ }_{\mathrm{D}}=20.3\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$. The absolute configuration of $\mathbf{6 j}$ was assigned by analogy to $\mathbf{6 a}$. 82% ee (HPLC condition: Chiralpak IB column, n-hexane $/ i-\mathrm{PrOH}=96: 4$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=6.5 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=7.3 \mathrm{~min}$ for major isomer).

(2R,4S)-4-ethyl

2-methyl

4-benzyl-2-methyl-3-methylene-3,4-dihydro-2H-pyrrole-2,4-dicarboxylate (6k)

6k 11:1 dr (of crude). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 79% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~s}, 1 \mathrm{H})$, 7.32-7.20 (m, 3H), 7.18-7.08 (m, 2H), 5.49 (s, 2H), 4.23-4.03 (m, 2H), $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2,170.4,166.8$, $150.6,135.5,130.2,128.3,127.0,111.1,81.5,67.0,61.7,52.8,43.2,26.2,13.9$; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}, \mathrm{M}+\mathrm{H}\right]^{+}: 316.1543$; found: 316.1550.

Optical Rotation: $[\alpha]^{23}{ }_{\mathrm{D}}=-55.8\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$. The absolute configuration of $\mathbf{6 k}$ was assigned by analogy to $\mathbf{6 a}$. 94% ee (HPLC condition: Chiralpak IE column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $=1 \mathrm{ml} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=15.4 \mathrm{~min}$ for minor isomer, $\mathrm{t}_{\mathrm{R}}=17.4 \mathrm{~min}$ for major isomer).

Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$					Signal 1: VWD1 A, Wavelength 254 nm						
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{O}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU]] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$	$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU]] } \end{aligned}$	Area
$1 \quad 15.359 \mathrm{BB}$	0.3102	8.88352	4.31435e-1	2.7630	1	15.265		0.2972	94.05493	4.89152	50.3094
$2 \quad 17.374 \mathrm{BB}$	0.3624	312.63379	12.98880	97.2370		17.516		0.3494	92.89819	4.09208	49.6906

VI. X-ray crystallographic analysis and determination of

configuration of 6 a

The absolute configuration of $\mathbf{6 a}(\mathbf{2 R}, \mathbf{4 S})$ was assigned by X-ray crystallographic analysis of a single crystal of $\mathbf{6 a}$ (Figure S2). The crystal was prepared from the solution of $\mathbf{6 a}$ in hexanes/ethyl acetate (8:1) at ambient temperature.

Figure S2. X-ray structure of $\mathbf{6 a}$
Table S1. Crystal data and structure refinement for e477

Identification code	e 477	
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}$	
Formula weight	377.42	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Monoclinic	
Space group	P 21	$\alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{a}=9.2073(5) \AA$	

	$\mathrm{b}=8.4035(4) \AA$	$\beta=90.524(2)^{\circ}$
	$\mathrm{c}=12.6305(7) \AA$	$\gamma=90^{\circ}$
Volume	977.23(9) \AA^{3}	
Z	2	
Density (calculated)	$1.283 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.711 \mathrm{~mm}^{-1}$	
$F(000)$	400	
Crystal size	$0.329 \times 0.025 \times 0$.	3
Theta range for data collection	3.499 to 72.628°	
Index ranges	$-9<=\mathrm{h}<=11,-10<=$	$-15<=1<=15$
Reflections collected	12788	
Independent reflections	3778 [R(int) $=0.0$	
Completeness to theta $=67.679^{\circ}$	99.0 \%	
Refinement method	Full-matrix least-s	on F^{2}
Data / restraints / parameters	3778 / 1 / 323	
Goodness-of-fit on F^{2}	1.074	
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0516, \mathrm{wR} 2$	
R indices (all data)	$\mathrm{R} 1=0.0518$, wR2	
Absolute structure parameter	0.32(9)	
Largest diff. peak and hole	0.409 and -0.248	

VII. Pyrrole synthesis by $\mathbf{P P h}_{3}$-catalyzed [3+2] cyclization of 1 and 2

General procedure. To a 4 mL vial charged with $\mathrm{PPh}_{3}(3.2 \mathrm{mg}, 0.012 \mathrm{mmol})$ was added anhydrous CHCl_{3} (0.5 mL). Allenoate $1(0.12 \mathrm{mmol}, 1.2$ equiv) and activated isocyanide 2 ($0.10 \mathrm{mmol}, 1.0$ equiv) were added in one portion. The reaction mixture was allowed to stir at ambient temperature for the given time and then concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate) to afford the product 4.

