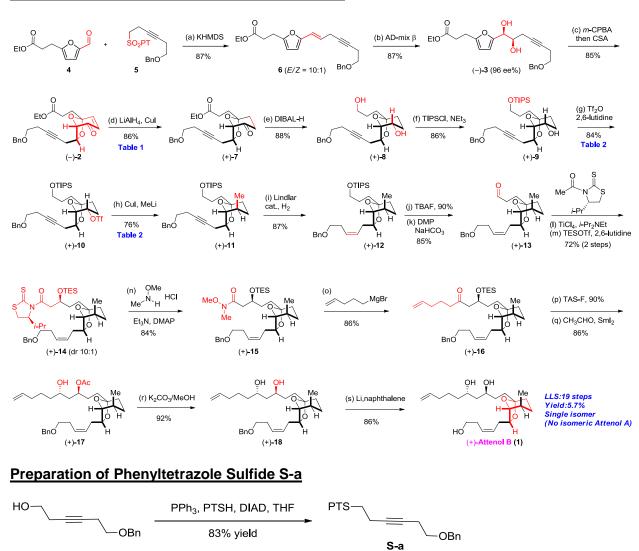
Supporting Information

Asymmetric Total Synthesis of (+)-Attenol B

Jingyun Ren, Jian Wang and Rongbiao Tong*

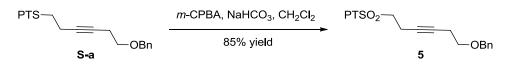

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

rtong@ust.hk

Table of Contents

General Information	S-2
Preparation of Phenyltetrazole Sulfide S-a	S-3
Preparation of Phenyltetrazole Sulfone 5	S-4
Preparation of Alkene 6 via Julia-Kocienski Olefination	S-4
Preparation of Diol (-)-3 via Sharpless Asymmetric Dihydroxylation	S-5
Preparation of 6,8-Dioxabicyclo[3.2.1]octane (-)-2 via Sequential Achmatowicz	S-7
Rearrangement/Bicycloketalization	
Preparation of Bicyclic Ketone (+)-7 via Chemoselctive Conjugate Reduction	S-8
Preparation of Diol (+)-8 by DIBAL-H Reduction	S-9
Preparation of Compound (+)-9	S-10
Preparation of Compound (+)-11 via S _N 2 Substitution	S-11
Preparation of <i>cis</i> -Alkene (+)-12 via Lindlar-Catalyzed Hydrogenation	S-13
Preparation of Compound (+)-S-b	S-13
Preparation of Aldehyde (+)-13 via Dess-Martin Periodinane Oxidation	S-14
Preparation of Compound (+)-14 via Asymmetric Acetate Aldol Reaction	S-15
Preparation of Weinreb Amide (+)-15	S-16
Preparation of Ketone (+)-16 via Grignard Addition	S-17
Preparation of Alcohol (+)-S-e	S-18
Preparation of 1,3-anti-Diol (+)-17 via Evans-Tishchenko reaction	S-18
Preparation of 1,3-anti-Diol (+)-18	S-19
Total Synthesis of (+)-Attenol B	S-20
Equilibration of (-)-Attenol A and (+)-Attenol B in CDCl ₃	S-20
Spectroscopic Data Comparison of (+)-Attenol B	S-21
Spectroscopic Data Comparison of (-)-Attenol A	S-24
¹ H NMR and ¹³ C NMR	S-27

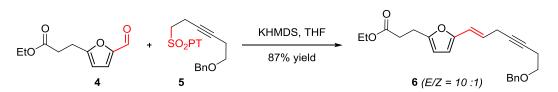
General Information: Reactions were carried out in oven or flame-dried glassware under a nitrogen atmosphere, unless otherwise noted. Tetrahydrofuran (THF) was freshly distilled before use from sodium using benzophenone as indicator. Dichloromethane (CH₂Cl₂) was freshly distilled before use from calcium hydride (CaH₂). All other anhydrous solvents were dried over 3Å or 4Å molecular sieves. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC, 0.25 mm) on Merck precoated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size 0.040 - 0.062 mm) supplied by Grace. Infrared spectra were collected on a Bruker model TENSOR27 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). Chemical shifts are reported in parts per million (ppm) as values relative to the internal chloroform (7.26 ppm for ¹H and 77.16 ppm for ¹³C) and benzene (7.16 ppm for ¹H and 128.06 ppm for ¹³C). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Optical rotations were measured on a JASCO Perkin-Elmer model P-2000 polarimeter. High resolution mass spectra were measured at the Hong Kong University of Science and Technology Mass Spectrometry Service Center on either an Agilent GC/MS 5975C System or an API QSTAR XL System. HPLC (Agilent technologies, 1260 Infinity) was used to determine enantiomeric excess of chiral compounds with eluents of hexane/i-PrOH.



Asymmetric Total Synthesis of (+)-Attenol B

To a solution of 6-(benzyloxy)hex-3-yn-1-ol (8.19 g, 40.0 mmol) in THF (400 mL) at 0 °C were added PPh₃ (15.8 g, 60.0 mmol), 1-phenyl-1H-tetrazole-5-thiol (PTSH, 10.7 g, 60.0 mmol) and diisopropyl azodicarboxylate (DIAD, 12.1 g, 60.0 mmol). The reaction mixture was stirred at room temperature for 6 h and then the solvent was evaporated directly in vacuo. The residue was dissolved in saturated aqueous NH₄Cl (100 mL) and extracted with CH₂Cl₂ ($3 \times 100 \text{ mL}$). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to afford the desired sulfide product **S-a** (12.1 g, 33.2 mmol, 83% yield) as colorless oil.

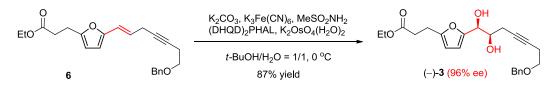
IR (neat, cm⁻¹): 3063, 3031, 2934, 1728, 1499, 1238, 1077, 762, 696. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.57 – 7.54 (m, 5H), 7.40 – 7.24 (m, 5H), 4.53 (s, 2H), 3.52 (dt, *J* = 11.8, 6.9 Hz, 4H), 2.76 (t, *J* = 6.8 Hz, 2H), 2.46 (t, *J* = 6.9 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ : 154.1, 138.2, 133.7, 130.3 (2 × C), 129.9 (2 × C), 128.5 (2 × C), 127.8 (2 × C), 123.9 (2 × C), 79.6, 78.2, 73.0, 68.6, 32.7, 20.3, 19.8. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₀H₂₁N₄OS, [M+H]⁺ 365.1431, found 365.1418.


Preparation of Phenyltetrazole Sulfone 5

To a solution of **S-a** (12.1 g, 33.2 mmol) in CH₂Cl₂ (500 mL) were added NaHCO₃ (13.9 g, 166 mmol) and 3-chloroperbenzoic acid (*m*-CPBA, 13.5 g, 66.4 mmol, ca. 85 wt%) at 0 °C. The reaction mixture was stirred overnight at room temperature. The reaction was quenched by addition of saturated aqueous Na₂SO₃ solution (100 mL). The organic layer was collected and the aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic fractions were washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to afford the desired sulfone product **5** (11.2 g, 28.2 mmol, 85% yield) as colorless oil.

