Supporting Information for:

A Phosphetane Catalyzes Deoxygenative Condensation of α-Keto Esters and Carboxylic Acids Via P^{III}/P^V=O Redox Cycling

Wei Zhao, Patrick K. Yan, and Alexander T. Radosevich*

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802

radosevich@psu.edu

I.	General Materials and Methods	S2
II.	Preparation of Phosphorus Compounds	S2
III.	Evaluation of Stoichiometric Reactivity	S5
IV.	General Procedure for Catalytic Reductive Condensation Reactions	S6
V.	Characterization Data for Reductive Condensation Products	S6
VI.	Temperature Dependence Study	S14
VII.	Mechanistic and Control Experiments	S15
VIII.	Crystallographic Details	S16
IX.	Spectra	S27

I. General Materials and Methods

All reagents were purchased from commercial vendors (Sigma-Aldrich, Alfa Aesar, Acros, TCI, or Oakwood Chemical) and used as received unless otherwise noted. 1,2-Dichloroethane was dried over 3 Å molecular sieves for 24 hours prior to use. All other solvents were purified under argon using a Glass Contour Solvent Purification System. ¹H, ¹³C, and ³¹P NMR spectra were recorded with Bruker DPX-300, CDPX-300, AV-360, and DRX-400 spectrometers. ¹H NMR chemical shifts are given in ppm with respect to solvent residual peak (CDCl₃, δ 7.26 ppm), ¹³C{¹H} NMR shifts are given in ppm with respect to CDCl₃ (δ 77.2 ppm), and ³¹P shift are given in ppm with respect to an external sample of 85% H₃PO₄ (δ 0.0 ppm). Coupling constants are reported as *J*-values in Hz. Column chromatography was performed using 230-400 mesh silica gel purchased from Silicycle as the stationary phase. High resolution EI and ESI mass spectra were obtained from the Mass Spectrometry Laboratory at the School of Chemical Sciences, University of Illinois at Urbana-Champaign.

II. Preparation of Phosphorus Compounds

Figure S1. Phosphine *P*-oxides screened in the study.

3-Methyl-1-phenylphospholane 1-oxide (1): Synthesized via reduction of commercially available 3-methyl-1-phenyl-2-phospholene-1-oxide according to literature procedure.¹

5-Phenylbenzo[b]phosphindole 5-oxide (2): Synthesized via oxidation of triphenylphosphine oxide according to literature procedure.^{1b}

2,2,3-Trimethyl-1-phenylphosphetane 1-oxide (3) and 2,2,3,4,4-pentamethyl-1-phenylphosphetane 1-oxide
(4): Synthesized according to literature procedures.²

 ⁽a) O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Angew. Chem. Int. Ed. 2009, 48, 6836. (b) O'Brien, C. J.; Nixon, Z. S.; Holohan, A. J.; Kunkel, S. R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.; Lavigne, F.; Kang, L. J.; Przeworski, K. C. Chem. Eur. J. 2013, 19, 15281.

² Cremer, S. E.; Chorvat, R. J. J. Org. Chem. 1967, 32, 4066.

Figure S2. Synthesis of aminophosphetane *P*-oxide 5.

1-Chloro-2,2,3,4,4-pentamethylphosphetane 1-oxide (**S1**): Synthesized according to literature procedure.³ A round-bottom flask was charged with aluminum chloride (3.60 g, 27.0 mmol) and 15 mL anhydrous methylene chloride and cooled to 0 °C. Phosphorus trichloride (2.35 mL, 27.0 mmol) was then added via syringe at 0 °C, after which 2,4,4-trimethyl-2-pentene (4.20 mL, 27.0 mmol) was added slowly over 15 minutes. The aluminum chloride dissolved as the addition proceeded and a white precipitate formed. After addition was complete, the stirring was continued for an additional hour at 0 °C. Water (15 mL) was then added carefully at 0 °C to quench the reaction. The organic phase was separated. The aqueous layer was washed with an additional portion (15 mL) of methylene chloride. The combined organic phase was dried over anhydrous sodium sulfate. Solvent was removed in vacuo to give product **S1** as a white solid (4.3 g, 83 %, *dr* > *10:1*), which could be used in the next step without further purification. Further recrystallization from hexanes gave **S1** as a single diastereomer for analysis. ¹H NMR (CDCl₃, 360 MHz): δ 1.77 (q, 1H, *J* = 3.3 Hz), 1.42-1.29 (m, 12H), 0.91 (d, 3H, *J* = 7.1 Hz). ¹³C NMR (CDCl₃, 90 MHz): δ 56.9 (d, *J*_{PC} = 56.5 Hz), 7.3 (d, *J*_{PC} = 30.4 Hz). ³¹P{¹H} NMR (CDCl₃, 145 MHz): δ 81.60 (major). MS (ESI) calcd for C₈H₁₇OCIP (M+H) 195.0706 found 195.0707.

2,2,3,4,4-Pentamethyl-1-(pyrrolidin-1-yl)phosphetane 1-oxide (**5**): To a stirred solution of phosphinic chloride **S1** (2.59 g, 13.3 mmol) in dry toluene (13 mL) was added sequentially triethylamine (2.22 mL, 16.0 mmol) and pyrrolidine (1.2 mL, 14.6 mmol). After the addition, the mixture was heated to 60 °C overnight. The reaction was then cooled to room temperature and the precipitate was removed by filtration. The solution was washed with dilute aqueous NaHCO₃ (~ 5% aq. soln.) and dried over anhydrous sodium sulfate. Solvent was evaporated in vacuo and the crude product was recrystallized from hexanes to yield white crystals of **5** as a single stereoisomer (2.47 g, 81 %). ¹H NMR (CDCl₃, 360 MHz): δ 3.25 (q, 4H, *J* = 5.4 Hz), 1.83 (s, 4H), 1.66 (d, 1H, *J* = 4.1 Hz), 1.23 (d, 6H, ³*J*_{PH} = 17.4 Hz), 1.22 (d, 6H, ³*J*_{PH} = 17.3 Hz), 0.84 (d, 3H, ⁴*J*_{PH} = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz):⁴ δ 48.1 (d, *J*_{PC} = 72.8 Hz, P-C(CH₃)₂), 47.8 (d, *J*_{PC} = 1.4 Hz, P-C-C-CH₃), 43.3 (d, *J*_{PC} = 10.2 Hz, P-N-CH₂), 26.8 (d, *J*_{PC} = 3.2 Hz, P-C-(CH₃)₂), 26.2 (d, ¹*J*_{PC} = 5.7 Hz, P-C-(CH₃)₂), 19.2 (d, *J*_{PC} = 2.8 Hz, P-N-C-CH₂), 7.0 (d, *J*_{PC} = 22.3 Hz, P-C-C-CH₃). ³¹P{¹H} NMR (CDCl₃, 145 MHz): δ 58.79 (major). MS (ESI) calcd for C₁₂H₂₅NOP (M+H) 230.1674 found 230.1670.

^{3 (}a) McBride Jr., J. J.; Jungermann, E.; Killheffer, J. V.; Clutter, R. J. J. Org. Chem. **1962**, 27, 1833. (b) Coleman, D.; Edwards, P. G.; Kariuki, B. M.; Newman, P. D. Dalton Trans. **2010**, *39*, 3842.

⁴ Carbon atoms were assigned based on the following references: (a) Gary, G. A; Cremer, S. E. *Tetrahedron Lett.* **1971**, *12*, 3061. (b) Gary, G. A.; Cremer, S. E. *J. Org. Chem.* **1972**, *37*, 3458. (c) Gary, G. A.; Cremer, S. E.; Marsi, K. L. J. Am. Chem. Soc. **1976**, *98*, 2109.

Figure S3. Synthesis of aminophosphetane 10.

1-Chloro-2,2,3,4,4-pentamethylphosphetane (**S2**): Synthesized according to literature procedure.⁵ To a suspension of 7.30 g (54.8 mmol) of anhydrous aluminum chloride in dry methylene chloride was added 5.0 mL (50 mmol) of PCl₃. The mixture was cooled to 0 °C and 7.8 mL (50 mmol) of 2,4,4-trimethyl-2-pentene was added. After stirring for 2 h at rt, a solution of triphenylphosphine (13.1 g, 50 mmol) in methylene chloride was added at 0°C. The mixture was stirred at room temperature for 0.5 h and then diluted with pentane to give a biphasic mixture. The upper layer was transferred to another flask and solvent was removed. The residual air-sensitive oil was purified via reduced pressure kugelrohr distillation (50 °C @ ca. 5 mmHg). Phosphetane **S2** was obtained (7.6 g, 85% yield) as a 5:1 mixture of two diastereomers. ¹H NMR (CDCl₃, 360 MHz, mixture of two diastereomers): δ 2.81 (q, 1H, *J* = 7.1 Hz), 2.21-2.15 (m, 0.4H), 1.29-1.15 (m, 20H), 0.90 (d, 2.3H, *J* = 7.2 Hz), 0.78 (d, 3H, *J* = 7.2 Hz). ³¹P{¹H} NMR (CDCl₃, 145 MHz): δ 169.3 (major), 149.1 (minor).

