Supporting Information

Co₃O₄@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors

Xiaowei Wang^a, Minxia Li^a, Zheng Chang^a, Yaqiong Yang^a, Yuping Wu^{a,b*}, Xiang

Liu^{b,*}

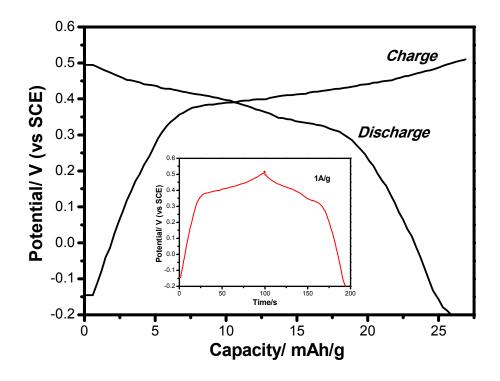
^a New Energy and Materials Laboratory (NEML), Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China

^b College of Energy, Nanjing Tech University, Nanjing 211816, Jiangsu Province,,

China

Experimental details

Commercial MWCNT (multiwall CNTs, outer diameter 10–20 nm) were treated in 6 M HNO₃ for 2 h with sonication to remove the impurities and endow the surface with hydrophilic groups such as –OH and –COOH. After being washed for several times, the as-treated MWCNT were filtered and collected as paper-like pieces.


Coating solution was prepared by dissolving 0.36 mmol $Co(Ac)_2.4H_2O$ into 30 ml distilled water. The MWCNT were dispersed into the aqueous solution, and then 4mL ammonia solution (NH₃.H₂O,

25%) was dropwise added into the mixture solution. The as-obtained mixture was transferred into a 40 mL Teflon-lined stainless steel autoclave and heated at 150 °C for 5 h. After drying at 80 °C for 12 h, a hybrid of Co_3O_4 crystal coating layer on MWCNT was obtained and then calcined at 250 °C in air atmosphere for 2 h. Finally, the targeted Co_3O_4 @MWCNT nanocable was achieved. Meanwhile, hydrothermally prepared nanostructured Co_3O_4 without MWCNT under the same reactive condition was also used for the comparison with the targeted material.

Both the prepared Co_3O_4 @MWCNT nanocable and pristine Co_3O_4 were mixed with acetylene black and poly(tetrafluoroethylene) (PTFE) in a weight ratio of 8:1:1 with the help of ethanol. After drying, the mixture was pressed into a film with an active mass loading of about 6 mg/cm². Next, the film was cut into disks. These disks were pressed onto Ni-grid at a pressure of 10 MPa and then dried at 80 °C overnight to act as working electrodes.

The cyclic voltammetry (CV) data were collected at different scan rates on an electrochemical working station CHI440B (Chenhua). A three-electrode cell consisting of the above working electrode, Ni-grid as the counter electrode and SCE as the reference electrode was used to test the charge/discharge behaviors including rate capability and cycling behavior in 0.5 M KOH aqueous solution on a cell tester (Land).

1. Charge-discharge plot of the hybrid of pristine Co_3O_4 with MWCNT

Figure S1 The charge-discharge plot of the hybrid of pristine Co_3O_4 with MWCNT.

The electrochemical performance of the hybrid containing pristine Co_3O_4 and MWCNT with the same weight amount of Co_3O_4 41.88 wt.% was measured under the same condition of 0.5 mol 1⁻¹ KOH within a smaller electrochemical window between -0.2 V and 0.52 V, compared with that of pristine Co_3O_4 -0.2 V and 0.56 V at a current density of 1 A g⁻¹. The fixed potential range even cannot reach the same level with pristine Co_3O_4 . The hybrid delivers a specific capacity of 25 mAh g⁻¹ at a current density of 1 A g^{-1} , 125 F g^{-1} which is calculated in the same way with Co_3O_4 (a) MWCNT nanocable in this paper, indicating that MWCNT plays very little part to the capacitance increase of the hybrid of Co_3O_4 with MWCNT. This means that the excellent capacitance of Co_3O_4 (a) MWCNT nanocable is mainly derived from the Co₃O₄ while the MWCNT act as an adjuvant to construct a conductive core nanocable to promote the performance of the Co_3O_4 (a) MWCNT nanocable. Also, as it is shown in the inset of Figure S1, the discharge time of the hybrid has been similar to pristine Co_3O_4 for less than 200 s. Moreover, the working electrode material is more and more difficult to be made into a film when the amount of MWCNT increases, so we measured the electrochemical performance of the hybrid containing pristine Co₃O₄ and MWCNT with the same weight amount of Co₃O₄ instead of MWCNT only.