IR (neat, cm⁻¹): 3034, 3031, 2932, 1725, 1407, 1354, 1232, 1108, 739, 694. ¹H NMR (400 MHz, CDCl₃) δ : 7.72 – 7.54 (m, 5H), 7.40 – 7.27 (m, 5H), 4.54 (s, 2H), 3.84 (t, *J* = 7.4 Hz, 2H), 3.51 (t, *J* = 6.8 Hz, 2H), 2.85 (t, *J* = 7.0 Hz, 2H), 2.40 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 153.3, 138.1, 133.0, 131.6 (2 × C), 129.8 (2 × C), 128.5 (2 × C), 127.8 (2 × C), 125.3 (2 × C), 80.7, 75.0, 73.0, 68.2, 54.9, 20.1, 13.7. HRMS (TOF, Cl⁺) m/z calculated for C₂₀H₂₁N₄O₃S, [M+H]⁺ 397.1329, found 397.1322.

Preparation of Alkene 6 via Julia-Kocienski Olefination

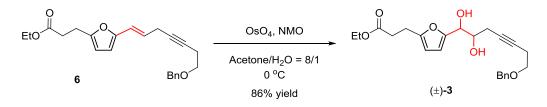


To a solution of sulfone **5** (11.2 g, 28.2 mmol) in dried THF (300 mL) at -78 °C, was added potassium bis(trimethylsilyl)amide (KHMDS, 0.5 M in toluene, 67.6 mL, 33.8 mmol) slowly. The

reaction mixture was stirred at -78 °C for 30 min and the aldehyde **4**¹ (8.67 g, 45.0 mmol) was added very slowly. After the completion of addition, the reaction mixture was stirred at -78 °C for additional 2 h. Then, the reaction was quenched by addition of saturated aqueous NH₄Cl (50 mL). The organic phase was collected and the aqueous phase was extracted with Et₂O (3 x 100 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 20:1) to afford the desired alkene product **6** (9.00 g, 24.5 mmol, 87% yield, ratio of *E/Z* isomers 10/1) as a pale yellow oil.

IR (neat, cm⁻¹): 3030, 2981, 2866, 1733, 1678, 1299, 1187, 795, 739. ¹H NMR (400 MHz, CDCl₃) δ : 7.39 – 7.31 (m, 4H), 7.30 – 7.26 (m, 1H), 6.40 (d, *J* = 15.7 Hz, 1H), 6.09 – 6.01 (m, 2H), 5.98 (d, *J* = 2.7 Hz, 1H), 4.57 (s, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.60 (t, *J* = 7.0 Hz, 2H), 3.07 (d, *J* = 3.0 Hz, 2H), 2.95 (t, *J* = 7.6 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.54 (t, *J* = 7.0 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 172.6, 153.6, 151.6, 138.3, 128.5 (2 × C), 127.8, 127.7 (2 × C), 122.6, 119.7, 108.0, 107.1, 79.6, 77.8, 73.0, 68.8, 60.6, 32.8, 23.7, 22.1, 20.3, 14.3. HRMS (TOF, Cl⁺) m/z calculated for C₂₃H₂₇O₄, [M+H]⁺ 367.1904, found 367.1907.

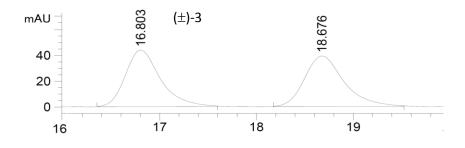
Preparation of Diol (-)-3 via Sharpless Asymmetric Dihydroxylation of Alkene 6

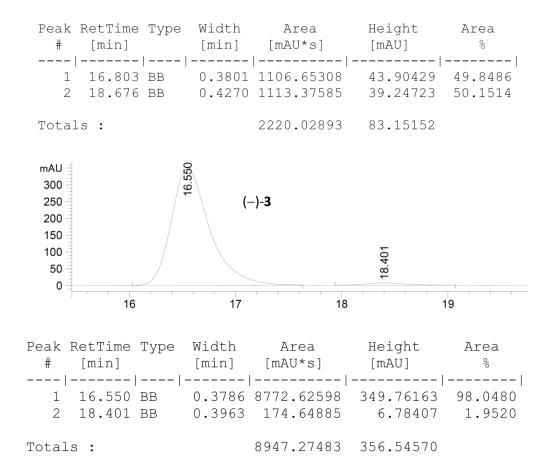


To a solution of alkene **6** (9.00 g, 24.5 mmol) in *t*-BuOH/H₂O (1/1, 100mL/100mL) solution at 0 °C were added sequentially K₂CO₃ (10.1 g, 73.5 mmol), K₃Fe(CN)₆(24.2 g, 73.5 mmol), (DHQD)₂PHAL(190 mg, 0.245 mmol) and K₂OsO₄·(H₂O)₂ (92.0 mg, 0.245 mmol) and MeSO₂NH₂(2.33 g, 24.5 mmol). The reaction mixture was stirred at 0 °C for 4 days. The reaction was quenched by addition of saturated aqueous Na₂SO₃ (50 mL). The organic phase was collected and the aqueous phase was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the desired diol (–)-**3** (8.52 g, 21.3 mmol, 87% yield, 96 ee%) as a yellow oil.

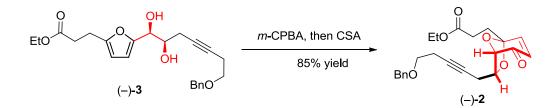
¹ (a) Zhu, L.; Song, L.; Tong, R. *Org. Lett.* **2012**, *14*, 5892-5898. (b) Ren, J.; Tong, R. *J. Org. Chem.* **2014**, *79*, 6987-6995.

[α]²⁰_D = -13.4 (*c* 1.00, CHCl₃). **IR** (neat, cm⁻¹): 3421, 3034, 2914, 2868, 1731, 1156, 1018, 790, 743, 699. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.35 – 7.31 (m, 4H), 7.31 – 7.27 (m, 1H), 6.23 (d, *J* = 3.1 Hz, 1H), 5.97 (d, *J* = 3.1 Hz, 1H), 4.61 (d, *J* = 5.9 Hz, 1H), 4.55 (s, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.99 (dd, *J* = 11.5, 6.1 Hz, 1H), 3.57 (t, *J* = 6.8 Hz, 2H), 2.93 (d, *J* = 7.6 Hz, 2H), 2.63 (t, *J* = 7.6 Hz, 2H), 2.51 – 2.46 (m, 2H), 2.45 – 2.40 (m, 1H), 2.35 – 2.27 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 172.6, 154.2, 152.1, 138.0, 128.5 (3 × C), 127.8 (2 × C), 108.7, 106.2, 80.0, 77.4, 73.0, 71.7, 69.9, 68.6, 60.7, 32.7, 23.8, 23.6, 20.3, 14.3. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₃H₃₂NO₆, [M+NH₄]⁺ 418.2224, found 418.2235.