VIII. Characterization of compounds 4

Methyl 4-(1-methoxy-1-oxo-3-phenylpropan-2-yl)-1H-pyrrole-2-carboxylate (4a)

4a The general procedure outlined above was followed (using 1.0 equiv of allenoate, 24 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 90% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.42$ (br s, 1H), 7.28-7.16 (m, 3H), 7.16-7.09 (m, 2H), 6.92-6.86 (m, 1H), $6.81(\mathrm{dd}, J=2.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{dd}, J=13.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J$ $=13.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.1,161.6,138.9,128.8,128.3$, 126.3, 122.9, 122.5, 121.3, 114.3, 51.9, 51.5, 46.0, 39.8; HRMS (ESI): m/z calcd. for [$\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]{ }^{-}: 286.1085$; found: 286.1078.

Methyl

4-(3-(4-bromophenyl)-1-methoxy-1-oxopropan-2-yl)-1H-pyrrole-2-carboxylate (4b)

4b

The general procedure outlined above was followed (17 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 90% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.17$ (br s, 1 H), 7.40-7.32 (m, 2H), 7.02-6.95 (m, 2H), 6.90-6.84 (m, 1H), $6.79(\mathrm{dd}, J=2.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.73(\mathrm{~m}$, $1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=13.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.9,161.4,137.9,131.4,130.6,122.7,122.6,121.2$, 120.3, 114.2, 52.0, 51.5, 45.8, 39.1; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}_{4}\right.$, M-H] ${ }^{-}$: 364.0190; found: 364.0188.

Methyl

4-(3-(3-bromophenyl)-1-methoxy-1-oxopropan-2-yl)-1H-pyrrole-2-carboxylate (4c)

The general procedure outlined above was followed (17 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 90% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.30$ (br s, 1 H), 7.35-7.25 (m, 2H), 7.13-7.00 (m, 2H), 6.87 ($\mathrm{s}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}$, $J=13.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $173.8,161.5,141.3,131.9,129.8,129.5,127.6,122.7,122.6,122.3,121.2,114.1$, 52.0, 51.5, 45.7, 39.3; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}_{4}, \mathrm{M}-\mathrm{H}\right]^{-}: 364.0190$; found: 364.0186.

Methyl

4-(3-(4-fluorophenyl)-1-methoxy-1-oxopropan-2-yl)-1H-pyrrole-2-carboxylate

The general procedure outlined above was followed (17 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 94% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.21$ (br s, 1 H), 7.10-7.02 (m, 2H), 6.97-6.89 (m, 2H), 6.88-6.84 (m, 1H), 6.82-6.78 (m, 1H), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 3.80-3.73 (m, 1H), $3.62(\mathrm{~s}$, $3 \mathrm{H}), 3.25(\mathrm{dd}, J=13.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.0,161.5(\mathrm{~d}, J=242.7 \mathrm{~Hz}), 161.4,134.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.3(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}), 122.8,122.6,121.2,115.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 114.2,52.0,51.5,46.1,39.0$; HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}, \mathrm{M}+\mathrm{H}\right]^{+}: 430.1973$; found: 430.1981.

Methyl 4-(1-methoxy-1-oxo-3-(p-tolyl)propan-2-yl)-1H-pyrrole-2-carboxylate

 (4e)

The general procedure outlined above was followed (17 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 91% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.26$ (br s, 1 H), 7.10-6.97 (m, 4H), 6.93-6.86 (m, 1H), $6.82(\mathrm{dd}, J=2.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=13.7$, $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, $J=13.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.29(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.2,161.5,135.8,129.0,128.7,123.1,122.5,121.2,114.3,51.9,51.5$, 46.1, 39.4, 21.0; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]^{-}: 300.1241$; found: 300.1244 .