1-(2,2,3,4,4-Pentamethylphosphetan-1-yl)pyrrolidine (**10**): Synthesized according to literature procedure.⁶ Pyrrolidine (2.46 mL, 30.0 mmol) was added dropwise to a 0 °C solution of **S2** (2.68 g, 15.0 mmol) in anhydrous pentane (30 mL) under nitrogen. The solution was then warmed to room temperature and stirred for additional 2 h. After filtration under nitrogen, the solvent was removed in vacuo giving product **10** as colorless liquid, which was further purified via reduced pressure kugelrohr distillation. Aminophosphetane **10** was obtained (2.27 g, 71 % yield) as a 10:3 mixture of two isomers. Characterization data was consistent with the literature report. ¹H NMR (CDCl₃, 360 MHz, mixture of two diastereomers): δ 3.22-3.14 (m, 4H), 1.66-1.60 (m, 5H), 1.23-1.02 (m, 13H), 0.78-0.68 (m, 4H). ³¹P{¹H} NMR (CDCl₃, 145 MHz): δ 110.5 (minor), 84.1 (major).

⁵ Marinetti, A.; Ricard, L. Tetrahedron 1993, 49, 10291.

⁶ Oram, R. K.; Trippett, S. J. Chem. Soc., Perkin Trans. 1 1973, 1300.

III. Evaluation of Stoichiometric Reactivity ($P^{III} \rightarrow P^V = O$ and $P^V = O \rightarrow P^{III}$)

Figure S4. Stoichiometric reductive condensation of methyl benzoylformate and 4-fluorobenzoic acid.

Stoichiometric reductive condensation of **6** and **7** by phosphorus(III) reagent **10**: 4-Fluorobenzoic acid (100 mg, 0.71 mmol) was dissolved in anhydrous toluene (2.4 mL) in an oven-dried 20 mL vial under nitrogen. Methyl benzoylformate (0.1 mL, 0.68 mmol) was then added to the solution. A solution of phosphorus(III) reagent **10** (160 mg, 0.75 mmol) in toluene (1 mL) was then added in one portion. The reaction mixture was heated to 60 °C for 5 h. Crude ³¹P NMR analysis showed complete conversion from phosphorus(III) (mixture of isomers, 110.5 an 84.1 ppm) to phosphorus(V) oxide (mixture of isomers, 58.0 and 56.3 ppm). After cooling to room temperature the reaction mixture was washed with saturated sodium bicarbonate solution and concentrated in vacuo. The product **8** was isolated by column chromatograph as white solid (180 mg, 92 %).

Figure S5. Reduction of aminophosphetane P-oxide 5 with phenylsilane.

Reduction of aminophosphetane P-oxide **5** *with phenylsilane*. To a solution of aminophosphetane(V) P-oxide **5** (74 mg, 0.32 mmol) and 1,3,5-trimethoxybenzene (internal standard, 54 mg, 0.32 mmol) in d⁸-toluene (1.5 mL) was added phenylsilane (0.03 mL, 0.24 mmol) in one portion. The solution was transferred to a J-Young NMR tube and the reaction was monitored via ³¹P NMR. Formation of aminophosphetane(III) **10** (5.7:1 *dr; major:* 110.5 ppm; *minor:* 84.1 ppm) was observed immediately after addition of phenylsilane, and peaks corresponding to secondary phosphetane(III) **S3** (1.1:1 *dr; major:* 16.3 ppm; *minor:* 13.7 ppm) were also observed. After 3 h, consumption of **5** was complete, ca. 67% of **10** and 33% of **S3** were observed based on ¹H NMR. With greater equivalencies of phenylsilane, the reaction continues exclusively to **S3**.

IV. General Procedure for Catalytic Reductive Condensation Reactions

General procedure: Carboxylic acid (1.2 equiv), catalyst **5** (15 or 20 mol%), solvent (toluene or 1,2-dichloroethane, 0.2 M), α -keto ester substrate (1.0 equiv), and phenylsilane (1.2 equiv) were added to a 20 mL vial sequentially. The vial was then sealed and heated to 80 °C with monitoring by TLC until completion (typically 8 – 20 h). After cooling to room temperature, a saturated aqueous sodium bicarbonate solution was added. The resulting biphasic mixture was separated and the aqueous layer was washed with additional methylene chloride. The combined organic layers were dried over anhydrous sodium sulfate and then concentrated in vacuo to a crude residue. The product was then isolated via column chromatography (silica gel, hexanes: ethyl acetate = 10:1).

V. Characterization Data for Reductive Condensation Products

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 4-fluorobenzoate (8): ¹H NMR (CDCl₃, 360 MHz): δ 8.17-8.13 (m, 2H), 7.59-7.56 (m, 2H), 7.47-7.42 (m, 3H), 7.15-7.10 (m, 2H), 6.16 (s, 1H), 3.75 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.3, 166.2 (d, ¹*J*_{CF} = 253.1 Hz), 165.0, 140.0, 132.7 (d, ³*J*_{CF} = 9.6 Hz), 129.5, 129.0, 127.8, 125.6 (d, ⁴*J*_{CF} = 2.9 Hz), 115.8 (d, ²*J*_{CF} = 21.8 Hz), 75.1, 52.8. MS (ESI) calcd for C₁₆H₁₃FO₄Na (M+Na) 311.0696 found 311.0696.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 4-*methoxybenzoate* (**11**): ¹H NMR (CDCl₃, 300 MHz): δ 8.11-8.08 (dd, 2H, J = 7.0 Hz, J = 1.9 Hz), 7.60-7.57 (m, 2H), 7.46-7.40 (m, 3H), 6.95-6.92 (dd, 2H, J = 7.1 Hz, J = 1.8 Hz), 6.15 (s, 1H), 3.85 (s, 3H), 3.75 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.6, 165.7, 163.9, 134.3, 132.2, 129.3, 128.9, 127.7, 121.7, 113.8, 74.7, 55.5, 52.7. MS (ESI) calcd for C₁₇H₁₆O₅Na (M+Na) 323.0895 found 323.0896.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 4-(*tert-butyl*)*benzoate* (**12**): ¹H NMR (CDCl₃, 360 MHz): δ 8.08 (d, 2H, *J* = 8.7 Hz), 7.61-7.59 (m, 2H), 7.48-7.40 (m, 5H), 6.18 (s, 1H), 3.76 (s, 3H), 1.35 (s, 9H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.5, 166.0, 157.3, 134.2, 130.0, 129.3, 128.9, 127.7, 126.6, 125.6, 74.8, 52.7, 35.3, 31.2. MS (ESI) calcd for C₂₀H₂₂O₄Na (M+Na) 349.1416 found 349.1414.

2-*Methoxy*-2-*oxo*-1-*phenylethylbenzoate* (**13**): ¹H NMR (CDCl₃, 300 MHz): δ 8.16-8.13 (m, 2H), 7.62-7.59 (m, 3H), 7.49-7.43 (m, 5H), 6.19 (s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.4, 166.0, 134.0, 133.6, 130.1, 129.4, 129.3, 129.0, 128.6, 127.8, 75.0, 52.8. MS (ESI) calcd for C₁₆H₁₅O₄ (M+H) 271.0970 found 271.0970.

2-Methoxy-2-oxo-1-phenylethyl 4-nitrobenzoate (14): ¹H NMR (CDCl₃, 300 MHz): δ 8.33, (s, 4H), 7.59-7.56 (m, 2H), 7.49-7.44 (m, 3H), 6.20 (s, 1H), 3.78 (s. 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 168.9, 164.1, 151.0, 134.7, 133.4, 131.2, 129.8, 129.2, 127.9, 123.7, 75.6, 53.0. MS (ESI) calcd for C₁₆H₁₃NO₆Na (M+Na) 338.0641 found 338.0641.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 1-*naphthoate* (**15**): ¹H NMR (CDCl₃, 300 MHz): δ 8.99 (d, 1H, J = 8.6 Hz), 8.37 (d, 1H, J = 7.3 Hz), 8.06 (d, 1H, J = 8.2 Hz), 7.90 (d, 1H, J = 8.0 Hz), 7.65-7.43 (m, 8H), 6.30 (s, 1H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.6, 166.9, 134.1, 134.0, 133.9, 131.6, 131.0, 129.4, 129.0, 128.7, 128.1, 127.8, 126.4, 126.1, 125.8, 124.6, 75.1, 52.9. MS (ESI) calcd for C₂₀H₁₇O₄ (M+H) 321.1127 found 321.1129.

2-*Methoxy*-2-*oxo*-1-*phenylethyl thiophene*-2-*carboxylate* (**16**): ¹H NMR (CDCl₃, 300 MHz): δ 7.91 (t, 1H, *J* = 1.4 Hz), 7.61-7.56 (m, 3H), 7.43-7.42 (m, 3H), 7.12 (t, 1H, *J* = 3.3 Hz), 6.15 (s, 1H), 3.75 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.2, 161.5, 134.5, 133.8, 133.4, 132.6, 129.4, 128.9, 128.0, 127.7, 74.9, 52.8. MS (ESI) calcd for C₁₄H₁₃SO₄ (M+H) 277.0535 found 277.0531.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 4-*methylpentanoate* (**17**): ¹H NMR (CDCl₃, 300 MHz): δ 7.49-7.36 (m, 5H), 5.94 (s, 1H), 3.71 (s, 3H), 2.56-2.38 (m, 2H), 1.64-1.55 (m, 3H), 0.93-0.90 (m, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 173.4, 169.5, 134.0, 129.3, 128.9, 127.7, 74.3, 52.6, 33.6, 32.1, 27.7, 22.3. MS (ESI) calcd for C₁₅H₂₀O₄Na (M+Na) 287.1259 found 287.1262.

