Liaison between myristoylation and cryptic EF-hand motif confers Ca²⁺ sensitivity to neuronal calcium sensor-1

Vangipurapu Rajanikanth^{1,*}, Anand Kumar Sharma^{1,*}, Meduri Rajyalakshmi¹, Kousik Chandra², Kandala V. R. Chary^{2,3}, and Yogendra Sharma¹

¹CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India; ²Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India; ³Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad, India.

Supplementary Information

Supplementary figure S1. 2D [¹⁵N,¹H] HSQC spectra of non-myristoylated KG and KCPG mutants in the Ca²⁺ (a and b) and Mg²⁺ (c and d) bound form. Spectra demonstrate that both KG and KCPG mutants (n non-myristoylated form) are properly folded in Ca²⁺ bound form and chemical shift dispersion is of similar quality. Mg²⁺ to some extent also increased the dispersion, but not up to the level by Ca²⁺. This dispersion by Ca²⁺ is not seen in myristoylated mutants (refer to Figure 4).