Preparation of Racemic Diol (±)-3 via Upjohn Oxidation of Alkene 6


Following the procedure described in the literature², to a solution of alkene **6** (37 mg, 0.10 mmol) in acetone/H₂O (0.8 mL/0.1mL) solution at 0 °C were added OsO₄ solution (17 mg, 0.0013 mmol, ca. 2.0 wt% in water) and 4-methylmorpholine N-oxide (NMO, 18 mg, 0.15 mmol). After 2 h, the reaction was quenched by addition of saturated aqueous Na₂SO₃ (2 mL). The organic phase was collected and the aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic fractions were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the desired diol-product (±)-**3** (34 mg, 0.086 mmol, 86% yield) as a yellow oil.

HPLC Data of Diol 3


HPLC conditions: Daicel CHIRALPAK AD-H column; 10% i-PrOH in hexanes; 1.0 mL/min

² For a review in dihydroxylation, see: Schröder, M. *Chem. Rev.* **1980**, *80*, 187-213. For a representative example, see: Molander, G. A.; Figueroa, R. *Org. Lett.* **2006**, *8*, 75-78.

Preparation of 6,8-Dioxabicyclo[3.2.1]octane (–)-2 via Sequential Achmatowicz Rearrangement/Bicycloketalization of (–)-3

To a solution of diol (–)-**3** (8.52 g, 21.3 mmol) in CH_2CI_2 (50 mL) was added 3chloroperbenzoic acid (*m*-CPBA, 5.40 g, 27.0 mmol, ca. 85.0 wt%) at 0 °C. The reaction mixture was stirred at 0 °C for 2 h, and then CSA (5.10 g, 22.0 mmol) was added. The reaction mixture was stirred at 0 °C for additional 20 min. Then the reaction was quenched by addition of saturated aqueous $Na_2S_2O_3$ (30 mL) and $NaHCO_3$ solution (30 mL). The organic phase was collected and the aqueous phase was extracted with CH_2CI_2 (3 x 50 mL). The combined organic fractions were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to afford the desired product (–)-2 (7.20 g, 18.1 mmol, 85% yield) as a yellow oil.

 $[\alpha]_{D}^{20} = -15.2$ (*c* 0.80, CHCl₃). **IR** (neat, cm⁻¹): 3031, 2933, 1732, 1703, 1314, 1181, 1096, 1012, 897, 699, 680. ¹H **NMR** (400 MHz, CDCl₃) δ : 7.35 – 7.32 (m, 4H), 7.32 – 7.27 (m, 1H), 6.97 (d, *J* = 9.8 Hz, 1H), 6.04 (dd, *J* = 9.8, 1.3 Hz, 1H), 4.55 (s, 3H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.99 – 3.89 (m, 1H), 3.57 (t, *J* = 6.9 Hz, 2H), 2.63 – 2.38 (m, 6H), 2.33 (t, *J* = 7.5 Hz, 2H), 1.27 (d, *J* = 7.1 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ : 194.3, 172.9, 150.2, 138.2, 128.5 (2 × C), 127.8 (2 × C), 127.8, 126.6, 105.1, 83.9, 80.1, 75.7, 74.6, 73.1, 68.6, 60.8, 29.5, 27.3, 24.2, 20.2, 14.3. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₃H₂₇O₆, [M+H]⁺ 399.1802, found 399.1795.

Preparation of Bicyclic Ketone (+)-7 via Chemoselctive Reduction of Enone (-)-2

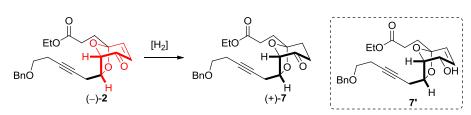
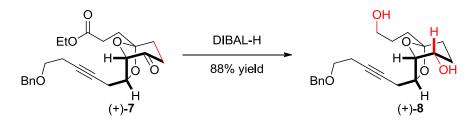


Table S1

Entry	[H ₂]	Temp (°C)	Time	Yield (7 ,%)
1	TiCl ₄ /Hantzsch ester	$-78 \rightarrow 60$	8 h	<5
2	TFA/Hantzsch ester	$-78 \rightarrow 60$	8 h	<5
3	L-selectride	-78	2 h	<20 ^b
4 ^a	MeLi/Cul, DIBAL-H	-78	10 min	0 ^b
5 ^a	Cul/DIBAL-H	$-78 \rightarrow rt$	4 h	0
6 ^a	Cul/LiAlH ₄	-78	10 min	86

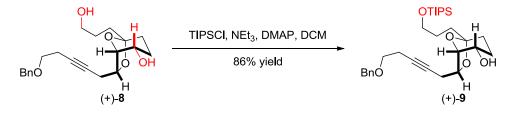

Note: ^a THF/HMPA = 4/1 as the solvent. ^b Compound **7'** was isolated as a major or only product. TFA: trifluoroacetic acid; DIBAL-H: diisobutylaluminum hydride.

Based on the results in Table **S1**, we performed the conjugate reduction on a gram scale under the condition of the entry 6 to achieve the desired product (+)-7. Flame-dried CuI was dissolved in HMPA at 50 °C, and the solution was cooled to room temperature. To a vigorously stirred suspension of LiAlH₄ (1.21 g, 32.0 mmol) in anhydrous THF (200 mL) was added dropwise the solution of CuI (6.08 g, 32.0 mmol) in HMPA (30 mL) at -78 °C. The generated orange suspension gradually turned to brown. The stirring continued for additional 1 h, and then enone (-)-2 (6.36 g, 16.0 mmol) in anhydrous THF (20 mL) was added dropwise at the same

temperature. Within 10 min, the enone was completely consumed. The reaction mixture was quenched with an aqueous saturated solution of NH₄Cl (5 mL) at -78 °C, and the resulting mixture was warmed to room temperature. The reaction mixture was filtered through a pad of silica gel, which was washed with EtOAc (200 mL). The combined filtrates were washed with water (200 mL) and brine (20 mL), dried with anhydrous Na₂SO₄, and filtered. The solvents were evaporated under reduced pressure to give the crude product, which was purified by column chromatography (hexane/EtOAc, 9:1) to give bicyclic ketone (+)-**7** (5.50 g, 13.7 mmol, 86%) as a colorless oil.

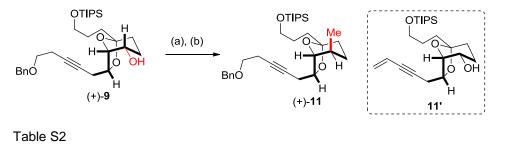
[α] $_{D}^{20}$ = +10.2 (*c* 0.75, CHCl₃). **IR** (neat, cm⁻¹): 2979, 2935, 2863, 1732, 1221, 1112, 1076, 743, 699. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.35 (d, *J* = 4.0 Hz, 4H), 7.32 – 7.26 (m, 1H), 4.55 (s, 2H), 4.32 (s, 1H), 4.19 – 4.13 (m, 3H), 3.56 (t, *J* = 6.8 Hz, 2H), 2.60 – 2.33 (m, 8H), 2.23 – 2.19 (m, 2H), 2.15 – 2.04 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 204.9, 173.1, 138.2, 128.4 (2 × C), 127.8 (2 × C), 127.7, 109.3, 83.3, 79.9, 77.6, 75.8, 73.0, 68.6, 60.6, 34.5, 32.5, 31.4, 28.2, 24.6, 20.2, 14.3. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₃H₃₂NO₆, [M+NH₄]⁺ 418.2224, found 418.2221.