2-*Methoxy*-2-*oxo*-1-*phenylethyl cinnamate* (**18**): ¹H NMR (CDCl₃, 300 MHz): δ 7.80 (d, 1H, *J* = 16.0 Hz), 7.56-7.53 (m, 4H), 7.45-7.39 (m, 6H), 6.58 (d, 1H, *J* = 16.0 Hz), 6.09 (s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.5, 166.3, 146.5, 134.3, 134.0, 130.7, 129.4, 129.0, 129.0, 128.4, 127.8, 117.0, 74.6, 52.8. MS (ESI) calcd for C₁₈H₁₇O₄ (M+H) 297.1127 found 297.1125.

Methyl 2-(2-(*methylthio*)*acetoxy*)-2-*phenylacetate* (**19**): ¹H NMR (CDCl₃, 300 MHz): δ 7.49-7.45 (m, 2H), 7.41-7.38 (m, 3H), 5.97 (s, 1H), 3.73 (s, 3H), 3.33 (s, 2H), 2.25 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.8, 169.1, 133.5, 129.5, 129.0, 127.8, 75.1, 52.8, 35.5, 16.4. MS (ESI) calcd for C₁₂H₁₅SO₄ (M+H) 255.0691 found 255.0689.

2-*Methoxy*-2-*oxo*-1-*phenylethyl thiazole*-4-*carboxylate* (**20**): ¹H NMR (CDCl₃, 300 MHz): δ 8.86 (d, 1H, *J* = 2.0 Hz), 8.35 (d, 1H, *J* = 2.1 Hz), 7.58-7.55 (m, 2H), 7.43-7.39 (m, 3H), 6.21 (s, 1H), 3.74 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.0, 160.4, 153.8, 147.0, 133.6, 129.5, 129.0, 128.6, 127.9, 75.1, 52.9. MS (ESI) calcd for C₁₃H₁₂NO₄S (M+H) 278.0487 found 278.0478.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 4-*aminobenzoate* (**21**): ¹H NMR (CDCl₃, 300 MHz): δ 7.93 (d, 2H, *J* = 8.7 Hz), 7.59-7.56 (m, 2H), 7.43-7.41 (m, 3H), 6.63 (d, 2H, *J* = 8.7 Hz), 6.12 (s, 1H), 3.74 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.9, 166.0, 151.5, 134.5, 132.3, 129.2, 128.9, 127.7, 118.6, 113.9, 74.5, 52.7. MS (ESI) calcd for C₁₆H₁₆NO₄ (M+H) 286.1079 found 286.1080.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 3-(1*H*-*indol*-3-*yl*)*propanoate* (**22**): ¹H NMR (CDCl₃, 300 MHz): δ 8.01 (br, 1H), 7.57 (d, 1H, *J* = 7.8 Hz), 7.45-7.29 (m, 6H), 7.21-7.07 (m, 2H), 6.95 (d, 1H, *J* = 2.2 Hz), 5.95 (s, 1H), 3.69 (s, 3H), 3.14 (t, 2H, *J* = 7.6 Hz), 2.89-2.83 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ 172.9, 169.6, 136.3, 133.8, 129.3, 128.9, 127.7, 127.2, 122.1, 121.6, 119.4, 118.7, 114.6, 111.3, 74.5, 52.7, 34.7, 20.5. MS (ESI) calcd for C₂₀H₂₀NO₄ (M+H) 338.1392 found 338.1380.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 4-*formylbenzoate* (**23**): ¹H NMR (CDCl₃, 360 MHz): δ 10.11 (s, 1H), 8.28 (d, 2H, *J* = 8.2 Hz), 7.98-7.96 (m, 2H), 7.59-7.56 (m, 2H), 7.46-7.43 (m, 3H), 6.18 (s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 191.7, 169.1 165.0, 139.6, 134.3, 133.6, 130.7, 129.7, 127.8, 75.4, 53.0. MS (ESI) calcd for C₁₇H₁₄O₅Na (M+Na) 321.0739 found 321.0738.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 2-*acetylbenzoate* (**24**): ¹H NMR (CDCl₃, 360 MHz): δ 8.01-7.99 (m, 1H), 7.61-7.57 (m, 1H), 7.54-7.50 (m, 3H), 7.42-7.40 (m, 4H), 6.14 (s, 1H), 3.76 (s, 3H), 2.50 (s, 3H). ¹³C NMR (CDCl₃, 90 MHz): δ 203.1, 169.1, 166.2, 143.3, 133.5, 132.7, 130.3, 130.2, 129.5, 129.0, 127.9, 127.8, 126.7, 75.6, 52.9, 30.3. MS (ESI) calcd for C₁₈H₁₇O₅ (M+H) 313.1076 found 313.1073.

2-*Methoxy*-2-*oxo*-1-*phenylethyl* 4-(*chloromethyl*)*benzoate* (**25**): ¹H NMR (CDCl₃, 360 MHz): δ 8.12 (d, 2H, J = 8.3 Hz), 7.59-7.57 (m, 2H), 7.49-7.43 (m, 5H), 6.17 (s, 1H), 4.62 (s, 2H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.3, 165.5, 143.0, 133.9, 130.5, 129.5, 129.3, 129.0, 128.7, 127.8, 75.1, 52.9, 45.4. MS (ESI) calcd for C₁₇H₁₆ClO₄ (M+H) 319.0737 found 319.0726.

1-(4-Chlorophenyl)-2-methoxy-2-oxoethyl 4-fluorobenzoate (**26**): ¹H NMR (CDCl₃, 300 MHz): δ 8.15-8.11 (m, 2H), 7.52-7.50 (m, 2H), 7.43-7.39 (m, 3H), 7.14 (t, 2H, *J* = 8.7 Hz), 6.12 (s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.3, 166.6 (d, ¹*J*_{CF} = 253.6 Hz), 165.1, 135.8, 133.0 (d, ³*J*_{CF} = 9.5 Hz), 132.7, 129.6, 129.4, 125.7 (d, ⁴*J*_{CF} = 2.9 Hz), 116.2 (d, ²*J*_{CF} = 22.0 Hz), 74.6, 53.3. MS (ESI) calcd for C₁₆H₁₂ClFO₄Na (M+Na) 345.0306 found 345.0306.

1-(4-Bromophenyl)-2-methoxy-2-oxoethyl 4-fluorobenzoate (**27**): ¹H NMR (CDCl₃, 400 MHz): δ 8.14-8.10 (m, 2H), 7.56 (d, 2H, *J* = 8.4 Hz), 7.44 (d, 2H, *J* = 8.4 Hz), 7.15-7.11 (m, 2H), 6.10 (s, 1H), 3.75 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 168.9, 166.3 (d, ¹*J*_{CF} = 253.6 Hz), 164.9, 133.0, 132.7 (d, ³*J*_{CF} = 9.5 Hz), 132.3, 129.4, 125.4 (d, ⁴*J*_{CF} = 2.9 Hz), 123.8, 115.9 (d, ²*J*_{CF} = 21.9 Hz), 74.4, 53.0. MS (ESI) calcd for C₁₆H₁₂BrFO₄Na (M+Na) 388.9801 found 388.9804.

1-(4-Cyanophenyl)-2-methoxy-2-oxoethyl 4-fluorobenzoate (**28**): ¹H NMR (CDCl₃, 400 MHz): δ 8.16-8.12 (m, 2H), 7.73 (d, 2H, *J* = 8.2 Hz), 7.70 (d, 2H, *J* = 8.3 Hz), 7.18-7.13 (m, 2H), 6.21 (s, 1H), 3.77 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 168.3, 166.4 (d, ¹*J*_{CF} = 254.0 Hz), 164.6, 138.9, 132.8 (d, ³*J*_{CF} = 8.8 Hz), 128.3, 125.1 (d, ⁴*J*_{CF} = 3.0 Hz), 118.3, 116.0 (d, ²*J*_{CF} = 21.9 Hz), 113.5, 74.1, 53.2. MS (ESI) calcd for C₁₇H₁₃FNO₄ (M+H) 314.0829 found 314.0835.

2-*Methoxy*-2-*oxo*-1-(*p*-*tolyl*)*ethyl* 4-*fluorobenzoate* (**29**): ¹H NMR (CDCl₃, 300 MHz): δ 8.13 (q, 2H, *J* = 4.8 Hz), 7.45 (d, 2H, *J* = 8.0 Hz), 7.24 (d, 2H, *J* = 8.7 Hz), 7.12 (t, 2H, *J* = 8.7 Hz), 6.11 (s, 1H), 3.75 (s, 3H), 2.38 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.5, 166.2 (d, ¹*J*_{CF} = 254.0 Hz), 165.1, 139.6, 132.7 (d, ³*J*_{CF} = 9.4 Hz), 131.0, 129.7, 127.8, 125.6 (d, ⁴*J*_{CF} = 2.8 Hz), 115.8 (d, ²*J*_{CF} = 22.0 Hz), 75.0, 52.8, 21.4. MS (ESI) calcd for C₁₇H₁₅FO₄Na (M+Na) 325.0852 found 325.0851.

