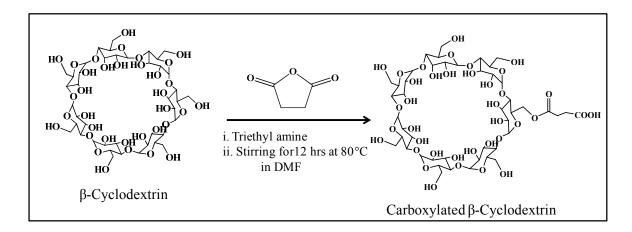
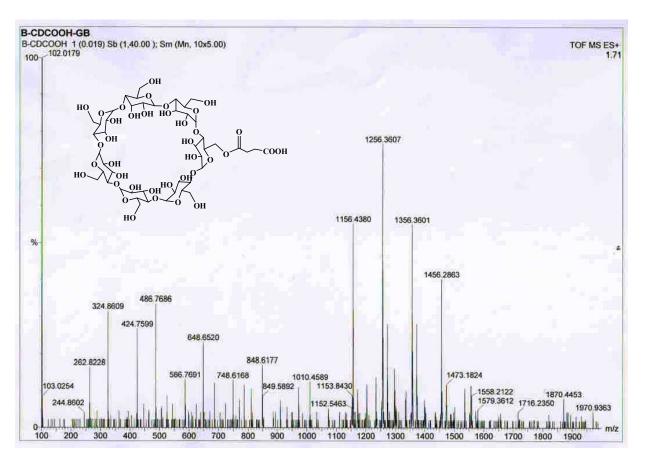
β-Cyclodextrin Functionalized Magnetic Mesoporous Silica Colloid for Cholesterol Separation

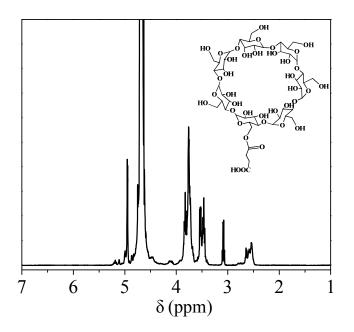
Arjyabaran Sinha, SK Basiruddin,[#] Atanu Chakraborty and Nikhil R. Jana*

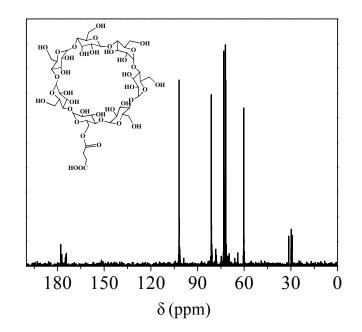

Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-

700032, India


*Corresponding author. E-mail: camnrj@iacs.res.in

Telephone: +91-33-24734971. Fax: +91-33-24732805


[#]Present address: Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur-768018, India.


Scheme S1. Equation for synthesis of carboxylated β -cyclodextrin from β -cyclodextrin.

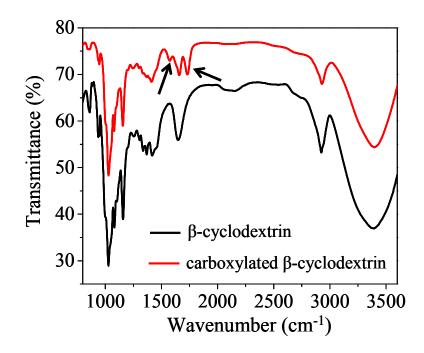

Figure S1. HRMS of carboxylated β -cyclodextrin. The peak at 1256.3607 attributed due to monocarboxylated β -cyclodextrin [Calcd. for C₄₆H₇₃O₃₈Na is 1256.3678; found: 1256.3607]. The peaks at m/z 1356.3601, 1456.2863 attributed due to di- and tri-craboxylated β -cyclodextrins, respectively. The peak at 1156.4380 appears due to β -cyclodextrin.

Figure S2. ¹H NMR spectrum of carboxylated β -cyclodextrin in D₂O. Peaks at 2.5 and 2.6 ppm are due to the proton of methylene group of succinic acid moiety of carboxylated β -cyclodextrin and peaks in the region of 3 to 5 are due to the β -cyclodextrin moiety and solvent.

Figure S3. ¹³C NMR of carboxylated β -cyclodextrin. The peaks between 60 to 100 ppm correspond to the C atoms of β -cyclodextrin, peaks around 174 and 177 ppm attribute to the C atoms of ester group and carboxylic acid groups, respectively. Peaks around 29.2 and 31.4 ppm arise due to the C atoms of methylene groups of carboxylated β -cyclodextrin.

