Supporting Information:

In-situ Raman Spectroscopy of Sulfur Speciation in

Lithium-Sulfur Batteries

Heng-Liang Wu, Laura A. Huff, Andrew A. Gewirth*

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S.

Mathews Avenue, Urbana, IL 61801 USA

*Corresponding Author. Email: agewirth@illinois.edu. Telephone: 217-333-8329.

Fax: 217-244-5186.

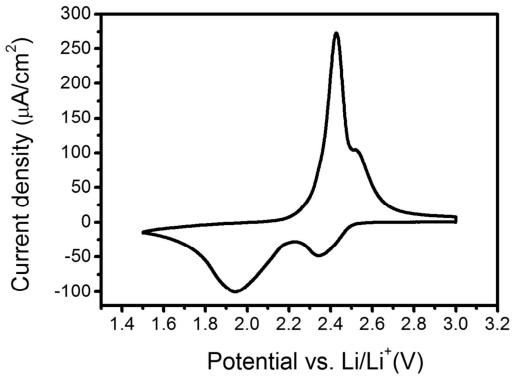


Figure S1. Cyclic voltammetry of the as-prepared sulfur-carbon cathode at a scan rate of 20 μ V/s in a coin cell.

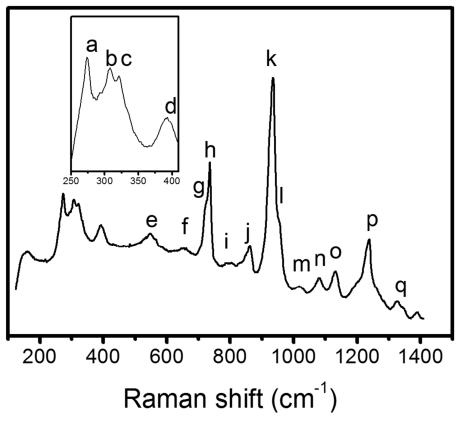


Figure S2. In-situ Raman spectra of the sulfur-carbon cathode shown at 3.2 V in 1M LiTFSI with TEGDME/DIOX (1:1, by vol).

Peak label	Peak position (cm ⁻¹)	Assignment (cm ⁻¹)
а	273	CF ₃ (rocking mode from TFSI ⁻)
b	307	SO ₂ (rocking mode from TFSI ⁻)
С	321	SO ₂ (rocking mode from TFSI ⁻)
d	392	SO ₂ (wagging mode from TFSI ⁻)
е	522-573 (broad peak)	O-C-C (bending mode form TEGDME) CF ₃ (bending mode from TFSI ⁻)
f	644-661 (broad peak)	SNS (bending mode from TFSI ⁻) Ring deformation from 1,3-Dioxolane
g	722	C-O-C (bending mode from 1,3-Dioxolane)
h	735	CF ₃ (bending mode from TFSI ⁻)
i	782-810 (broad peak)	C-S (stretching mode from TFSI-)
j	863	CH ₂ (rocking mode from TEGDME)
k	934	C-O + C-C (stretching mode from 1,3-Dioxolane)
1	955	C-O (stretching mode from 1,3-Dioxolane)
m	1023	C-O stretching from TEGDME
n	1080	C-O stretching and CH ₂ rocking mode from 1,3-Dioxolane
0	1132	SO ₂ (stretching mode from TFSI ⁻)
р	1237	CH ₂ (twisting mode from 1,3-Dioxolane)
q	1325	CH ₂ (wagging mode from 1,3-Dioxolane)

Table S1. Vibrational frequencies and assignments for TFSF, TEGDME and DIOX as shown in Figure S2. $^{\rm 1-4}$

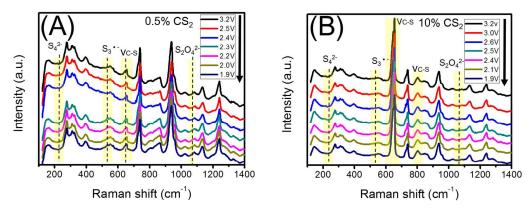


Figure S3. In-situ Raman spectra of sulfur-carbon cathode obtained during discharge with (A) 0.5% CS₂ additive and (B) 10% CS₂ additive (by vol.) at 3.2 V.^{5,6}

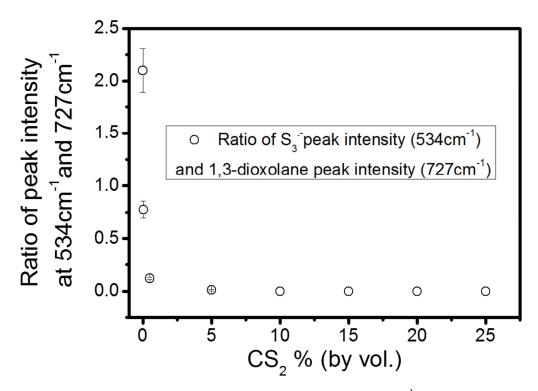


Figure S4. The ratio of maximum peak intensity for S_3^{-1} (534 cm⁻¹) and C-O-C bending mode of 1,3-dioxolane (727 cm⁻¹) were plotted as a function of different amounts of CS₂.

Figure S4 shows the peak intensity ratio of the S_3 peak at 534 cm⁻¹ and the C-O-C bending mode of 1,3-dioxolane at 727 cm⁻¹ as a function of different amounts of added CS₂. The intensity of the 1,3-dioxolane peak at 727 cm⁻¹ is constant and can S3

be used as an internal standard. This result shows the formation of S₃ in the second

anodic peak is suppressed with CS2 addition. The ratio quickly drops with addition of

as little as 0.05% CS₂ and S₃⁻⁻ formation was not observed with 10% or more CS₂.

References:

(1) de Zea Bermudez, V.; Lucazeau, G.; Abello, L.; Poinsignon, C. Infrared and Raman spectroscopic study of polyether solutions of sulphamide Part I: Tetraethyleneglycol dimethyl ether and water. *J. Mol. Struct.* **1993**, *301*, 7-19.

(2) Mohaček-Grošev, V.; Furić, K.; Ivanković, H. Observed bands in Raman and infrared spectra of 1,3-dioxolane and their assignments. *Vib. Spectrosc.* **2013**, *64*, 101-107.

(3) Rey, I.; Johansson, P.; Lindgren, J.; Lassègues, J. C.; Grondin, J.; Servant, L. Spectroscopic and Theoretical Study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI). *J. Phys. Chem. A* **1998**, *102*, 3249-3258.

(4) Castriota, M.; Caruso, T.; Agostino, R. G.; Cazzanelli, E.; Henderson, W. A.; Passerini, S. Raman Investigation of the Ionic Liquid
N-Methyl-N-propylpyrrolidinium Bis(trifluoromethanesulfonyl)imide and Its Mixture with LiN(SO2CF3)2. J. Phys. Chem. A 2004, 109, 92-96.

(5) Langseth, A.; So/rensen, J. U.; Nielsen, J. R. Raman Spectrum of Carbon Disulphide. *J. Chem. Phys.* **1934**, *2*, 402-409.

(6) Ito, M. Raman and Infrared Spectra of Crystalline Carbon Disulfide. *J. Chem. Phys.* **1965**, *42*, 815-818.