2-*Methoxy*-2-*oxo*-1-(3-(*trifluoromethyl*)*phenyl*)*ethyl* 4-*fluorobenzoate* (**30**): ¹H NMR (CDCl₃, 300 MHz): δ 8.07-8.02 (m, 2H), 7.74 (s, 1H), 7.68 (d, 1H, *J* = 7.5 Hz), 7.59 (d, 1H, *J* = 7.6 Hz), 7.49 (d, 1H, *J* = 7.7 Hz), 7.08-7.02 (m, 2H), 6.12 (s, 1H), 3.68 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 168.7, 166.3 (d, ¹*J*_{CF} = 253.9 Hz), 164.8, 135.0, 132.8 (d, ³*J*_{CF} = 9.5 Hz), 131.5 (d, *J*_{CF} = 32.6 Hz), 131.1, 129.6, 126.4 (q, *J*_{CF} = 3.6 Hz), 125.2, (d, ⁴*J*_{CF} = 2.9 Hz), 124.5 (q, *J*_{CF} = 3.7 Hz), 123.9 (d, *J*_{CF} = 271.0 Hz), 116.0 (²*J*_{CF} = 21.9 Hz), 74.3, 53.1. MS (ESI) calcd for C₁₇H₁₂F₄O₄Na (M+Na) 379.0569 found 379.0568.

1-(2-Bromophenyl)-2-methoxy-2-oxoethyl 4-fluorobenzoate (**31**): ¹H NMR (CDCl₃, 300 MHz): δ 8.13 (q, 2H, *J* = 4.8 Hz), 7.45 (d, 2H, *J* = 8.0 Hz), 7.24 (d, 2H, *J* = 8.7 Hz), 7.12 (t, 2H, *J* = 8.7 Hz), 6.11 (s, 1H), 3.75 (s, 3H), 2.38 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 168.9, 166.3 (d, ¹*J*_{CF} = 253.4 Hz), 164.8, 134.0, 133.6, 132.8 (d, ³*J*_{CF} = 9.3 Hz), 131.0, 129.9, 128.1, 125.4 (d, ⁴*J*_{CF} = 2.9 Hz), 124.4, 115.8 (d, ²*J*_{CF} = 22.1 Hz), 74.0, 53.0. MS (ESI) calcd for C₁₆H₁₂BrFO₄Na (M+Na) 388.9801 found 388.9800.

2-*Ethoxy*-2-*oxo*-1-(*thiophen*-2-*yl*)*ethyl* 4-*fluorobenzoate* (**32**): ¹H NMR (CDCl₃, 300 MHz): δ 8.13 (t, 2H, *J* = 6.9 Hz), 7.40 (d, 1H, *J* = 5.0 Hz), 7.12 (t, 2H, *J* = 8.5 Hz), 7.05 (d, 1H, *J* = 3.9 Hz), 6.39 (s, 1H), 4.32-4.22 (m, 2H), 1.27 (t, 3H, *J* = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 168.0, 166.3 (d, ¹*J*_{CF} = 253.2 Hz), 164.8, 135.6, 132.8 (d, ³*J*_{CF} = 9.4 Hz), 128.0, 127.3, 127.2, 125.4 (d, ⁴*J*_{CF} = 2.9 Hz), 115.8 (d, ²*J*_{CF} = 21.9 Hz), 71.0, 62.3, 14.2. MS (ESI) calcd for C₁₅H₁₃SFO₄Na (M+Na) 331.0416 found 331.0418.

2-*Ethoxy*-2-*oxo*-1-(*pyridin*-2-*yl*)*ethyl* 4-*fluorobenzoate* (**33**): ¹H NMR (CDCl₃, 300 MHz): δ 8.66 (d, 1H, *J* = 4.8 Hz), 8.17-8.12 (m, 2H), 7.79-7.78 (m, 1H), 7.58 (d, 1H, *J* = 7.9 Hz), 7.35-7.33 (m, 1H), 7.15-7.09 (m, 2H), 6.30 (s, 1H), 4.32-4.25 (m, 2H), 1.25 (t, 3H, *J* = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 168.0, 166.2 (d, ¹*J*_{CF} = 253.2 Hz), 164.8, 153.9, 150.0, 137.3, 132.8 (d, ³*J*_{CF} = 9.4 Hz), 125.5, 124.1, 122.9, 115.8 (d, ²*J*_{CF} = 22.0 Hz), 76.2, 62.2, 14.2. MS (ESI) calcd for C₁₆H₁₅FNO₄ (M+H) 304.0985 found 304.0981.

1-Methoxy-1-oxopropan-2-yl 4-fluorobenzoate (**34**): ¹H NMR (CDCl₃, 300 MHz): δ 8.13-8.08 (m, 2H), 7.16-7.09 (m, 2H), 5.35-5.28 (m, 1H), 3.77 (s, 3H), 1.63 (t, 3H, *J* = 6.9 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 171.3, 166.1 (d, ¹*J*_{CF} = 252.8 Hz), 165.1, 132.6 (d, ³*J*_{CF} = 9.3 Hz), 125.8 (d, ⁴*J*_{CF} = 2.9 Hz), 115.7 (d, ²*J*_{CF} = 22.0 Hz), 69.3, 52.6, 17.2. MS (ESI) calcd for C₁₁H₁₁FO₄Na (M+Na) 249.0539 found 249.0530.

1-Ethoxy-1-oxo-4-phenylbutan-2-yl 4-(tert-butyl)benzoate (**35**): ¹H NMR (CDCl₃, 360 MHz): δ 8.02 (d, 2H, *J* = 8.5 Hz), 7.49 (d, 2H, *J* = 8.5 Hz), 7.30 (t, 2H, 7.4 Hz), 7.22 (t, 3H, 3.8 Hz), 5.22 (t, 1H, *J* = 6.4 Hz), 4.22 (q, 2H, *J* = 7.1 Hz), 2.85 (dt, 2H, *J* = 8.0 Hz, *J* = 2.0 Hz), 2.31 (dq, 2H, *J* = 7.5 Hz, *J* = 2.8 Hz), 1.36 (s, 9H), 1.27 (t, 3H, *J* = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 170.3, 166.1, 157.2, 140.7, 129.9, 128.7, 128.6, 126.8, 126.4, 125.6, 72.1, 61.5, 35.3, 33.1, 31.6, 31.2, 14.3. MS (ESI) calcd for C₂₃H₂₉O₄ (M+H) 369.2066 found 369.2063.

Ethyl 6-oxotetrahydro-2H-pyran-2-carboxylate (**36**): ¹H NMR (CDCl₃, 400 MHz): δ 4.93 (t, 1H, *J* = 5.2 Hz), 4.31-4.20 (m, 2H), 2.66-2.50 (m, 2H), 1.29 (t, 3H, *J* = 7.1 Hz). ¹³C NMR (CDCl₃, 75 MHz): δ 169.8, 169.3, 76.7, 62.1, 29.6, 25.0, 17.6, 14.2. MS (ESI) calcd for C₈H₁₃O₄ (M+H) 173.0814 found 173.0815.

Methyl 4-benzyl-5-oxotetrahydrofuran-2-carboxylate (**37**): Major isomer ¹H NMR (CDCl₃, 400 MHz): δ 7.33-7.17 (m, 5H), 4.79 (t, 1H, *J* = 7.5 Hz), 3.78 (s, 3H), 3.30 (dd, 1H, *J* = 4.1 Hz, *J* = 13.9 Hz), 2.99-2.90 (m, 1H), 2.74 (dd, 1H, *J* = 10.2 Hz, *J* = 13.9 Hz), 2.60-2.52 (m, 1H), 2.07-1.99 (m, 1H). ¹³C NMR (CDCl₃, 126 MHz): δ 176.7, 169.9, 138.1, 128.9, 128.9, 127.0, 74.3, 52.9, 41.5, 36.4, 31.6. Minor isomer ¹H NMR (CDCl₃, 360 MHz): δ 7.34-7.18 (m, 5H), 4.79, (dd, 1H, *J* = 2.8 Hz, *J* = 8.5 Hz), 3.77 (s, 3H), 3.25 (dd, 1H, *J* = 4.0 Hz, *J* = 13.8 Hz), 3.04-2.96 (m, 1H), 2.77 (dd, 1H, *J* = 9.4 Hz, *J* = 13.8 Hz), 2.37-2.24 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ 177.5, 170.5, 137.9, 129.0, 129.0, 127.1, 74.0, 52.9, 39.5, 36.3, 31.7. MS (ESI): *submitted*. The relative stereochemistry of the major isomer was assigned as *trans* on the basis of a NOESY experiment.

