PET of Follicle-Stimulating Hormone Receptor: Broad Applicability to Cancer Imaging

Hao Hong,¹ Yongjun Yan,^{1,2*} Sixiang Shi,³ Stephen A. Graves,² Lazura K. Krasteva,⁴ Robert J. Nickles,² Min Yang,⁵ Weibo Cai^{1-4,6*}

¹ Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705-2275, United States

² Department of Medical Physics, University of Wisconsin - Madison, Wisconsin 53705-2275, United States

³ Materials Science Program, University of Wisconsin - Madison, Wisconsin 53705-2275, United States

⁴ Department of Biomedical Engineering, University of Wisconsin - Madison, Wisconsin 53705-2275, United States

⁵ Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China

⁶ University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705-2275, United States

* (Y.Y.) Fax: 1-608-265-0614; Tel: 1-608-262-6153; E-mail: <u>yyan26@wisc.edu</u>

(W.C.) Fax: 1-608-265-0614; Tel: 1-608-262-1749; E-mail: wcai@uwhealth.org

Materials and methods

Cell Internalization and Efflux Assays

The radioactivity was measured using a Wizard² gamma-counter (Perkin-Elmer; energy window: 400 - 600 keV). FSHR-positive CAOV-3 cells (5×10^{6} /mL) were incubated at 4 °C for 30 min with 10^{5} cpm/mL of 64 Cu-NOTA-FSHR-mAb. For cell internalization study, the cells were washed three times with cold HBSS and resuspended in complete medium at 4×10^{6} /mL. At serial time points (0.25, 0.5, 1, 1.5, 2, 2.5, and 3 h), 1 mL of the cell suspension was removed from the culture and centrifuged at 14,000×g for 15 s. The cell pellets were then resuspended in 0.5 mL of 0.01 M sodium citrate, 0.14 M NaCl, pH 2 buffer for 2 min at room temperature and then centrifuged at 14,000×g for 15 s. The amount of internalized proteins was calculated by the radioactivity that remained associated with the cells after the wash with pH 2 buffer. All data were presented as mean ± SD using triplicate samples.

For cellular efflux studies, CAOV-3 cells (5×10^{6} /mL) were incubated at 37 °C for 2 h with 10^{5} cpm/mL of 64 Cu-NOTA-FSHR-mAb. The cells were washed three times with cold HBSS and resuspended in complete medium at 4×10^{6} /mL. At serial time points (0.25, 0.5, 1, 1.5, 2, 2.5, and 3 h), 1 mL of the cell suspension was removed from the culture and centrifuged at 14,000×g for 15 s. The radioactivity in the supernatant represents the efflux of 64 Cu-NOTA-FSHR-mAb from CAOV-3 cells at different time points. All data were presented as mean ± SD using triplicate samples.

Results

⁶⁴Cu-NOTA-FSHR-mAb can be internalized rapidly by the cells at earliest time point (0.25 h) but the efflux rate is also significant after 0.5 h (**Figure S1**). More than 40% of intaken ⁶⁴Cu-NOTA-FSHR-mAb was excreted from the CAOV-3 cells at 3 h post-incubation. Only less

than 30% of total 64 Cu-NOTA-FSHR-mAb was taken inside the CAOV-3 (**Figure S1**), indicating that most of 64 Cu-NOTA-FSHR-mAb stayed bound to the surface of CAOV-3 cells.

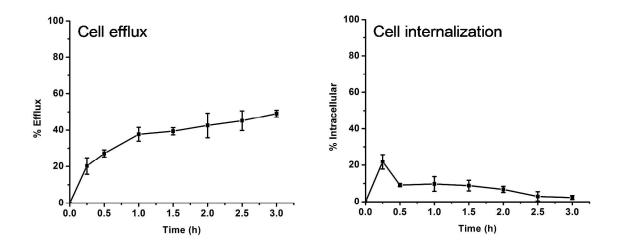


Figure S1 Internalization and efflux of ⁶⁴Cu-NOTA-FSHR-mAb in FSHR-positive CAOV-3 cells.