Preparation of Diol (+)-8 by DIBAL-H Reduction of Bicyclic Ketone (+)-7



To a solution of bicyclic ketone (+)-7 (5.00 g, 12.5 mmol) in CH_2CI_2 (100 mL) at -78 °C was added diisobutylaluminum hydride solution (DIBAL-H, 1.0 M, 62.5 mL, 62.5 mmol) dropwise. After stirring at -78 °C for 2 h, the reaction was quenched by addition of saturated aqueous Rochelle salt (sodium potassium tartrate) solution (50 mL). The organic phase was collected and the aqueous phase was extracted with CH_2CI_2 (3 x 20 mL). The combined organic fractions were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to afford desired diol (+)-8 (3.96 g, 11.0 mmol, 88% yield) as a yellow oil.

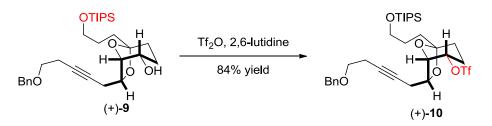
 $[\alpha]_{D}^{20}$ = +9.80 (*c* 0.72, CHCl₃). **IR** (neat, cm⁻¹): 3476, 3031, 2873, 1642, 1435, 1076, 1059, 1027, 799, 738. ¹H NMR (400 MHz, C₆D₆) δ : 7.25 (t, *J* = 8.2 Hz, 2H), 7.20 (t, *J* = 8.2 Hz, 2H), 7.10 (t, *J* = 7.1 Hz, 1H), 4.53 (dd, *J* = 8.3, 5.7 Hz, 1H), 4.27 (s, 2H), 4.20 (d, *J* = 3.1 Hz, 1H), 3.70 (s, 1H),


3.47 (d, J = 6.1 Hz, 2H), 3.41 – 3.35 (m, 2H), 2.53 – 2.34 (m, 4H), 2.08 (br s, 1H), 1.80 – 1.60 (m, 6H), 1.55 – 1.38 (m, 2H). ¹³**C NMR** (100 MHz, C₆D₆) δ : 138.7, 128.6, 128.3, 128.1, 128.0, 127.8, 109.4, 81.0, 79.5, 78.0, 74.9, 72.8, 69.0, 66.1, 62.7, 34.0, 33.6, 26.8, 26.6, 25.7, 20.4. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₁H₂₉O₅, [M+H]⁺ 361.2010, found 361.2002.

Preparation of Compound (+)-9

To a solution of (+)-8 (3.60 g, 10.0 mmol) in dry CH_2Cl_2 (200 mL) at 0 °C were added triethylamine (NEt₃, 1.51 g, 15.0 mmol), triisopropylsilyl chloride (TIPSCI, 2.09 g, 11.0 mmol) and 4-(dimethylamino)pyridine (DMAP, 122 mg, 1.00 mmol). After the completion of addition, the reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched by addition of water (60 mL). The organic phase was collected and the aqueous phase was extracted with CH_2Cl_2 (3 x 80 mL). The combined organic fractions were washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 4:1) to afford the desired product (+)-9 (4.43 g, 8.60 mmol, 86% yield) as a colorless oil.

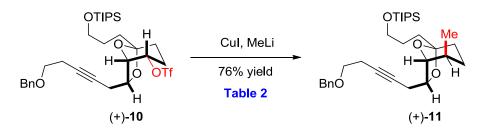
[α]²⁰_D = +24.2 (*c* 1.00, CHCl₃). **IR** (neat, cm⁻¹): 3440, 2958, 2865, 1512, 1288, 1100, 1027, 800, 733. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.38 – 7.28 (m, 5H), 4.53 (d, *J* = 3.5 Hz, 2H), 4.33 (dd, *J* = 9.1, 5.3 Hz, 1H), 4.14 (d, *J* = 3.1 Hz, 1H), 3.82 – 3.79 (m, 1H), 3.69 (t, *J* = 6.1 Hz, 2H), 3.61 – 3.52 (m, 2H), 2.49 – 2.36 (m, 3H), 2.28 (dd, *J* = 16.1, 9.2 Hz, 1H), 2.19 (br s, 1H), 1.90 (t, *J* = 6.0 Hz, 1H), 1.76 – 1.61 (m, 7H), 1.10 – 1.03 (m, 21H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 138.0, 128.6 (2 × C), 128.0, 127.9, 127.8, 109.4, 80.5, 79.1, 77.6, 74.6, 72.9, 68.8, 66.0, 63.4, 33.8, 33.1, 26.8, 26.1, 25.2, 20.1, 18.1 (6 × C), 12.1 (3 × C). **HRMS** (TOF, Cl⁺) m/z calculated for $C_{30}H_{49}O_5Si$, [M+H]⁺ 517.3344, found 517.3331.


Preparation of Compound (+)-11 via S_N2 Substitution of 9 with Methyl Nucleophile

Entry	(a)	(b)	Temp (°C)	Time	Yield (11,%)
1	Ms ₂ O	MeLi	$-20 \rightarrow 60$	4 h	0 ^a
2	Ms ₂ O	Me ₂ CuLi	$-20 \rightarrow rt$	4 h	0 ^b
3	Ms ₂ O	MeMgBr/CuBr-Me ₂ S	$-20 \rightarrow rt$	4 h	0 ^{b,c}
4	TsCl	MeLi	$-20 \rightarrow rt$	4 h	0 ^c
5	TsCl	Me ₂ CuLi	$-20 \rightarrow rt$	4 h	0 ^c
6	Picolinate	MeMgBr/ZnCl₂/CuBr- Me₂S	$-20 \rightarrow rt$	2 h	0 ^a
7	Tf ₂ O	MeLi/Cul	$-10 \rightarrow rt$	4 h	64 ^d

Note: ^a No S_N^2 substitution reaction occurred at -20 °C to 0 °C, and decomposition was observed at reflux. ^b Starting material **9** was isolated probably due to desulfonation by methyl nucleophile. ^c **11'** was isolated as the major product. ^d Isolated yield for two steps

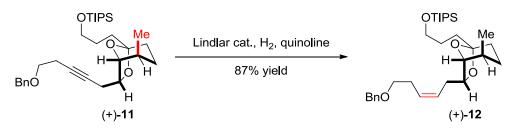
Based on the results in Table **S2**, we performed S_N2 substitution of **9** with methyl nucleophile on a gram scale under the conditions of the entry 7 to achieve the desired product (+)-**11**.