VI. Temperature Dependence Study.

4-Fluorobenzoic acid (47 mg, 0.34 mmol), catalyst **5** (13 mg, 20 mol%), anhydrous toluene(1.4 mL, 0.2 M), methyl benzoylformate (0.04 ml, 0.28 mmol) and phenylsilane (0.04 mL, 0.34 mmol) were added to an oven-dried 20 mL vial sequentially. The vial was then sealed and placed at designated temperatures (100 °C, 75 °C, 50 °C, and room temperature ~ 24 °C) until completed (reaction was monitored by TLC). Saturated aqueous sodium bicarbonate was then added to the reaction mixture. Layers were separated and the aqueous layer was washed with methylene chloride. The combined organic layer was dried over anhydrous sodium sulfate and was concentrated *in vacuo*. Products **8** and **9** were then isolated via column chromatograph (silica gel, hexanes: ethyl acetate = 10:1).

Ph Co_2Me^+ Ar OH^- 1.0 equiv 1.2 equiv 6 7 Ar = p-FC ₆ H	O P-N PhSiH ₃ (1.2 ¢ PhSiH ₃ (1.2 ¢ PhMe (0.2 24 °C < T < 1 4	$\begin{array}{c} 0 \\ \hline 20 \\ \hline mol\%) \\ \hline mol\%) \\ M) \\ 00 \\ \circ C \\ 8 \end{array} \xrightarrow{O} \\ O \\ Ar \\ H \\ CO_2 Me \\ B \\ $	OH Ph┿CO₂Me 9	
Entry	T (°C)	Yield ^a (%)		
Lifti y	Γ(C)	8	9	
1	100	84	7	
2	75	73	22	
3	50	48	43	
4	24	18	74	

^a Yields are for isolated products.

Figure 2 (from text). Correlation between product selectivity and temperature over the range $24 \text{ }^{\circ}\text{C} < T < 100 \text{ }^{\circ}\text{C}$ (see Table 4). Linear fit: $\ln[(8/9)/T] = -5.26\text{ }^{-1} + 10.59$, $\text{R}^2 = 0.995$.

VII. Mechanistic Control Experiments

Control experiment I - Attempted reaction with methyl mandelate, omitting 5: 4-Fluorobenzoic acid (68 mg, 0.49 mmol)%) and methyl mandelate (67 mg, 0.40 mmol) were dissolved in dry 1,2-dichloroethane in an oven-dried 20 mL vial. Phenylsilane (0.06 mL, 0.49 mmol) was added to the mixture in one portion. The vial was then sealed and heated to 80 °C for 20 hours. After cooling to room temperature, the crude reaction mixture was analyzed by TLC and ¹H NMR. No condensation product was observed.

Control experiment II – *Attempted reaction with methyl mandelate, including 5:* 4-Fluorobenzoic acid (68 mg, 0.49 mmol)%), aminophosphetane *P*-oxide **5** (19 mg, 20 mmol%) and methyl mandelate (67 mg, 0.40 mmol) were dissolved in dry 1,2-dichloroethane in an oven-dried 20 mL vial. Phenylsilane (0.06 mL, 0.49 mmol) was added to the mixture in one portion. The vial was then sealed and heated to 80 °C for 20 hours. After cooling to room temperature, the crude reaction mixture was analyzed by TLC and ¹H NMR. No condensation product was observed.

$$\begin{array}{c} & & & & & \\ & & & & \\ Ph & & & CO_2Me^+ & Ar^- & OH \\ 1.0 \ equiv \\ & & & 1.2 \ equiv \\ & & & & \\ 6 & & & 7 \\ & & & & \\ & & & & \\ Ar = p-FC_eH_4 \end{array} \xrightarrow[]{} \begin{array}{c} & & & \\ PhSiH_3 \ (1.2 \ equiv) \\ PhMe \ (0.2 \ M) \\ & & & \\ PhMe \ (0.2 \ M) \\ & & & \\ \end{array} \xrightarrow[]{} \begin{array}{c} & & \\ Ph \\ H \\ CO_2Me \\ Ph \\ CO_2Me \\ Ph \\ H \\ CO_2Me \\ Ph \\ CO_2Me \\ Ph$$

Control experiment III – Temperature swing: 4-Fluorobenzoic acid (108 mg, 0.77 mmol), catalyst **5** (32 mg, 20 mol%), anhydrous toluene (3.5 mL, 0.2 M), methyl benzoylformate (0.10 ml, 0.70 mmol) and phenylsilane (0.1 mL, 0.84 mmol) were added to an oven-dried 20 mL vial sequentially. The vial was then sealed and stirred at room temperature until methyl benzoylformate was completely consumed (ca. 5 hours as monitored by TLC). The reaction mixture was separated into two portions. **Portion A**: Saturated aqueous sodium bicarbonate was added to reaction mixture. Layers were separated and the aqueous layer was washed with methylene chloride. The combined organic layer was dried over anhydrous sodium sulfate and was concentrated in vacuo. Products **8** (16 mg, 10 %) and **9** (48 mg, 41 %) were then isolated via column chromatograph (silica gel, hexanes: ethyl acetate = 10:1). **Portion B**: The vial was sealed and heated to 100 °C overnight. After cooling to room temperature, the reaction was worked up in the same procedure as portion A, giving product **8** (14 mg, 9 %) and **9** (41 mg, 35 %).

VIII. Crystallographic Details.

Figure S6. Thermal ellipsoid plot for S1 depicted at the 50% probability level.

A colorless block shaped crystal of **S1** (C8 H16 Cl O P) with approximate dimensions 0.11 x 0.13 x 0.28 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 203(2) K, cooled by Rigaku-MSC X-Stream 2000, on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoK α fine-focus sealed tube ($\lambda = 0.71073$ Å) operated at 1600 watts power (50 kV, 32 mA). The detector was placed at a distance of 5.8 cm from the crystal.

A total of 1850 frames were collected with a scan width of 0.3° in ω and an exposure time of 10 seconds/frame. The total data collection time was about 8 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Monoclinic unit cell yielded a total of 9388 reflections to a maximum θ angle of 28.29° (0.90 Å resolution), of which 2534 were independent, completeness = 99.2%, R_{int} = 0.0217, R_{sig} = 0.0223 and 2271 were greater than $2\sigma(I)$. The final cell constants: a = 7.7635(11)Å, b = 6.8938(9)Å, c = 19.576(3)Å, $\alpha = 90^{\circ}$, $\beta = 101.058(2)^{\circ}$, $\gamma = 90^{\circ}$, volume = $1028.3(2)Å^3$, are based upon the refinement of the XYZ-centroids of 4175 reflections above $20\sigma(I)$ with 2.680° < θ <28.112°. Analysis of the data showed

negligible decay during data collection. Data were corrected for absorption effects using the multiscan technique (SADABS). The ratio of minimum to maximum apparent transmission was 0.8128.

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software Package, using the space group P2(1)/n, with Z = 4 for the formula unit, C8 H16 Cl O P. The hydrogen atoms were placed geometrically and rode their parent atoms. The final anisotropic full-matrix least-squares refinement on F^2 with 106 variables converged at R1 = 3.46%, for the observed data and wR2 = 9.80% for all data. The goodness-of-fit was 0.913. The largest peak on the final difference map was 0.405 e⁻/Å³ and the largest hole was -0.365 e⁻/Å³. Based on the final model, the calculated density of the crystal is 1.257 g/cm³ and F(000) amounts to 416 electrons.

Table S1. Sample and crystal data for	or S1 .
---------------------------------------	----------------

Identification code	S1	
Empirical formula	C8 H16 C1 O P	
Formula weight	194.63	
Temperature	203(2) K	
Wavelength	0.71073 Å	
Crystal size	0.28 x 0.13 x 0.11 mm	
Crystal habit	colorless block	
Crystal system	rystal system Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 7.7635(11) Å	$\alpha = 90^{\circ}$
	b = 6.8938(9) Å	$\beta = 101.058(2)$
	c = 19.576(3) Å	$\gamma=90^\circ$
Volume	1028.3(2) Å ³	
Z	4	
Density (calculated)	1.257 g/cm ³	
Absorption coefficient	0.476 mm ⁻¹	
F(000)	416	

	Х	У	Z	U(eq)
C1	0.96836(18)	0.5754(2)	0.15989(7)	0.0267(3)
C2	0.88463(18)	0.7841(2)	0.14958(8)	0.0285(3)
C3	0.74557(18)	0.7532(2)	0.08040(7)	0.0259(3)
C4	0.9924(2)	0.5013(3)	0.23448(8)	0.0400(4)
C5	1.1382(2)	0.5479(3)	0.13247(9)	0.0400(4)
C6	1.0107(3)	0.9536(3)	0.15054(12)	0.0542(5)
C7	0.8064(2)	0.8146(3)	0.01367(8)	0.0381(4)
C8	0.5662(2)	0.8397(2)	0.08210(9)	0.0361(4)
Cl1	0.59571(5)	0.40270(7)	0.15012(2)	0.04555(14)
01	0.79580(16)	0.35311(17)	0.03999(6)	0.0388(3)
P1	0.78055(5)	0.49317(5)	0.095097(19)	0.02506(12)

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **S1.** U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S3. Bond lengths (Å) for S1.