Methyl 4-(1-ethoxy-1-oxo-3-phenylpropan-2-yl)-1H-pyrrole-2-carboxylate (4f)

The general procedure outlined above was followed (18 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 95\%
yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=2.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-3.99(\mathrm{~m}, 2 \mathrm{H})$, 3.87-3.75 (m, 4H), 3.28 (dd, $J=13.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=13.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.7,161.5,139.0,128.9$, 128.2, 126.3, 123.2, 122.5, 121.2, 114.3, 60.7, 51.5, 46.1, 39.9, 14.1; HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]^{-}: 300.1241$; found: 300.1233 .

Methyl 4-(1-isopropoxy-1-oxo-3-phenylpropan-2-yl)-1H-pyrrole-2-carboxylate (4g)

$4 g$

The general procedure outlined above was followed (16 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless wax, 93\% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.28$ (br s, 1 H), 7.29-7.11 (m, 5H), 6.94-6.87 (m, 1H), $6.83(\mathrm{dd}, J=2.5,1.9$ Hz, 1H), 5.04-4.80 (m, 1H), 3.88-3.72 (m, 4H), 3.26 (dd, J $=13.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2,161.6,139.0,128.9,128.2$, 126.3, 123.3, 122.4, 121.2, 114.3, 68.0, 51.4, 46.3, 40.0, 21.6, 21.6; HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]^{-}: 314.1398$; found: 314.1392.

Methyl 4-(1-tert-butoxy-1-oxo-3-phenylpropan-2-yl)-1H-pyrrole-2-carboxylate

(4h)

4h

The general procedure outlined above was followed (72 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless wax, 95% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.20$ (br s, 1 H), 7.27-7.13 (m, 5H), 6.92-6.85 (m, 1H), 6.85-6.79 (m, 1H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (dd, $J=8.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (dd, $J=$ 13.6, $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, $J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , CDCl_{3}): $\delta 172.88,161.6,139.2,129.0,128.2,126.2,123.7,122.4,121.1,114.3,80.7$,
51.4, 46.9, 40.0, 27.9; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}\right.$, M-H] ${ }^{-}: 328.1554$; found: 328.1546 .

Methyl

4-(1-(cyclohexyloxy)-1-oxo-3-phenylpropan-2-yl)-1H-pyrrole-2-carboxylate (4i)

The general procedure outlined above was followed (36 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless wax, 93% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.14$ (br s, 1 H), 7.27-7.12 (m, 5H), 6.93-6.87 (m, 1H), 6.83 (dd, $J=2.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.73(\mathrm{~m}, 4 \mathrm{H})$, $3.27(\mathrm{dd}, J=13.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.55(\mathrm{~m}, 5 \mathrm{H})$, 1.36-1.18 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.1,161.5,139.1,128.9,128.2$, $126.3,123.5,122.4,121.1,114.3,72.9,51.5,46.3,40.0,31.3,31.3,25.3,23.6$; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]^{-}: 354.1711$; found: 354.1706.

Methyl 4-(1-(benzyloxy)-1-oxopropan-2-yl)-1H-pyrrole-2-carboxylate (4j)

4j

The general procedure outlined above was followed (using 2.0 equiv of allenoate, 23 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless oil, 75% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H})$, 5.12 (d, $J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.6,161.5,136.0,128.5,128.1,128.0,124.8$, 122.4, 120.7, 114.1, 66.4, 51.4, 38.0, 18.2; HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}\right.$, M-H]: 286.1085; found: 286.1073.

Methyl 4-(1-methoxy-1-oxobutan-2-yl)-1H-pyrrole-2-carboxylate (4k)

The general procedure outlined above was followed (using
2.0 equiv of allenoate, 23 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless oil, 84% yield. ${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta 9.15$ (br s, 1H), 6.96-6.78 (m, 2H), 3.83 (s, 3H), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.42 (t, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.9,161.5,123.6,122.5,121.1,114.4,51.9,51.5,45.7$, 26.8, 12.0; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]:$: 224.0928; found: 224.0922.

Methyl 4-(1-methoxy-1-oxopent-4-en-2-yl)-1H-pyrrole-2-carboxylate (4I)

41

The general procedure outlined above was followed (16 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless oil, 81% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.31$ (br s, 1 H), 6.92-6.83 (m, 2H), 5.82-5.66 (m, 1H), 5.11-4.97 (m, 2H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.57(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.2,161.5,135.2,123.0,122.5,121.1,117.0,114.3,51.9,51.5$, 43.8, 37.6; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]:$ 236.0928; found: 236.0923.