Preparation of Compound (+)-10

To a solution of (+)-**9** (4.12 g, 8.00 mmol) in dry CH_2Cl_2 (100 mL) at -78 °C were added 2,6lutidine (1.03 g, 9.60 mmol) and trifluoromethanesulfonic anhydride (Tf₂O, 1.0 M in CH₂Cl₂, 9.60 mL, 9.60 mmol). After the completion of addition, the reaction mixture was stirred for 30 min at -78 °C. The reaction was quenched by addition of saturated aqueous NaHCO₃ solution (60 mL). The organic phase was collected and the aqueous phase was extracted with CH₂Cl₂ (3 x 80 mL). The combined organic fractions were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to afford the desired product (+)-**10** (4.35 g, 6.72 mmol, 84% yield) as a colorless oil.

[α]²⁰_D = +8.20 (*c* 0.80, CHCl₃). **IR** (neat, cm⁻¹): 2942, 2892, 1416, 1210, 1146, 938, 883. ¹**H NMR** (400 MHz, C₆D₆) δ: 7.27 (d, *J* = 7.5 Hz, 2H), 7.19 – 7.16 (m, 2H), 7.09 (t, *J* = 7.1 Hz, 1H), 4.85 – 4.73 (m, 1H), 4.38 (d, *J* = 3.4 Hz, 1H), 4.33 (s, 2H), 4.17 (dd, *J* = 9.8, 4.9 Hz, 1H), 3.59 (d, *J* = 5.8 Hz, 2H), 3.47 (t, *J* = 7.1 Hz, 2H), 2.44 (t, *J* = 7.0 Hz, 2H), 2.34 (d, *J* = 14.0 Hz, 1H), 2.24 – 2.14 (m, 1H), 1.80 – 1.59 (m, 5H), 1.53 – 1.49 (m, 1H), 1.39 – 1.21 (m, 2H), 1.16 – 0.91 (m, 21H). ¹³**C NMR** (100 MHz, C₆D₆) δ: 139.0, 128.5, 128.3, 128.1 (2 × C), 127.8, 127.7, 109.8, 82.6, 80.3, 77.6, 76.1, 75.3, 72.9, 68.9, 63.4, 34.2, 33.0, 27.1, 25.0, 23.9, 20.4, 18.3 (6 × C), 12.3 (3 × C). **HRMS** (TOF, Cl⁺) m/z calculated for C₃₁H₄₇F₃O₇SSi, [M]⁺ 648.2758, found 648.2771.

Preparation of Compound (+)-11 via S_N2 substitution of (+)-10


To a stirred suspension of Cul (1.90 g, 10.0 mmol) in THF (20 mL) at 0 °C was added methyllithium (1.60 M, 12.5 mL, 20.0 mmol) dropwise. After 30 min a solution of (+)-**10** (4.35 g, 6.72 mmol) in THF (50 mL) was added dropwise. The resulting yellow suspension was stirred at 0 °C for 1 h. The reaction was quenched by addition of saturated aqueous NH₄Cl solution (60 mL). The organic phase was collected and the aqueous phase was extracted with CH_2Cl_2 (3 x 80 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to afford the desired product (+)-**11** (2.62 g, 5.10 mmol, 76% yield) as a colorless oil.

(+)-11: $[\alpha]_D^{20} = +18.0 \ (c \ 1.00, \ CHCl_3)$. **IR** (neat, cm⁻¹): 3030, 2890, 1432, 1103, 1039, 969, 734. ¹H NMR (400 MHz, CDCl₃) δ : 7.37 – 7.31 (m, 4H), 7.31 – 7.26 (m, 1H), 4.54 (s, 2H), 4.08 (dd, J = 8.8, 5.4 Hz, 1H), 4.02 (s, 1H), 3.69 (t, J = 6.0 Hz, 2H), 3.55 (t, J = 7.0 Hz, 2H), 2.46 (t, J = 4.7 Hz, 2H), 2.38 (dd, J = 5.1, 2.4 Hz, 1H), 2.32 – 2.20 (m, 1H), 2.04 – 2.00 (m, 1H), 1.79 – 1.62 (m, 6H), 1.46 (dd, J = 13.4, 5.7 Hz, 1H), 1.38 – 1.25 (m, 1H), 1.12 (d, J = 7.1 Hz, 3H), 1.09 – 0.95

S-12

(m, 21H). ¹³**C NMR** (100 MHz, CDCl₃) $\overline{0}$: 138.3, 128.5 (2 × C), 127.8 (3 × C), 110.3, 82.8, 78.9, 78.4, 77.7, 73.1, 68.9, 63.6, 34.1, 31.3, 30.4, 26.6, 25.6, 23.4, 20.3, 18.2 (6 × C), 17.2, 12.1 (3 × C). **HRMS** (TOF, Cl⁺) m/z calculated for C₃₁H₅₁O₄Si, [M+H]⁺ 515.3551, found 515.3541.

Preparation of cis-Alkene (+)-12 via Lindlar-Catalyzed Hydrogenation of (+)-11

To a solution of alkyne (+)-**11** (2.62 g, 5.10 mmol) in ethyl acetate was added Lindlar catalyst (540 mg, 0.255 mmol, 5.00 wt% Pd) and quinoline (1.97 g, 15.3 mmol) under N₂ (g) at room temperature. The reaction flask was flushed by H₂ (balloon) for 10 min, and then the gas outlet was closed and the reaction mixture was stirred under H₂ (balloon, 1 atm) atmosphere at room temperature for 2 h before filtration through celite. The solvent (EtOAc) was removed under reduced pressure and the resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 8:1) to afford (+)-**12** (2.29 g, 4.43 mmol, 87% yield) as a yellow oil.

 $[\alpha]_D^{20}$ = +25.8 (*c* 0.80, CHCl₃). **IR** (neat, cm⁻¹): 3034, 3027, 2891, 1585, 1173, 969, 733. ¹H NMR (400 MHz, CDCl₃) δ : 7.34 – 7.31 (m, 4H), 7.31 – 7.26 (m, 1H), 5.59 – 5.45 (m, 2H), 4.51 (s, 2H), 3.99 (t, *J* = 6.8 Hz, 1H), 3.87 (s, 1H), 3.71 (t, *J* = 5.6 Hz, 2H), 3.49 (t, *J* = 6.8 Hz, 2H), 2.40 (q, *J* = 6.6 Hz, 2H), 2.26 (tq, *J* = 14.1, 7.1 Hz, 2H), 2.11 – 1.94 (m, 1H), 1.78 – 1.67 (m, 5H), 1.65 – 1.56 (m, 1H), 1.46 (dd, *J* = 13.3, 5.7 Hz, 1H), 1.30 (dd, *J* = 13.6, 4.9 Hz, 1H), 1.10 (d, *J* = 6.9 Hz, 3H), 1.08 – 0.96 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ : 138.6, 128.5 (2 × C), 127.7 (2 × C), 127.6 (2 × C), 127.0, 109.7, 82.9, 80.1, 73.0, 69.9, 63.7, 34.3, 33.8, 31.4, 30.4, 28.3, 26.8, 23.4, 18.2 (6 × C), 17.2, 12.1 (3 × C). HRMS (TOF, Cl⁺) m/z calculated for C₃₁H₅₃O₄Si₁ [M+H]⁺ 517.3708, found 517.3706.