C1-C4	1.525(2)	C1-C5	1.528(2)
C1-C2	1.576(2)	C1-P1	1.8294(14)
C2-C6	1.522(2)	C2-C3	1.5762(19)
C2-H2	0.9900	C3-C8	1.521(2)
C3-C7	1.531(2)	C3-P1	1.8276(15)
C4-H4A	0.9700	C4-H4B	0.9700
C4-H4C	0.9700	C5-H5A	0.9700
C5-H5B	0.9700	C5-H5C	0.9700
C6-H6A	0.9700	C6-H6B	0.9700
C6-H6C	0.9700	C7-H7A	0.9700
C7-H7B	0.9700	C7-H7C	0.9700
C8-H8A	0.9700	C8-H8B	0.9700
C8-H8C	0.9700	Cl1-P1	2.0498(6)
O1-P1	1.4694(11)		

Table S4. Bond angles (°) for S1.

C4-C1-C5	109.85(13)	C4-C1-C2	113.60(12)
C5-C1-C2	115.53(13)	C4-C1-P1	119.68(12)
C5-C1-P1	110.17(11)	C2-C1-P1	86.55(8)
C6-C2-C3	116.55(13)	C6-C2-C1	116.81(13)
C3-C2-C1	100.63(10)	C6-C2-H2	107.4
С3-С2-Н2	107.4	C1-C2-H2	107.4
C8-C3-C7	110.10(13)	C8-C3-C2	114.04(12)
C7-C3-C2	115.04(12)	C8-C3-P1	119.34(11)
C7-C3-P1	110.16(10)	C2-C3-P1	86.60(8)
C1-C4-H4A	109.5	C1-C4-H4B	109.5
H4A-C4-H4B	109.5	C1-C4-H4C	109.5
H4A-C4-H4C	109.5	H4B-C4-H4C	109.5
C1-C5-H5A	109.5	C1-C5-H5B	109.5
H5A-C5-H5B	109.5	C1-C5-H5C	109.5
H5A-C5-H5C	109.5	H5B-C5-H5C	109.5
C2-C6-H6A	109.5	C2-C6-H6B	109.5
H6A-C6-H6B	109.5	C2-C6-H6C	109.5
H6A-C6-H6C	109.5	H6B-C6-H6C	109.5
С3-С7-Н7А	109.5	C3-C7-H7B	109.5
H7A-C7-H7B	109.5	C3-C7-H7C	109.5
H7A-C7-H7C	109.5	H7B-C7-H7C	109.5
C3-C8-H8A	109.5	C3-C8-H8B	109.5
H8A-C8-H8B	109.5	C3-C8-H8C	109.5
H8A-C8-H8C	109.5	H8B-C8-H8C	109.5
O1-P1-C3	124.02(7)	O1-P1-C1	123.15(7)
C3-P1-C1	83.10(6)	O1-P1-Cl1	110.42(6)
C3-P1-Cl1	106.46(5)	C1-P1-Cl1	105.97(5)

C4-C1-C2-C6	97.36(18)	C5-C1-C2-C6	-30.91(19)
P1-C1-C2-C6	-141.65(14)	C4-C1-C2-C3	-135.45(13)
C5-C1-C2-C3	96.28(14)	P1-C1-C2-C3	-14.46(10)
C6-C2-C3-C8	-97.44(18)	C1-C2-C3-C8	135.20(13)
C6-C2-C3-C7	31.1(2)	C1-C2-C3-C7	-96.21(14)
C6-C2-C3-P1	141.83(14)	C1-C2-C3-P1	14.47(10)
C8-C3-P1-O1	106.28(13)	C7-C3-P1-O1	-22.50(14)
C2-C3-P1-O1	-137.96(9)	C8-C3-P1-C1	-128.07(12)
C7-C3-P1-C1	103.16(11)	C2-C3-P1-C1	-12.30(9)
C8-C3-P1-Cl1	-23.40(12)	C7-C3-P1-Cl1	-152.17(9)
C2-C3-P1-Cl1	92.37(8)	C4-C1-P1-O1	-105.95(13)
C5-C1-P1-O1	22.78(15)	C2-C1-P1-O1	138.75(9)
C4-C1-P1-C3	127.60(13)	C5-C1-P1-C3	-103.66(12)
C2-C1-P1-C3	12.31(9)	C4-C1-P1-Cl1	22.40(13)
C5-C1-P1-Cl1	151.14(11)	C2-C1-P1-Cl1	-92.89(8)

 Table S5. Torsion angles (°) for S1.

Table S6. Anisotropic atomic displacement parameters (Å²) for **S1.** The anisotropic atomic displacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0248(6)	0.0288(7)	0.0257(7)	-0.0004(5)	0.0025(5)	0.0033(5)
C2	0.0288(7)	0.0268(7)	0.0281(7)	-0.0039(5)	0.0004(5)	0.0018(5)
C3	0.0272(6)	0.0234(6)	0.0258(6)	-0.0006(5)	0.0020(5)	0.0024(5)
C4	0.0454(9)	0.0452(10)	0.0270(8)	0.0030(6)	0.0005(7)	0.0094(7)
C5	0.0258(7)	0.0519(10)	0.0426(9)	-0.0035(8)	0.0072(6)	0.0060(7)
C6	0.0509(11)	0.0344(9)	0.0674(13)	-0.0003(9)	-0.0135(10)	-0.0107(8)
C7	0.0453(9)	0.0371(9)	0.0328(8)	0.0072(6)	0.0096(7)	0.0027(7)
C8	0.0315(7)	0.0360(8)	0.0386(8)	-0.0026(7)	0.0014(6)	0.0103(6)
Cl1	0.0363(2)	0.0473(3)	0.0563(3)	0.01039(19)	0.01688(19)	-0.00771(17)
O1	0.0459(6)	0.0310(6)	0.0375(6)	-0.0099(5)	0.0032(5)	0.0027(5)
P1	0.02503(19)	0.0232(2)	0.0266(2)	-0.00074(13)	0.00406(14)	0.00034(13)

Figure S7. Thermal ellipsoid plot for **5** depicted at the 50% probability level. Only the major component of the disordered pyrrolidine moiety is shown for clarity.

A colorless plate shaped crystal of **5** (C12 H24 N O P) with approximate dimensions 0.12 x 0.16 x 0.19 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 203(2) K, cooled by Rigaku-MSC X-Stream 2000, on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoK α fine-focus sealed tube ($\lambda = 0.71073$ Å) operated at 1600 watts power (50 kV, 32 mA). The detector was placed at a distance of 5.8 cm from the crystal.

A total of 1850 frames were collected with a scan width of 0.3° in ω and an exposure time of 10 seconds/frame. The total data collection time was about 8 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a Triclinic unit cell yielded a total of 6358 reflections to a maximum θ angle of 28.28° (0.90 Å resolution), of which 3200 were independent, completeness = 96.8%, R_{int} = 0.0156, R_{sig} = 0.0216 and 2912 were greater than $2\sigma(I)$. The final cell constants: a = 6.0522(11) Å, b = 9.8966(18) Å, c = 11.401(2) Å, $\alpha = 94.862(4)^{\circ}$, $\beta = 93.274(4)^{\circ}$, $\gamma = 100.155(4)^{\circ}$, volume = 668.0(2) Å³, are based upon the refinement of the XYZ-centroids of 4077 reflections above $20\sigma(I)$ with 2.629° < θ <28.230°. Analysis of the data showed negligible decay during data collection. Data were corrected for absorption effects using the multiscan technique (SADABS). The ratio of minimum to maximum apparent transmission was 0.8551.

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software Package, using the space group P-1, with Z = 2 for the formula unit, C12 H24 N O P. The hydrogen atoms were placed geometrically and rode on their parent atoms. The final anisotropic full-matrix least-squares refinement on F^2 with 160 variables converged at R1 = 5.07%, for the observed data and wR2 = 14.21% for all data. The goodness-of-fit was 1.045. The largest peak on the final difference map was 0.637 e⁻/Å³ and the largest hole was -0.518 e⁻/Å³. Based on the final model, the calculated density of the crystal is 1.140 g/cm³ and F(000) amounts to 252 electrons.

Identification code	5	
Empirical formula	C12 H24 N O P	
Formula weight	229.29	
Temperature	203(2) K	
Wavelength	0.71073 Å	
Crystal size	0.19 x 0.16 x 0.12 mm	
Crystal habit	colorless plate	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 6.0522(11) Å	$\alpha = 94.862(4)^{\circ}$
	b = 9.8966(18) Å	$\beta = 93.274(4)^{\circ}$
	c = 11.401(2) Å	$\gamma = 100.155(4)^{\circ}$
Volume	668.0(2) Å ³	
Z	2	
Density (calculated)	1.140 g/cm ³	
Absorption coefficient	0.184 mm ⁻¹	
F(000)	252	

Table S7. Sample and crystal data for 5.

