Supporting Information

Kinetics and Mechanistic Insight into Efficient Fixation of CO2 to Epoxides over

N-heterocyclic Compound/ZnBr₂ Catalysts

Mengshuai Liu,[‡] Bo Liu,[‡] Shifa Zhong,[‡] Lei Shi,[‡] Lin Liang,[§] and Jianmin Sun^{*,†,‡}

[†]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150080, PR China

[‡]The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, PR China

[§]School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China

*Corresponding authors: Jianmin Sun, E-mail: sunjm@hit.edu.cn

The Formula Deduction Procedures of Reaction Rate for PC Formation^{1,2}

The rate of PC formation was described as Eq. (S1)

$$\frac{d[P]}{dt} = k_2[CO_2][SIZ^{\xi}]$$
(S1)

Where, d[P] was PC concentration at a particular reaction time. The different rate expression describing the formation of SIZ^{ξ} was described as Eq. (S2)

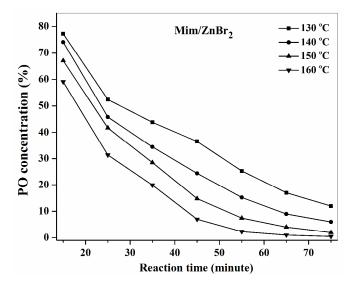
$$\frac{d[SIZ^{\xi}]}{dt} = k_1[S][IZ] - k_{-1}[SIZ^{\xi}] - k_2[CO_2][SIZ^{\xi}]$$
(S2)

To simplify, assuming the reaction at pseudo-steady state, we obtained the following Eq. (S3) and Eq. (S4),

$$\frac{d[SIZ^{\xi}]}{dt} = k_1[S][IZ] - k_{-1}[SIZ^{\xi}] - k_2[CO_2][SIZ^{\xi}] = 0$$
(S3)

$$[SIZ^{\xi}] = \frac{k_1[S][IZ]}{k_{-1} + k_2[CO_2]}$$
(S4)

Substituting $[SIZ^{\xi}]$ into Eq. (S1) gave Eq. (S5).


$$\frac{d[P]}{dt} = \frac{k_1 k_2 [S] [IZ] [CO_2]}{k_{-1} + k_2 [CO_2]}$$
(S5)

As the reaction carried out in a constant volume reactor, and CO_2 was excessively used, the concentrations of CO_2 and catalyst could be assumed constant, and Eq. (S5) could be shorten to the following Eq.:

$$\frac{d[P]}{dt} = -\frac{d[S]}{dt} = k[PO]$$

Table S1. Kinetic Equations and Kinetic Parameters at Different Temperature

<i>T/</i> (°C)	Kinetic equation	R′	$k (\min^{-1})$	1/T (K ⁻¹)	lnk
130	y = 0.02593x - 0.08567	0.9883	0.02593	0.00248	-3.652
140	y = 0.03798x - 0.24142	0.9961	0.03798	0.00242	-3.271
150	y = 0.04988x - 0.38295	0.9969	0.04988	0.00236	-2.998
160	y = 0.06073x - 0.39659	0.9973	0.06073	0.00231	-2.801

Figure S1. The remaining PO concentration-time profile at different temperatures over $Mim/ZnBr_2$ catalysts. Reaction conditions: PO 34.5 mmol, P (CO₂) = 2.5 MPa, ZnBr₂ 0.09 mmol, Mim 0.36 mmol.

References

(1) Yu, J. I.; Choi, H. J.; Selvaraj, M.; Park, D. W. Catalytic performance of polymer-supported ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether. *Reac. Kinet. Mech. Cat.* **2011**, *102*, 353–365.

(2) Chatelet, B.; Joucla, L.; Dutasta, J.; Martinez, A.; Szeto, K.; Dufaud, V. Azaphosphatranes as structurally tunable organocatalysts for carbonate synthesis from CO₂ and epoxides. *J. Am. Chem. Soc.*, 2013, *135*, 5348–5351.