Preparation of Compound (+)-S-b

To a solution of the (+)-**12** (2.29 g, 4.43 mmol) in THF (50 mL) at 0 °C was added tetrabutylammonium fluoride hydrate solution (TBAF, 1.0 M in THF, 6.65 mL 6.65 mmol). The reaction was allowed to warm to room temperature. After 1 h, the reaction was quenched by addition of a saturated aqueous NH₄Cl solution (20 mL). The organic phase was collected and the aqueous phase was extracted with Et₂O (3 x 50 mL). The combined organic fractions were washed with water and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to afford (+)-**S-b** (1.43 g, 3.99 mmol, 90% yield) as a colorless oil.

[α]²⁰_D = +10.6 (*c* 0.50, CHCl₃). **IR** (neat, cm⁻¹): 3432, 3063, 2870, 1495, 1453, 1250, 1107, 969, 734, 698. ¹**H NMR** (400 MHz, C₆D₆) δ: 7.34 – 7.24 (m, 2H), 7.24 – 7.16 (m, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 5.64 – 5.44 (m, 2H), 4.32 (s, 2H), 3.85 (t, *J* = 6.8 Hz, 1H), 3.74 (s, 1H), 3.55 (s, 2H), 3.32 (t, *J* = 6.7 Hz, 2H), 2.38 – 2.34 (m, 2H), 2.34 – 2.24 (m, 2H), 1.89 (dt, *J* = 19.1, 6.3 Hz, 1H), 1.81 – 1.74 (m, 4H), 1.59 (dt, *J* = 12.7, 6.4 Hz, 1H), 1.36 (dd, *J* = 13.2, 5.9 Hz, 1H), 1.27 – 1.19 (m, 1H), 1.07 (dd, *J* = 14.7, 6.5 Hz, 1H), 1.00 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, C₆D₆) δ: 139.3, 128.9, 128.6, 128.3, 128.1, 127.8, 127.6, 127.2, 109.7, 82.8, 80.3, 73.0, 70.0, 63.0, 34.9, 34.1, 31.5, 30.7, 28.7, 26.9, 23.7, 17.2. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₂H₃₃O₄, [M+H]⁺ 361.2373, found 361.2375.

Preparation of Aldehyde (+)-13 via Dess-Martin Periodinane Oxidation of (+)-S-b

To a solution of alcohol (+)-**S-b** (1.43 g, 3.99 mmol) in dry CH_2Cl_2 (100 mL) at 0 °C were added NaHCO₃ (1.66 g, 20.0 mmol) and Dess-Martin periodinane (DMP, 3.38 g, 7.98 mmol). The reaction mixture was stirred at 0 °C for 2 h. Then, the reaction was quenched by addition of saturated aqueous NaHCO₃ (50 mL). The organic phase was collected and the aqueous phase was extracted with CH_2Cl_2 (3 x 30 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to afford the desired aldehyde (+)-**13** (1.21 g, 3.39 mmol, 85% yield) as a pale yellow oil. [α] $_{D}^{20}$ = +22.6 (*c* 0.80, CHCl₃). **IR** (neat, cm⁻¹): 3028, 2935, 2870, 1723, 1453, 1172, 1102, 991, 735, 698. ¹**H NMR** (400 MHz, CDCl₃) δ: 9.76 (s, 1H), 7.34 – 7.30 (m, 4H), 7.30 – 7.24 (m, 1H), 5.62 – 5.40 (m, 2H), 4.51 (s, 2H), 3.99 (t, *J* = 7.0 Hz, 1H), 3.86 (s, 1H), 3.49 (t, *J* = 6.7 Hz, 2H), 2.55 (d, *J* = 6.4 Hz, 2H), 2.39 (q, *J* = 6.9 Hz, 2H), 2.24 (t, *J* = 6.3 Hz, 2H), 2.07 – 1.98 (m, 3H), 1.71 (td, *J* = 12.9, 5.6 Hz, 1H), 1.61 (dd, *J* = 13.1, 6.4 Hz, 1H), 1.47 (dd, *J* = 13.3, 5.9 Hz, 1H), 1.35 – 1.26 (m, 1H), 1.08 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 202.6, 138.5, 128.8, 128.5 (2 × C), 127.7 (2 × C), 127.6, 126.6, 108.6, 82.8, 80.3, 73.0, 69.8, 37.6, 33.5, 31.3, 30.9, 29.6, 28.4, 23.2, 17.0. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₂H₃₁O₄, [M+H]⁺ 359.2217, found 359.2229.

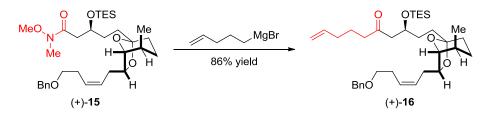
Preparation of Compound (+)-14 via Asymmetric Acetate Aldol Reaction

To a solution of (S)-1-(4-isopropyl-2-thioxothiazolidin-3-yl)ethanone **S-c** (1.37 g, 6.78 mmol) in CH₂Cl₂ (50 mL) at -40 °C was added TiCl₄ (1.0 M, 6.78 mL, 6.78 mmol) dropwise followed by N,N-diisopropylethylamine (*i*-Pr₂NEt, 787 mg, 6.10 mmol) dropwise. After stirring at -40 °C for 2h, the reaction mixture is cooled to -78 °C and aldehyde (+)-**13** (1.21 g, 3.39 mmol) was added dropwise. The reaction mixture was stirred at -78 °C for 30 min. The reaction was quenched by addition of pH 7.0 phosphate buffer and warm to room temperature. The aqueous layer is extracted with CH₂Cl₂ and the combined organic extracts are dried over Na₂SO₄ and concentrated under reduced pressure to get the crude desired product (+)-**S-d**, which was used directly in next step without further purification.

To a solution of the crude (+)-**S-d** in dry CH_2CI_2 (50 mL) at -78 °C were added 2,6-lutidine (543 mg, 5.08 mmol) and triethylsilyl trifluoromethanesulfonate (TESOTf, 1.0 M in CH_2CI_2 , 5.08 mL, 5.08 mmol). After the completion of addition, the reaction mixture was stirred for 30 min at -78 °C. The reaction was quenched by addition of saturated aqueous NaHCO₃ solution (60 mL). The organic phase was collected and the aqueous phase was extracted with CH_2CI_2 (3 x 80 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) with the minor isomer being removed to afford the desired product (+)-**14** (1.65 g, 2.44 mmol, 72% yield, 2 steps,) as a colorless oil.

