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Free ended coaxial cable model with linearly decreasing filament width 

Detailed derivation of the modified electrical model discussed in the paper is presented here. 

Figure S1 shows an schematic diagram of the experimental set-up.  

 

 

 

 

 

 

Figure S1. Schematic diagram of the experimental set-up showing a reservoir drop and a 

drawn liquid filament in a triangular groove. The top electrode was immersed in the reservoir 

drop and the bottom electrode was connected to underlying conducting silicon substrate.   

 

In the electrical model, a liquid filament in a triangular groove is considered as a free ended 

coaxial cable and can be modelled as series of resistors and capacitors. Our aim is to find the 

voltage drop along an electrically conducting liquid filament in a triangular groove of width 

W and wedge angle .  Figure S1(b) shows sketch of a liquid filament of length l in a 

triangular groove. Thickness and dielectric constant of the insulating layer on triangular 

groove is T and 𝜀𝑟, conductivity of the liquid is , voltage and frequency of the applied ac 

signal at one end of the groove (x=0) is U0 and . Figure S1(c) shows an equivalent electrical 

circuit of a free-ended coaxial cable of length l. 



 

Figure S1. (a) Sketch of a triangular groove showing all parameters, (b) sketch of a liquid 

filament with linearly decreasing width in a triangular groove and (c) equivalent electrical 

circuit for a liquid filament in a triangular groove.  

Width of the liquid filament along the length decreases linearly as W(x)=W(1-x/l), where W is 

the width at x = 0. Since we are using ac voltage for electrowetting, let u(x) be the complex 

voltage at a distance x of a liquid filament in a triangular groove. Applying Kirchhoff’s 

current law at a node, we obtained 

𝑢(𝑥 + 𝑑𝑥) + 𝑢(𝑥 − 𝑑𝑥) = 𝑢(𝑥) [2 +
𝑑𝑅

𝑑𝑍𝑐
]       (1) 

where dR and dZc are the resistive and capacitive impedance of the liquid filament of length 

dx which can be written as 𝑑𝑅 =
4 𝑑𝑥

𝜎 𝑤2(1−𝑥/𝑙)2𝑡𝑎𝑛𝜓
   and   𝑑𝑍𝑐 =

𝑇 cos 𝜓

𝑗𝜔𝜖𝑟𝜖0𝑤 (1−
𝑥

𝑙
)𝑑𝑥

. Now, using 

the identity 

𝑢(𝑥 + 𝑑𝑥) + 𝑢(𝑥 − 𝑑𝑥) − 2 𝑢(𝑥) =
𝑑2𝑢(𝑥)

𝑑𝑥2  𝑑𝑥2      (2) 

Eq. 1 reduces to 



𝑑2𝑢(𝑥)

𝑑𝑥2
= 2𝑗

𝑢(𝑥)

(1−𝑥/𝑙)𝜆2
         (3) 

where  is the characteristic length parameter expressed as 𝜆 = √
2𝑇𝜎

𝜔𝜀0𝜀𝑟
 
𝑊 sin 𝜓

4
. Equation 3 

was solved analytically using "Maple-14" and following solution was obtained 

𝑢(𝑥) = 𝐶1 √(𝑥 − 𝑙) 𝐽1 (
2√2√𝑗𝑙(𝑥−𝑙)

𝜆
) + 𝐶2 √(𝑥 − 𝑙) 𝑌1 (

−2𝑗√2√𝑗𝑙(𝑥−𝑙)

𝜆
)   (4) 

where J1 and Y1 are the Bessel functions of 1
st
 and 2

nd
 kind.  In this equation, {C1,C2} are the 

complex constant coefficients of the solution which has to be determined using the 

appropriate boundary conditions. The solution u(x) is a complex function of real variable x. 