2. Mean absolute deviation and Standard deviation of the capacitance of Co_3O_4 @MWCNT nanocable and pristine Co_3O_4

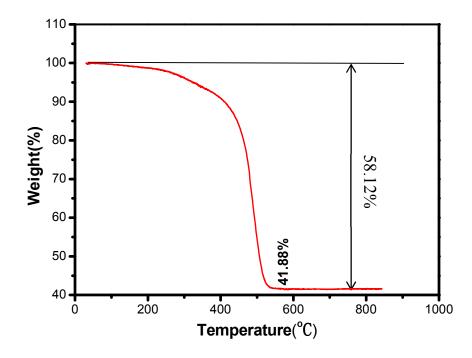

Cell number	Charge capacitance(Discharge capacitance)/ F/g						Mean Absolute	Standard Deviation
Current density	1	2	3	4	5	Mean	Deviation	Deviation
Nanocable (15A/g)	584. 30769	585. 38462	590. 85385	586. 84615	586. 15385	586. 70923	1.52592	2.50135
	(583. 41)	(584. 373)	(589. 12)	(585. 86)	(585. 15)	(585. 5826)	(1.40308)	(1.99585)
Nanocable (20A/g)	567. 69231	565.38462	562.61538	565.84615	567.23077	565.75385	1.99385	2.85632
	(558. 46154)	(559.3077)	(558.7692)	(559.4615)	(562.1534)	(560.631)	(1.71262)	(2.17719)
Nanocable (30A/g)	548.30769	542.30769	543.69231	548.76923	547.84615	546. 18462	4.34462	5.09484
	(543.6923)	(536.7692)	(539.0769)	(538.1538)	(536.7692)	(538. 89231)	(2.54769)	(2.96608)
Nanocable (50A/g)	552.46154	560.76923	550.46154	561.69231	553.61538	555.8	4.5415	5.31671
	(538.53846)	(543.6923)	(536.3077)	(546.4615)	(539.3846)	(540.8769)	(3.36)	(4.11362)
Nanocable (80A/g)	515.07692	510.92308	508.84615	509.76923	515.53846	512.03077	2.62154	3.08489
	(510.76923)	(505.6923)	(502.6154)	(505.8462)	(505.3077)	(506.0462)	(1.8892)	(2.9491)
Nanocable (100A/g)	513.23077	510.92308	513.23077	505.23077	513.61538	511.24615	2.53538	3.52774
	(512)	(502.1538)	(511.8462)	(500.3077)	(508.1538)	(506.8923)	(4.5292)	(5.4321)
Pristine Co3O4(1A/g)	125.52632	125.52632	126	125.05263	125.05263	125.43158	0.30316	0.39631
	(121.2632)	(121.2632)	(120.3158)	(121.2632)	(121.2632)	(121.0737)	(0.30316)	(0.4237)
Pristine Co3O4(3A/g)	109.42105 (108.4737)	109.42105 (106.579)	107.52632 (108.4737)	108.47368 (105.1579)	108 (108)	108.56842 (107.3368)	0.68211 (1.1747)	0.84735 (1.4445)
Pristine Co3O4(5A/g)	103.89474	104.68421	102.78947	103.26316	103.26316	103.57895	0.56842	0.73213
	(102.3158)	(103.7368)	(103.7368)	(102.7895)	(100.8947)	(102.6947)	(0.8716)	(1.1795)
Pristine Co3O4(8A/g)	99 (98.5263)	98.05263 (93.7895)	98.10526 (97.0526)	99.57895 (97.4737)	98.52632 (97.579)	98.65263 (96.8842)	0.50947 (1.2379)	0.6431 (1.8119)
Pristine Co3O4(1OA/g)	94. 26316 (92. 3684)	93. 31579 (91. 8947)	94. 78947 (93. 2632)	93. 31579 (90. 9474)	94. 89474 (91. 2632)	94. 11579 (91. 9474)	0.64 (0.6947)	0.76849 (0.9192)

Table S1 Mean absolute deviation (MAD) and Standard deviation (SD) of the capacitance of Co_3O_4 @MWCNT nanocable and pristine Co_3O_4

Each datum was obtained with 5 cells, which is summerized in the above Table S1. In the case of pristine Co_3O_4 , the highest mean absolute deviation and standard deviation of the charge and discharge capacitances are 0.6821 (1.2379) and 0.84735 (1.8119), respectively. As to

 Co_3O_4 @MWCNT nanocable, the highest mean absolute deviation and standard deviation of charge and discharge capacitances are 4.5415 (4.5292) and 5.3167 (5.4321). All the results imply the reliability and validity of the specific capacitance data.

3. Thermogravimetric analysis (TG) of Co₃O₄@MWCNT

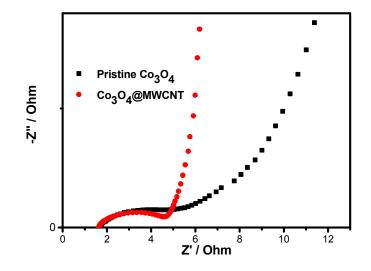


Figure S2 Thermogravimetric analysis (TG) of Co₃O₄@MWCNT in air atmosphere from 10 °C-800 °C at a rate of 10 °C/min.

The mass of Co_3O_4 @MWCNT sample is 6.0370 mg. Along with the increase of temperature, Co_3O_4 is remained when MWCNT is completely burnt after 550 °C. Therefore, the mass ratio of Co_3O_4 in the prepared

nanocable is determined (41.88%).

4. Nyquist plot of Co₃O₄@MWCNT and the pristine Co₃O₄

Figure S3. Nyquist plot of Co_3O_4 @MWCNT and the pristine Co_3O_4 before charge in 0.5 M KOH aqueous solution. The mass loading is 6.33 mg/cm², which is the same as that of electrodes for cycling, and the frequency range is 0.01 Hz – 10000 Hz.