[α]²⁰_D = +24.1 (*c* 0.80, CHCl₃). **IR** (neat, cm⁻¹): 3027, 2954, 2874, 1697, 1495, 1455, 1312, 1281, 1168, 1041, 733, 699. ¹H NMR (400 MHz, CDCl₃) δ: 7.35 – 7.30 (m, 4H), 7.28 – 7.26 (m, 1H), 5.51 (dt, *J* = 17.8, 8.5 Hz, 2H), 5.25 – 4.97 (m, 1H), 4.52 (s, 2H), 3.76 (t, *J* = 6.6 Hz, 1H), 3.61 (dd, *J* = 17.2, 5.9 Hz, 1H), 3.53 – 3.42 (m, 3H), 3.34 (t, *J* = 10.9 Hz, 1H), 3.00 (d, *J* = 11.4 Hz, 1H), 2.48 – 2.19 (m, 5H), 2.16 – 2.00 (m, 2H), 1.96 – 1.73 (m, 2H), 1.75 – 1.40 (m, 7H), 1.04 (d, *J* = 6.8 Hz, 3H), 0.95 (t, *J* = 7.6 Hz, 12H), 0.86 (d, *J* = 6.2 Hz, 3H), 0.70 – 0.51 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ: 202.4, 172.0, 138.8, 129.1 (2 × C), 128.5 (2 × C), 127.8, 127.6, 127.0, 106.3, 76.6, 73.4, 73.0, 71.7, 70.2, 46.3, 38.8, 34.4, 31.6, 31.0, 30.9, 30.5, 30.2, 29.8, 29.7, 28.4, 19.2, 17.9, 17.8, 7.3 (2 × C), 7.2, 5.6 (2 × C), 5.5. HRMS (TOF, Cl⁺) m/z calculated for $C_{36}H_{58}NO_5S_2Si$, [M+H]⁺ 676.3520, found 676.3513.

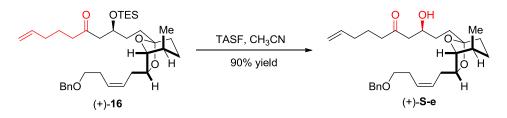
Preparation of Weinreb Amide (+)-15



To a solution of MeO(Me)NH-HCI (476 mg, 4.88 mmol) in dry CH_2CI_2 (20 mL) at 0 °C were added triethylamine (NEt₃, 591 mg, 5.86 mmol). The solution was stirred at 0 °C for 30 min. Then the compound (+)-**14** (1.65 g, 2.44 mmol) and DMAP (24.4 mg, 0.20 mmol) was added to the reaction mixture. After the completion of addition, the reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched by addition of water (60 mL). The organic phase was collected and the aqueous phase was extracted with CH_2CI_2 (3 x 80 mL). The combined organic fractions were washed with saturated aqueous NaHCO₃ solution and brine, dried over Na_2SO_4 and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the desired product (+)-**15** (1.18 g, 2.05 mmol, 84% yield) as a colorless oil.

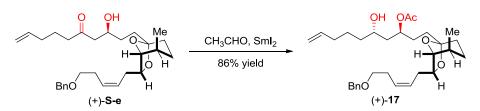
[α]²⁰_D = +16.0 (*c* 1.00, CHCl₃). **IR** (neat, cm⁻¹): 2951, 2874, 1823, 1663, 1458, 1364, 1098, 976, 731, 696. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.34 – 7.29 (m, 4H), 7.28 – 7.26 (m, 1H), 5.60 – 5.42 (m, 2H), 4.51 (s, 2H), 4.28 (s, 1H), 3.97 (t, *J* = 6.8 Hz, 1H), 3.85 (s, 1H), 3.67 (s, 3H), 3.48 (t, *J* = 6.8 Hz, 2H), 3.16 (s, 3H), 2.74 (s, 1H), 2.48 – 2.33 (m, 3H), 2.24 (t, *J* = 6.7 Hz, 2H), 2.06 – 1.94 (m, 1H), 1.78 – 1.58 (m, 6H), 1.44 (dd, *J* = 13.3, 5.7 Hz, 1H), 1.35 – 1.30 (m, 1H), 1.09 (d, *J* = 7.0 Hz, 3H), 0.94 (t, *J* = 7.8 Hz, 9H), 0.59 (q, *J* = 7.9 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 138.6,

128.5 (3 × C), 127.7 (2 × C), 127.6 (2 × C), 127.0, 109.5, 82.8, 80.1, 73.0, 69.9, 69.2, 61.4, 33.7, 33.5, 33.1, 31.4, 31.3, 30.5, 29.5, 28.3, 23.4, 17.2, 7.0 (3 × C), 5.0 (3 × C). **HRMS** (TOF, Cl⁺) m/z calculated for $C_{32}H_{54}NO_6Si$, [M+H]⁺ 576.3715, found 576.3707.


Preparation of Ketone (+)-16 via Grignard Addition

To a suspension of magnesium turnings (240 mg, 10.0 mmol) in dry THF (10 mL) was added 5-bromo-1-pentene (1.49 g, 10.0 mmol) dropwise over a period time of 10 min at room temperature. After complete addition, the mixture was allowed to stir for another 2h. Then to a solution of Weinreb amid (+)-**15** (1.18 g, 2.05 mmol) in THF (50 mL) was added the Grignard reagent at -78 °C dropwise. After 5 min, the mixture was warmed to 0 °C and stirred for 1h. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl (60 mL). The organic phase was collected and the aqueous phase was extracted with CH₂Cl₂ (3 x 80 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to afford the desired ketone (+)-**16** (1.03 g, 1.76 mmol, 86% yield) as a colorless oil.

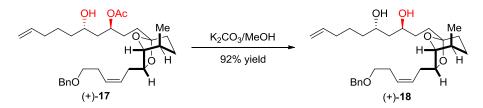
[α]²⁰_D = +21.0 (*c* 0.80, CHCl₃). **IR** (neat, cm⁻¹): 2952, 2875, 1714, 1495, 1381, 1239, 1096, 1006, 910, 734, 697. ¹H **NMR** (400 MHz, CDCl₃) δ: 7.34 – 7.31 (m, 4H), 7.31 – 7.27 (m, 1H), 5.81 – 5.69 (m, 1H), 5.59 – 5.41 (m, 2H), 4.98 (t, *J* = 15.0 Hz, 2H), 4.51 (s, 2H), 4.23 (s, 1H), 3.96 (t, *J* = 6.8 Hz, 1H), 3.84 (s, 1H), 3.49 (t, *J* = 6.7 Hz, 2H), 2.60 (dd, *J* = 15.3, 7.4 Hz, 1H), 2.40 (dt, *J* = 14.9, 7.3 Hz, 4H), 2.23 (t, *J* = 6.7 Hz, 1H), 2.07 – 2.01 (m, 3H), 1.67 – 1.63 (m, 8H), 1.43 (dd, *J* = 12.8, 4.6 Hz, 2H), 1.34 – 1.24 (m, 2H), 1.08 (d, *J* = 6.9 Hz, 3H), 0.93 (t, *J* = 7.9 Hz, 9H), 0.58 (q, *J* = 7.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ: 209.7, 138.6, 138.2, 128.5 (2 × C), 128.4 (2 × C), 127.7, 127.6, 126.9, 115.3, 109.4, 82.8, 80.1, 73.0, 69.9, 68.8, 50.2, 43.8, 33.7, 33.2, 33.0, 31.4, 31.1, 30.5, 28.3, 23.4, 22.6, 17.2, 7.0 (3 × C), 5.1 (3 × C). HRMS (TOF, Cl⁺) m/z calculated for C₃₅H₅₇O₅Si, [M+H]⁺ 585.3970, found 585.3951.