The physical amplitude of voltage would thus be 𝑈(𝑥) = ‖𝑢(𝑥)‖. To simplify Eq. 4, the 

Bessel functions were expanded in series and truncated after 3rd term 

 𝑢(𝑥) =
𝐶1(𝑥−𝑙) √2𝑗𝑙

𝜆
+  𝐶2√2 𝑗 {𝜆2 − 2𝑗𝑙2 ln(2) + 2𝑗𝑙 𝑙𝑛(2)𝑥 + 4𝑗𝑙2 𝑙𝑛 (

−2𝑗√𝑗𝑙(𝑥−𝑙)

𝜆
) −

4𝑗𝑙 𝑙𝑛 (
−2𝑗√𝑗𝑙(𝑥−𝑙)

𝜆
) 𝑥 + 4𝑗𝑙2𝛾 − 4𝑗𝑙𝛾𝑥 − 2𝑗𝑙2 + 2𝑗𝑙𝑥} /4𝜆√𝑗𝑙    (5) 

where  =Euler–Mascheroni constant (Euler's constant). 

Boundary condition 1:  At equilibrium the current at tip of the liquid filament should be 

zero i.e. 
𝑑𝑢

𝑑𝑥
|

𝑥=𝑙
= 0. It is clear from Eq. 3 that the differential equation is unbounded at x = l, 

therefore we need to solve it around x = l. Therefore different possible values of x was tried 

by trial and error method and x=0.966l was found to fit exactly with the experimental data. 

Therefore the boundary condition 1 was modified to 
𝑑𝑢

𝑑𝑥
|

𝑥=0.966𝑙
= 0 and the Eq. 5 can be 

further simplified to  



 𝑢(𝑥) = − [2.83 × 10−10 𝑗𝐶2 {2.5 × 109𝑗𝑙2 − 2.5 × 109𝑗𝑙𝑥 + 5 × 109𝑗𝑙2𝑙𝑛 (
−0.37𝑗𝑙√−𝑗

𝜆
) −

5 × 109𝑗𝑙 𝑙𝑛 (
−0.37𝑗𝑙 √−𝑗

𝜆
) 𝑥 − 1.25 × 109𝜆2 − 5 × 109𝑗𝑙2𝑙𝑛 (

−2𝑗√𝑗𝑙(𝑥−𝑙)

𝜆
) + 5 ×

109𝑗𝑙 𝑙𝑛 (
−2𝑗√𝑗𝑙(𝑥−𝑙)

𝜆
) 𝑥}] /(√𝑗𝑙 𝜆)        (6) 

Boundary condition 2:   The voltage at the entrance of the liquid filament is equal to the 

applied voltage i.e. u(x=0)=U0. So the Eq. 6 could further be simplified as 

  𝑢(𝑥) = −𝑗𝑈0 [2.5 × 109𝑗𝑙2 − 2.5 × 109𝑗𝑙 𝑥 + 5 × 109𝑗𝑙2𝑙𝑛 (
−0.37𝑗𝑙√−𝑗

𝜆
) −

5 × 109𝑗𝑙 𝑙𝑛 (
−0.37𝑗𝑙 √−𝑗

𝜆
) 𝑥 − 1.25 × 109𝜆2 − 5 × 109𝑗𝑙2 𝑙𝑛 (

−2𝑗√𝑗𝑙 (𝑥−𝑙)

𝜆
) +

5 × 109𝑗𝑙 𝑙𝑛 (
−2𝑗√𝑗𝑙(𝑥−𝑙)

𝜆
) 𝑥] / [2.5 × 109𝑙2 + 5 × 109𝑙2𝑙𝑛 (

−0.37𝑗

𝜆
) + 1.25 ×

109𝑗𝜆2 − 5 × 109𝑗𝑙2𝑙𝑛 (
−2𝑗

𝜆
)]        (7) 

Boundary condition 3:   The 3rd boundary condition is that the voltage at the tip of a liquid 

filament equals the threshold voltage, ‖𝑢(𝑥 = 𝑙)‖ = 𝑈𝑇. This gives the final relation 

involving the applied voltage and the length as 

 𝑈𝑇 = 𝑈0√
𝜆4

𝜆4+22.7 𝑙4
         (8) 



 

 

Figure S2. Plot of the scaled experimental data with the solution of linearly decreasing 

filament model for different values of x around x = l showing that x = 0.966l fits the best. 

 

 