Dimethyl 2-(5-(methoxycarbonyl)-1H-pyrrol-3-yl)succinate (4m)

The general procedure outlined above was followed (using 2.0 equiv of allenoate, 16 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 86% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.27$ (br s, 1H), 6.88 ($\mathrm{s}, 1 \mathrm{H}$), 6.82 (s , $1 \mathrm{H}), 4.04$ (dd, $J=9.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, 3H), 3.68 (d, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}$), 3.10 (dd, J $=16.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=16.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 173.6, 172.0, 161.4, 122.8, 122.0, 121.0, 113.9, 52.3, 51.9, 51.5, 39.6, 37.3; HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{6}, \mathrm{M}-\mathrm{H}\right]^{-}: 268.0827$; found: 268.0827 .

Methyl 4-(2-ethoxy-2-oxoethyl)-1H-pyrrole-2-carboxylate (4n)

The general procedure outlined above was followed (using 2.0 equiv of allenoate, $20 \mathrm{~mol} \% \mathrm{PPh}_{3}, 43 \mathrm{~h}$). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Pale brown oil, 56\% yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=2.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8,161.5,122.6,121.9,117.8$, 115.7, 60.8, 51.4, 32.8, 14.2; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]$: 210.0772; found: 210.0764

Methyl 4-(2-ethoxy-2-oxoethyl)-3-ethyl-1H-pyrrole-2-carboxylate (4o)

The general procedure outlined above was followed (using 1.5 equiv of allenoate, $20 \mathrm{~mol} \% \mathrm{PPh}_{3}, 41 \mathrm{~h}$). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 59\% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.0,161.7,133.1$, 121.4, 118.6, 116.7, 60.8, 51.1, 30.8, 18.0, 15.2, 14.2; HRMS (ESI), m/z calcd. for [$\left.\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]{ }^{-}: 238.1085$; found: 238.1082 .

Methyl

4-(1-ethoxy-1-oxo-3-phenylpropan-2-yl)-3-ethyl-1H-pyrrole-2-carboxylate (4p)

The general procedure outlined above was followed (using 2.0 equiv of allenoate, $50 \mathrm{~mol} \% \mathrm{PPh}_{3}, 95 \mathrm{~h}$). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 39\% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.95$ (br s, 1 H),
7.28-7.11 (m, 5H), $6.95(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 4 \mathrm{H})$, $3.28(\mathrm{dd}, J=13.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.57(\mathrm{~m}, 2 \mathrm{H})$, 1.16-0.98 (m, 6H); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.1,161.6,139.2,132.7,128.9$, 128.3, 126.4, 122.3, 120.2, 118.3, 60.7, 51.1, 44.1, 40.4, 17.8, 15.5, 14.0; HRMS (ESI), m / z calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]^{-}: 328.1554$; found: 328.1552 .

Ethyl 4-(1-ethoxy-1-oxo-3-phenylpropan-2-yl)-1H-pyrrole-2-carboxylate (4q)

$4 q$ The general procedure outlined above was followed (20 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 97% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.28$ (br s, 1 H), 7.31-7.09 (m, 5H), 6.95-6.86 (m, 1H), $6.82(\mathrm{dd}, J=2.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.81$ (dd, $J=8.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=13.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.6,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 173.7, 161.2, 139.0, 128.9, 128.2, 126.3, 123.1, 122.8, 121.0, 114.1, 60.7, 60.4, 46.1, 39.9, 14.4, 14.0; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]^{-}: 314.1398$; found: 314.1392 .
tert-Butyl 4-(1-ethoxy-1-oxo-3-phenylpropan-2-yl)-1H-pyrrole-2-carboxylate (4r)
 The general procedure outlined above was followed (20 $\mathrm{mol} \% \mathrm{PPh}_{3}, 89 \mathrm{~h}$). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless wax, 82% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 9.07 (br s, 1H), 7.33-7.09 (m, 5H), 6.92-6.71 (m, 2H), 4.18-3.98 (m, 2H), 3.80 (dd, $J=8.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (dd, $J=13.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.8,160.6,139.1,128.9,128.2,126.3,124.3$, 123.0, 120.3, 113.5, 80.9, 60.7, 46.2, 40.0, 28.3, 14.0; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4}, \mathrm{M}-\mathrm{H}\right]-$: 342.1711 ; found: 342.1694.