	X	У	Z	U(eq)
C1	0.2932(3)	0.75732(19)	0.38965(15)	0.0389(4)
C2	0.1202(3)	0.66678(17)	0.29416(15)	0.0347(3)
C3	0.2510(3)	0.69207(17)	0.18129(15)	0.0365(3)
C4	0.1822(4)	0.8408(3)	0.4804(2)	0.0635(6)
C5	0.4513(4)	0.6786(3)	0.4547(2)	0.0626(6)
C6	0.0357(4)	0.5182(2)	0.3165(2)	0.0598(6)
C7	0.3820(4)	0.5794(2)	0.1411(2)	0.0559(5)
C8	0.1039(4)	0.7245(3)	0.07825(19)	0.0603(6)
C10	0.1776(4)	1.1454(3)	0.1800(3)	0.0805(9)
C11	0.4205(4)	1.2048(3)	0.1723(3)	0.0768(8)
C12	0.5410(3)	1.0867(2)	0.1904(2)	0.0538(5)
C9A	0.1736(4)	1.0423(2)	0.2681(3)	0.0430(8)
N1A	0.3861(4)	0.9919(2)	0.2562(3)	0.0357(5)
C9B	0.1506(17)	1.0160(12)	0.1780(14)	0.042(4)
N1B	0.3724(19)	0.9751(12)	0.1984(17)	0.035(3)
01	0.6838(2)	0.83922(14)	0.26461(15)	0.0531(4)
P1	0.43901(6)	0.83639(4)	0.26899(4)	0.03522(15)

Table S8. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for **5.** U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S9. Bond lengths (\AA) for 5.

C1-C4	1.528(3)	C1-C5	1.534(3)
C1-C2	1.568(2)	C1-P1	1.8335(18)
C2-C6	1.517(3)	C2-C3	1.564(2)
C2-H2	0.9900	C3-C8	1.523(3)
C3-C7	1.533(2)	C3-P1	1.8411(18)
C4-H4A	0.9700	C4-H4B	0.9700
C4-H4C	0.9700	C5-H5A	0.9700
C5-H5B	0.9700	C5-H5C	0.9700
C6-H6A	0.9700	C6-H6B	0.9700
C6-H6C	0.9700	C7-H7A	0.9700
С7-Н7В	0.9700	C7-H7C	0.9700
C8-H8A	0.9700	C8-H8B	0.9700
C8-H8C	0.9700	C10-C9B	1.260(12)
C10-C9A	1.489(3)	C10-C11	1.494(4)
C10-H10A	0.9800	C10-H10B	0.9800
C11-C12	1.505(3)	C11-H11A	0.9800
C11-H11B	0.9800	C12-N1B	1.378(12)
C12-N1A	1.487(3)	C12-H12A	0.9800
C12-H12B	0.9800	C9A-N1A	1.469(3)
C9A-H9A	0.9800	C9A-H9B	0.9800
N1A-P1	1.643(2)	C9B-N1B	1.480(14)
C9B-H9B1	0.9800	C9B-H9B2	0.9800
N1B-P1	1.744(12)	O1-P1	1.4803(13)

Table S10. Bond angles (°) for 5.

C4-C1-C5	108.97(18)	C4-C1-C2	113.18(16)
C5-C1-C2	114.98(17)	C4-C1-P1	121.98(15)
C5-C1-P1	108.62(14)	C2-C1-P1	88.07(10)
C6-C2-C3	117.26(16)	C6-C2-C1	117.30(16)
C3-C2-C1	99.79(12)	C6-C2-H2	107.2
C3-C2-H2	107.2	C1-C2-H2	107.2
C8-C3-C7	110.42(17)	C8-C3-C2	112.98(15)
C7-C3-C2	115.32(15)	C8-C3-P1	118.24(14)
C7-C3-P1	110.53(13)	C2-C3-P1	87.91(10)
C1-C4-H4A	109.5	C1-C4-H4B	109.5
H4A-C4-H4B	109.5	C1-C4-H4C	109.5
H4A-C4-H4C	109.5	H4B-C4-H4C	109.5
C1-C5-H5A	109.5	C1-C5-H5B	109.5
H5A-C5-H5B	109.5	C1-C5-H5C	109.5
H5A-C5-H5C	109.5	H5B-C5-H5C	109.5
C2-C6-H6A	109.5	C2-C6-H6B	109.5
H6A-C6-H6B	109.5	C2-C6-H6C	109.5
H6A-C6-H6C	109.5	H6B-C6-H6C	109.5
С3-С7-Н7А	109.5	C3-C7-H7B	109.5
H7A-C7-H7B	109.5	C3-C7-H7C	109.5
H7A-C7-H7C	109.5	H7B-C7-H7C	109.5
C3-C8-H8A	109.5	C3-C8-H8B	109.5
H8A-C8-H8B	109.5	C3-C8-H8C	109.5
H8A-C8-H8C	109.5	H8B-C8-H8C	109.5
C9B-C10-C9A	43.2(7)	C9B-C10-C11	110.2(5)
C9A-C10-C11	105.7(2)	C9B-C10-H10A	136.6
C9A-C10-H10A	110.6	C11-C10-H10A	110.6
C9B-C10-H10B	69.1	C9A-C10-H10B	110.6
C11-C10-H10B	110.6	H10A-C10-H10B	108.7
C10-C11-C12	104.44(19)	C10-C11-H11A	110.9
C12-C11-H11A	110.9	C10-C11-H11B	110.9
C12-C11-H11B	110.9	H11A-C11-H11B	108.9
N1B-C12-N1A	26.4(7)	N1B-C12-C11	104.9(5)
N1A-C12-C11	104.65(18)	N1B-C12-H12A	86.7
N1A-C12-H12A	110.8	C11-C12-H12A	110.8
N1B-C12-H12B	131.7	N1A-C12-H12B	110.8
C11-C12-H12B	110.8	H12A-C12-H12B	108.9
N1A-C9A-C10	103.96(19)	N1A-C9A-H9A	111.0
C10-C9A-H9A	111.0	N1A-C9A-H9B	111.0
C10-C9A-H9B	111.0	H9A-C9A-H9B	109.0
C9A-N1A-C12	110.08(19)	C9A-N1A-P1	128.98(17)
C12-N1A-P1	118.22(17)	C10-C9B-N1B	109.2(9)
C10-C9B-H9B1	109.8	N1B-C9B-H9B1	109.8
C10-C9B-H9B2	109.8	N1B-C9B-H9B2	109.8
H9B1-C9B-H9B2	108.3	C12-N1B-C9B	109.5(9)
C12-N1B-P1	118.3(8)	C9B-N1B-P1	129.0(9)
O1-P1-N1A	109.35(10)	O1-P1-N1B	108.1(4)
N1A-P1-N1B	22.3(5)	O1-P1-C1	118.97(8)
N1A-P1-C1	111.38(11)	N1B-P1-C1	126.2(5)
O1-P1-C3	116.58(8)	N1A-P1-C3	117.05(12)
N1B-P1-C3	100.4(5)	C1-P1-C3	81.37(8)

Table S11.	Torsion	angles	$(^{\circ})$) for 5.
------------	---------	--------	--------------	-----------------

C4-C1-C2-C6	-94.2(2)	C5-C1-C2-C6	31.9(2)
P1-C1-C2-C6	141.63(16)	C4-C1-C2-C3	138.07(17)
C5-C1-C2-C3	-95.80(18)	P1-C1-C2-C3	13.88(11)
C6-C2-C3-C8	98.5(2)	C1-C2-C3-C8	-133.74(17)
C6-C2-C3-C7	-29.8(2)	C1-C2-C3-C7	97.96(18)
C6-C2-C3-P1	-141.59(16)	C1-C2-C3-P1	-13.82(11)
C9B-C10-C11-C12	-11.4(9)	C9A-C10-C11-C12	33.9(3)
C10-C11-C12-N1B	3.7(9)	C10-C11-C12-N1A	-23.6(3)
C9B-C10-C9A-N1A	72.6(7)	C11-C10-C9A-N1A	-30.4(3)
C10-C9A-N1A-C12	15.6(3)	C10-C9A-N1A-P1	-145.1(3)
N1B-C12-N1A-C9A	-89.0(12)	C11-C12-N1A-C9A	5.1(3)
N1B-C12-N1A-P1	74.0(11)	C11-C12-N1A-P1	168.1(2)
C9A-C10-C9B-N1B	-77.7(10)	C11-C10-C9B-N1B	13.9(13)
N1A-C12-N1B-C9B	96.8(16)	C11-C12-N1B-C9B	3.8(13)
N1A-C12-N1B-P1	-65.0(12)	C11-C12-N1B-P1	-158.0(9)
C10-C9B-N1B-C12	-11.6(16)	C10-C9B-N1B-P1	147.7(14)
C9A-N1A-P1-O1	-172.9(2)	C12-N1A-P1-O1	27.8(3)
C9A-N1A-P1-N1B	96.5(12)	C12-N1A-P1-N1B	-62.8(11)
C9A-N1A-P1-C1	-39.4(3)	C12-N1A-P1-C1	161.3(2)
C9A-N1A-P1-C3	51.7(3)	C12-N1A-P1-C3	-107.6(2)
C12-N1B-P1-O1	-23.2(14)	C9B-N1B-P1-O1	179.1(13)
C12-N1B-P1-N1A	73.9(14)	C9B-N1B-P1-N1A	-83.9(18)
C12-N1B-P1-C1	127.4(9)	C9B-N1B-P1-C1	-30.4(18)
C12-N1B-P1-C3	-145.8(11)	C9B-N1B-P1-C3	56.5(15)
C4-C1-P1-O1	116.30(17)	C5-C1-P1-O1	-11.63(18)
C2-C1-P1-O1	-127.40(11)	C4-C1-P1-N1A	-12.3(2)
C5-C1-P1-N1A	-140.20(18)	C2-C1-P1-N1A	104.04(15)
C4-C1-P1-N1B	-31.4(7)	C5-C1-P1-N1B	-159.3(7)
C2-C1-P1-N1B	84.9(7)	C4-C1-P1-C3	-128.02(17)
C5-C1-P1-C3	104.04(15)	C2-C1-P1-C3	-11.72(10)
C8-C3-P1-O1	-115.02(15)	C7-C3-P1-O1	13.59(16)
C2-C3-P1-O1	129.90(10)	C8-C3-P1-N1A	17.16(19)
C7-C3-P1-N1A	145.77(16)	C2-C3-P1-N1A	-97.92(14)
C8-C3-P1-N1B	1.4(5)	C7-C3-P1-N1B	130.0(5)
C2-C3-P1-N1B	-113.7(5)	C8-C3-P1-C1	126.82(16)
C7-C3-P1-C1	-104.57(14)	C2-C3-P1-C1	11.75(10)