Figure S4. FTIR spectra of β -cyclodextrin and carboxylated β -cyclodextrin. Carboxylated β cyclodextrin shows two new bands at 1730 and 1570 cm⁻¹ (indicated by arrow sign) due to the stretching vibration of C=O and -COO⁻ group, which indicates conjugation with succinic anhydride.

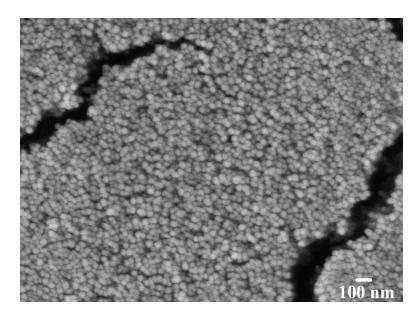
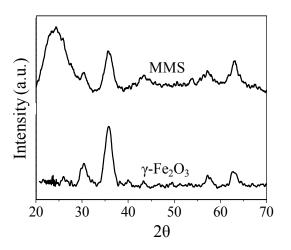
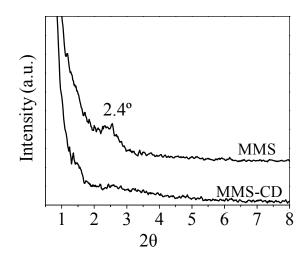




Figure S5. Low resolution SEM image of MMS-CD.

Figure S6. XRD pattern of as synthesized γ -Fe₂O₃ and MMS showing the reflection at 30°, 36°, 43°, 54°, 57° and 63° corresponding to the plane of (220), (311), (400), (422), (511) and (440) of γ -Fe₂O₃ phase. Result indicates that γ -Fe₂O₃ retain its structure inside MMS. The reflection observed at 23° due to the amorphous nature of silica.

Figure S7. Small angle XRD of MMS and MMS-CD. MMS shows peaks at 2.4° but MMS-CD shows broadening of peak in that region, indicating disorder structure due to functionalization.

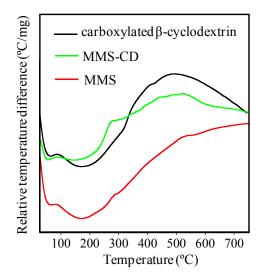
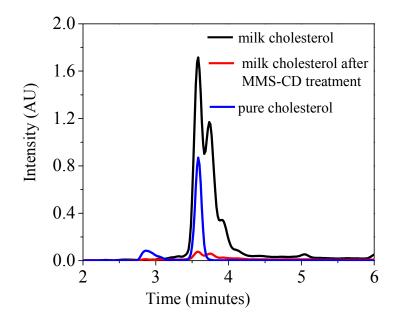



Figure S8. Differential thermal analysis (DTA) data of monocarboxylated β -cyclodextrin, MMS-CD and MMS. Results show that monocarboxylated cyclodextrin degrade in the temperature range from 200-700°C. The similar degradation characteristic is also observed in MMS-CD. However, such pattern is absent in MMS.

Figure S9. Typical chromatogram of pure cholesterol and milk cholesterol before or after treatment with MMS-CD.

Prussian Blue Test. For the prussian blue test two vials were taken each of which contain 5 mg cholesterol crystal in 3 mL water. Then in one vial solution of MMS was added and in other vial solution of MMS-CD was added (concentration of MMS/MMS-CD used was 2 mg/mL) and incubated for 4 hrs. Next, the cholesterol crystals were separated and washed with water to remove the unbound particles. Next, 10 % HCl and 10 % K₄[Fe(CN)₆] solution were added to each vials separately and wait for one hour for the development of blue colour.

Calculation of Carboxylated β -Cyclodextrin per Gram of MMS-CD. From TGA data we found ~ 10 wt % of β -cyclodextrin is conjugated to MMS. From this data we assume one gram of MMS-CD contains 0.1 gram of carboxylated β -cyclodextrin (that is 8.1 x 10⁻⁵ mole, MW of carboxylated β -cyclodextrin is 1235). Therefore, each gram of MMS-CD contains 4.88 x 10¹⁹ number of carboxylated β -cyclodextrin. BET surface area data shows each gram of MMS-CD has surface area of 160 m². Hence density of β -cyclodextrin is 3.05 x 10¹⁷ molecules/m².