Methyl 3-phenyl-2-(5-tosyl-1H-pyrrol-3-yl)propanoate (4s)

The general procedure outlined above was followed (23 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 79% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33-7.00(\mathrm{~m}, 7 \mathrm{H}), 6.81(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=$ $13.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , CDCl_{3}): $\delta 173.7,143.9,139.3,138.6,129.8,128.8,128.4,128.3,126.9,126.5,123.7$, 121.5, 114.3, 52.0, 46.0, 40.0, 21.6; HRMS (ESI), m / z calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}, \mathrm{M}-\mathrm{H}\right]^{-}$: 382.1119; found: 382.1112 .

Ethyl 3-phenyl-2-(5-tosyl-1H-pyrrol-3-yl)propanoate (4t)

The general procedure outlined above was followed (18 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Colorless wax, 83% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.58$ (br s, 1 H), 7.77 (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.24$ (m, 2H), 7.23-7.12 (m, 3H), 7.11-7.02 (m, $2 \mathrm{H}), ~ 6.87-6.74(\mathrm{~m}, 2 \mathrm{H}), 4.11-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dd}, J=8.7,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=13.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=13.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,143.9,139.3,138.6$, $129.8,128.9,128.2,128.1,126.8,126.4,123.7,121.7,114.5,60.8,46.1,40.0,21.5$, 14.0; HRMS (ESI), m/z calcd. for [$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$, M-H]: 396.1275 ; found: 396.1268.

Isopropyl 3-phenyl-2-(5-tosyl-1H-pyrrol-3-yl)propanoate (4u)

The general procedure outlined above was followed (23 h). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 4:1). Colorless wax, 86%
yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.31-7.04 (m, 7H), 6.89-6.82 (m, 1H), 6.82-6.74 (m, 1H), 5.00-4.82 (m, 1H), $3.73(\mathrm{dd}$, $J=9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz , CDCl_{3}): $\delta 172.8,143.8,139.4,138.7,129.8,128.9,128.2,128.1,126.8,126.4,123.9$, 121.7, 114.5, 68.1, 46.2, 40.0, 21.5; HRMS (ESI), m / z calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}, \mathrm{M}-\mathrm{H}\right]$: 410.1432; found: 410.1420 .

tert-Butyl 3-phenyl-2-(5-tosyl-1H-pyrrol-3-yl)propanoate (4v)

4v The general procedure outlined above was followed ($20 \mathrm{~mol} \%$ $\mathrm{PPh}_{3}, 47 \mathrm{~h}$). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). White solid, 71% yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.08(\mathrm{~m}, 7 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=13.6$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,143.8,139.5,138.8,129.8,129.0,128.1,128.0,126.8$, 126.3, 124.3, 121.6, 114.5, 80.9, 46.9, 40.0, 27.8, 21.5; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}, \mathrm{M}-\mathrm{H}\right]^{-}: 424.1588$; found: 424.1595 .

Ethyl 2-(4-ethyl-5-tosyl-1H-pyrrol-3-yl)acetate (4w)

4w

The general procedure outlined above was followed (using 2.0 equiv of allenoate, $30 \mathrm{~mol} \% \mathrm{PPh}_{3}, 95 \mathrm{~h}$). The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 3:1). Pale brown wax, 58% yield. ${ }^{1}$ H NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.5,143.7,139.9,130.7,129.7,126.7,123.5,121.8,117.5,60.9,30.8,21.5,17.3$, 14.9, 14.1; HRMS (ESI), m/z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}, \mathrm{M}-\mathrm{H}\right]^{-}: 334.1119$; found:

IX. X-ray crystallographic analysis of $4 v$

The conformation of $\mathbf{4 v}$ was determined by X-ray crystallographic analysis of a single crystal of $\mathbf{4 v}$ (Figure S3). The crystal was prepared from the solution of $\mathbf{4 v}$ in hexanes/ethyl acetate at ambient temperature.