	U ₁₁	U ₂₂	U ₃₃	U ₂	23	U ₁₃	U ₁₂
C1	0.0349(8)	0.0426(9)	0.0391(8)	0.0034(7)	0.0008(6)	0.0075(7)	
C2	0.0285(7)	0.0337(8)	0.0421(8)	0.0046(6)	0.0039(6)	0.0047(6)	
C3	0.0358(8)	0.0373(8)	0.0378(8)	0.0027(6)	0.0049(6)	0.0105(6)	
C4	0.0714(15)	0.0683(14)	0.0486(11)	-0.0097(10)	0.0135(10)	0.0113(12)	
C5	0.0531(12)	0.0795(16)	0.0574(12)	0.0268(11)	-0.0087(10)	0.0129(11)	
C6	0.0593(13)	0.0430(11)	0.0740(14)	0.0145(10)	0.0098(11)	-0.0049(9)	
C7	0.0598(12)	0.0479(11)	0.0629(12)	-0.0067(9)	0.0153(10)	0.0204(9)	
C8	0.0619(13)	0.0783(16)	0.0428(10)	0.0082(10)	-0.0031(9)	0.0194(11)	
C10	0.0541(14)	0.0693(16)	0.133(3)	0.0522(17)	0.0149(15)	0.0304(12)	
C11	0.0622(15)	0.0544(13)	0.127(2)	0.0449(15)	0.0294(15)	0.0212(11)	
C12	0.0434(10)	0.0478(11)	0.0772(14)	0.0267(10)	0.0207(9)	0.0120(8)	
C9A	0.0304(10)	0.0342(10)	0.0671(19)	0.0068(10)	0.0086(10)	0.0111(8)	
N1A	0.0265(9)	0.0323(10)	0.0509(14)	0.0100(10)	0.0091(10)	0.0078(7)	
C9B	0.020(5)	0.043(6)	0.067(10)	0.019(6)	-0.005(4)	0.009(4)	
N1B	0.024(4)	0.027(5)	0.056(8)	0.011(6)	0.002(5)	0.008(3)	
O1	0.0243(6)	0.0475(8)	0.0918(11)	0.0173(7)	0.0090(6)	0.0115(5)	
P1	0.0229(2)	0.0310(2)	0.0540(3)	0.00850(17)	0.00531(16)	0.00824(15	5)

Table S12. Anisotropic atomic displacement parameters (Å²) for **5.** The anisotropic atomic displacement factor exponent takes the form: $-2 \Box^2$ [$h^2 a^{*2} U_{11} + ... + 2hka^* b^* U_{12}$]

Table S13. Site occupancy factors that deviate from unity for 5.

Atom	sof	Atom	sof	Atom	sof
C9A C9B	0.843(8) 0.157(8)	H9A H9B1	0.843(8) 0.157(8)	H9B H9B2	0.843(8) 0.157(8)
N1A N1B	0.843(8) 0.157(8)				

aminophosphetane 2 1 /opt/topspin Radosevich

E Q Q	169,404	134.048 133.613 130.085 129.418 129.297 128.982	- 127.757	74.964	52.797			Current Da NAME EXPNO PROCNO F2 - Acqui Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT	ta Parameters zw36808 2 1 sition Parameters 20140421 17.46 spect 5 mm Multinu zgpg30 65536 CD013
	$ \begin{array}{c} $	CO ₂ Me						NS DS SWH FIDRES AG DW DE TE D1 d11 d12	1029 4 18832.393 Hz 0.287360 Hz 1.7400308 sec 8192 26.550 usec 6.00 usec 300.0 K 2.00000000 sec 0.0300000 sec 0.00002000 sec
				lh				NUC1 P1 PL1 SF01	=== CHANNEL f1 ======== 13C 9.75 usec 0.00 dB 75.4760200 MHz
								CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SF02	=== CHANNEL f2 ======= waltz16 1H 110.00 usec 0.00 dB 17.50 dB 17.50 dB 300.1312005 MHz
								F2 - Proc SI SF WDW SSB LB GB PC	essing parameters 32768 75.4677434 MHz EM 0 1.00 Hz 0 1.40
Standard and a standa								1D NMR p CX F1P F1 F2P F2 F2 PPMCM	ot parameters 20.00 cm 215.000 ppm 16225.57 Hz -5.000 ppm -377.34 Hz 11.00000 ppm/cm
ppm 20	1/5	150 125	100	70	UC	CU	U	HZCM	830.14514 Hz/cm

zw3485C 1 1 C:\Bruker\TOPSPIN Administrator

169.85 165.98	151.53 134.46 128.25 128.91	- 124 	77.58		BRUKER
					NAME zw3686C EXPNO 1 PROCNO 1 Date_ 20140423 Time 3.46 INSTRUM spect PROBHD 5 mm Multinu
H_2N	CO ₂ Me				PULPROG zgpq30 TD 65536 SOLVENT CDCl3 NS 4000 DS 4 SWH 18832.393 Hz FIDRES 0.287360 Hz AQ 1.7400308 sec RG 16384 DW 26.550 usec DE 6.00 usec TE 300.0 K D1 2.00000000 sec d11 0.0300000 sec
21					d12 0.00002000 sec ======= CHANNEL f1 ======= NUC1 13C P1 9.75 usec PL1 0.00 dB SF01 75.4760200 MHz
					CHANNEL f2 CPDPRG2 waltzl6 NUC2 1H PCPD2 110.00 usec PL2 0.00 dB PL12 17.50 dB SF02 300.1312005 MHz SI 32768 SF SSB 0 LB 1.00 GB 0 D Hz
					PC 1.40
0 180 16	0 140	120 100	80 6	60 40	ppm

EUKER 1 20140423 17.50
spect 5 mm Multinu zgpg30 65536 CDCl3 1577 4 18832.393 Hz 0.287360 Hz 1.7400308 sec 8192 26.550 usec 6.00 usec 300.0 K 2.0000000 sec 0.0300000 sec
==== CHANNEL f1 ====== 13C 9.75 usec 0.00 dB 75.4760200 MHz

	168.92 167.99 164.61	132.96 132.80 132.67 132.67 129.41 125.34 125.34 125.34 115.75	77.58 77.16 76.73 74.36	53.01	BRUKER
					NAME py25B_C EXPNO 1 PROCNO 1 Date_ 20140429 Time 20.15 INSTRUM spect PROBHD 5 mm Multinu
	0 L				PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 1700 DS 4 SWH 1882.393 Hz FIDRES 0.287360 Hz AQ 1.7400308 sec DC 2004
Br		=			RG 13004 DW 26.550 usec DE 6.00 usec TE 300.0 K D1 2.00000000 sec d11 0.0300000 sec d12 0.00002000 sec
	27				NUC1 13C P1 9.75 usec PL1 0.00 dB SF01 75.4760200 MHz
					CPDPRG2 waltz16 NUC2 1H PCPD2 110.00 PL12 0.00 PL12 17.50 PSF02 300.1312005 SI 32768 SF 75.4677397 WDW EM SSB 0
				I	LB 1.00 Hz GB 0 PC 1.40
	L L				

)0 1	80 160	140	120 1	00 80	60	40	ppm	
999 - 1996 - 1996 - 1996 - 1996 - 19 96 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1						14.1 1.11.11.11.11.11.11.11.11.11.11.11.11		
NC	H CO ₂ Me	F					PROBIN PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 d12 	<pre>2 June Hulteling 2 2gpg30 65536 CDC13 1600 4 18832.393 Hz 0.287360 Hz 1.7400308 sec 8192 26.550 usec 6.00 usec 300.0 K 2.00000000 sec 0.03000000 sec 0.03000000 sec 0.00002000 sec === CHANNEL f1 ===================================</pre>
					ی ا		NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD	py25A_C 1 20140429 16.24 spect 5 mm Multinu
	168.3 168.1 164.7 164.6	132.8 132.8 132.7	1125.1 1125.1 1125.0 1118.3 1115.8 1115.8 1113.4 1113.4	77.59 77.16 76.74 74.12	53.24		(\sim

zw3822C 1 1 C:\Bruker\TOPSPIN Radosevich Zhao

zw3929bC13 1 1 C:\Bruker\TopSpin3.2\data\nmr\Radosevich

zw3929b_noe 2 1 C:\Bruker\TopSpin3.2\data\nmr\Radosevich