Figure S3. X-ray structure of $\mathbf{4 v}$
Table S2. Crystal data and structure refinement for E351

Identification code	E 351	
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$	
Formula weight	425.52	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=24.358(3) \AA=90^{\circ}$	
	$\mathrm{b}=8.0579(9) \AA$	$\beta=90^{\circ}$
	$\mathrm{c}=11.2629(13) \AA$	
Volume	$2175.7(4) \AA^{3}$	
Z	4	
Density (calculated)	$1.299 \mathrm{Mg} / \mathrm{m}^{3}$	

Absorption coefficient	$0.179 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	904
Crystal size	$0.260 \times 0.200 \times 0.100 \mathrm{~mm}^{3}$
Theta range for data collection	1.699 to 27.518°
Index ranges	$-31<=\mathrm{h}<=27,-10<=\mathrm{k}<=10,-13<=1<=14$
Reflections collected	14979
Independent reflections	$4999[\mathrm{R}(\mathrm{int})=0.0578]$
Completeness to theta $=25.242^{\circ}$	100.0%
Absorption correction	$\mathrm{Semi-empirical} \mathrm{from} \mathrm{equivalents}$
Max. and min. transmission	0.7456 and 0.6607
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$4999 / 0 / 279$
Goodness-of-fit on F^{2}	0.990
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0581, \mathrm{wR} 2=0.1484$
R indices (all data)	$\mathrm{R} 1=0.0772, \mathrm{wR} 2=0.1615$
Extinction coefficient	n / a
Largest diff. peak and hole	0.500 and $-0.385 \mathrm{e} . \mathrm{A}^{-3}$

X. References

1. Waki, M.; Meienhofer, J. J. Org. Chem. 1977, 42, 2019.
2. (a) Buono, G. Tetrahedron Lett. 1972, 13, 3257. (b) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716. (c) Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Guo, H.; Kwon, O. J. Am. Chem. Soc. 2011, 133, 13337.
3. Sladojevich, F.; Trabocchi, A.; Guarna, A.; Dixon, D. J. J. Am. Chem. Soc. 2011, 133, 1710.

XI. NMR spectra of the products

量

3a

3b

1 㘫

3b

3c

3d

$\left.\right|^{8}$
$\stackrel{2}{2}$

3d

3e

$3 e$

$3 g$

$3 g$

$\left.\right|_{\mid} ^{\text {衣 }}$

3h
 $\stackrel{\text { 导 }}{\substack{\text { ®. }}}$

$3 i$

3j

3k

3k

6b

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

6c

6d

후령

$6 e$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$6 i$

禾 -85.47 -65.45
-61.55

-52.60
$=44.68$
-42.64 $\stackrel{\infty}{\stackrel{\infty}{i}}$

6j

 ハ

6k

					1						1	70	1	1			1		
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

4b

ハ

4b
190
$180 \quad 170$

®

4c

1	1	170					1			,		70	60	50	10			10	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

N

4d

190
180
140
${ }_{\mathrm{f} 1}^{100}(\mathrm{ppm})$ 80 60

$\begin{array}{lllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

1	1									1		70	1			T	1	1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

グ Ni
$\stackrel{\infty}{i}$

4j
$180 \quad 170$ ${ }_{f 1}^{100}(\mathrm{ppm}){ }^{90}$
$70 \quad 60 \quad 50$

ì
$\overbrace{1}^{\infty}$

$\underbrace{\text { mic }}_{i}$
$\underbrace{\text { nin }}_{\substack{m\\}}$

4m
$180 \quad 170 \quad 160 \quad 150$
-
$120 \quad 110$
${ }_{f 1(\mathrm{ppm})}^{100} 90$
$80 \quad 70 \quad 60$

$\underbrace{\infty}$

$\begin{array}{lllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$\underbrace{\text { N/ }}$

$4 q$

\% $\overbrace{}^{\circ}$	ஸ¢ ¢	N
Nへ人	$8:$	¢
W	V	1

4q
$\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

4r

H	\bigcirc		
$\underset{\sim}{2}$	\%	¢్ల్స)	
	\|		\1/1

®

190
$180 \quad 170 \quad 160$
100
$\mathrm{f} 1(\mathrm{ppm})$ 80

[^0]:

 The crude reaction mixture was purified by flash column chromatography (hexane/EtOAc 1:1). Colorless syrup, 87% yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 8.22$ (s, 1H), 7.38 (d, J