Preparation of Alcohol (+)-S-e via Desilylation of Ketone (+)-16

To a solution of ketone (+)-**16** (877 mg, 1.50 mmol) in wet CH₃CN (5 mL) was added a solution of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF, 825 mg, 3.00 mmol) in CH₃CN (4 mL) at room temperature. After stirring for 4 h, the mixture was filtered through a pad of silica gel which was carefully rinsed with EtOAc. The combined filtrates were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the desired alcohol (+)-**S-e** (636 mg, 1.35 mmol, 90% yield) as a colorless oil.

[α] $_{D}^{20}$ = +16.4 (*c* 0.90, CHCl₃). **IR** (neat, cm⁻¹): 3447, 2933, 2870, 1708, 1495, 1361, 1249, 1099, 1029, 992, 910, 735, 698. ¹H **NMR** (400 MHz, C₆D₆) δ: 7.31 – 7.29 (m, 2H), 7.21 – 7.12 (m, 2H), 7.10 – 7.08 (m, 1H), 5.65 – 5.53 (m, 3H), 4.96 (dd, *J* = 13.1, 7.8 Hz, 2H), 4.33 (s, 2H), 4.07 (s, 1H), 3.88 (t, *J* = 6.7 Hz, 1H), 3.77 (s, 1H), 3.36 – 3.29 (m, 2H), 2.42 – 2.36 (m, 2H), 2.30 – 2.26 (m, 2H), 2.14 – 1.98 (m, 2H), 1.98 – 1.93 (m, 2H), 1.81 – 1.76 (m, 5H), 1.79 – 1.59 (m, 3H), 1.57 – 1.46 (m, 2H), 1.40 (dd, *J* = 13.1, 5.6 Hz, 2H), 1.30 – 1.16 (m, 1H), 1.09 (dd, *J* = 13.8, 5.1 Hz, 1H), 1.03 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, C₆D₆) δ: 210.3, 139.3, 138.4, 128.9, 128.6, 128.3, 127.8, 127.7, 127.6, 127.3, 115.2, 109.6, 82.8, 80.3, 73.0, 70.0, 68.1, 49.7, 42.6, 34.3, 34.2, 33.4, 31.5, 30.9, 30.7, 28.8, 23.7, 22.8, 17.2. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₉H₄₃O₅, [M+H]⁺ 471.3105, found 471.3133.

Preparation of 1,3-anti-Diol (+)-17 via Evans-Tishchenko Reaction

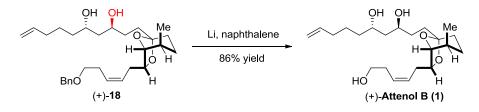


To a solution of acetaldehyde (440 mg, 10.0 mmol) in dry THF (10 mL) at 0 °C was added SmI_2 solution (0.1 M, 11.0 ml, 1.10 mmol) dropwise. The solution was stirred for 5 min before cooling to -20°C. A solution of compound (+)-**S-e** (471 mg, 1.00 mmol) in THF (10 mL) was added dropwise and the reaction was maintained at -20°C for 2h. The reaction was quenched

by addition of saturated aqueous NaHCO₃ (10 mL). The organic phase was collected and the aqueous phase was extracted with CH_2CI_2 (3 x 10 mL). The combined organic fractions were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 4:1) to afford the 1,3-*anti*-diol (+)-**17** (442 mg, 0.860 mmol, 86% yield) as a colorless oil.

[α] $_{D}^{20}$ = +27.0 (*c* 1.00, CHCl₃). **IR** (neat, cm⁻¹): 3496, 2935, 2869, 1733, 1716, 1496, 1373, 1246, 1100, 1026, 993, 909, 736, 698. ¹H **NMR** (400 MHz, CDCl₃) δ: 7.33 – 7.29 (m, 4H), 7.29 – 7.26 (m, 1H), 5.78 (dq, *J* = 10.1, 6.7 Hz, 1H), 5.59 – 5.40 (m, 2H), 5.07 (br s, 1H), 4.95 (dd, *J* = 22.7, 13.7 Hz, 2H), 4.50 (s, 2H), 3.97 (t, *J* = 6.8 Hz, 1H), 3.85 (s, 1H), 3.50 – 3.44 (m, 4H), 2.40 – 2.36 (m, 2H), 2.26 – 2.20 (m, 2H), 2.07 (s, 3H), 2.05 – 1.95 (m, 3H), 1.75 – 1.68 (m, 3H), 1.62 – 1.57 (m, 3H), 1.41 (dd, *J* = 13.6, 5.6 Hz, 4H), 1.28 (dd, *J* = 17.6, 8.1 Hz, 3H), 1.17 (d, *J* = 4.5 Hz, 1H), 1.08 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 172.5, 138.8, 138.5, 128.6 (2 × C), 128.4 (2 × C), 127.7, 127.6 (2 × C), 126.7, 114.6, 109.1, 82.9, 80.1, 72.9, 71.9, 69.8, 67.1, 43.1, 36.5, 33.8, 33.7, 33.4, 31.3, 30.6, 28.3, 25.2, 23.3, 21.2, 17.1. **HRMS** (TOF, Cl⁺) m/z calculated for C₃₁H₄₇O₆, [M+H]⁺ 515.3367, found 515.3376.

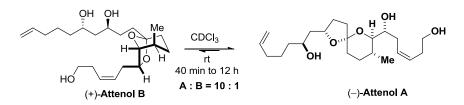
Preparation of 1,3-anti-Diol (+)-18


To a solution of (+)-**17** (103 mg, 0.200 mmol) in methanol (5 mL) at room temperature was added K_2CO_3 (276 mg, 2.00 mmol) dropwise. After stirring for 4h, the mixture was filtered through a pad of silica gel which was carefully rinsed with EtOAc. The combined filtrates were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the desired 1,3-*anti*-diol (+)-**18** (86.8 mg, 0.184 mmol, 92% yield) as a colorless oil.

 $[\alpha]_{D}^{20}$ = +28.1 (*c* 0.80, CHCl₃). **IR** (neat, cm⁻¹): 3472, 3035, 2934, 2859, 1710, 1548, 1453, 1310, 1248, 1172, 1077, 992, 734, 614. ¹**H NMR** (400 MHz, C₆D₆) δ : 7.30 (d, *J* = 7.7 Hz, 2H), 7.21 – 7.16 (m, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 5.83 – 5.76 (m, 1H), 5.66 – 5.47 (m, 2H), 5.02 (dd, *J* = 23.0, 13.6 Hz, 2H), 4.34 (s, 2H), 4.01 – 3.88 (m, 2H), 3.86 (t, *J* = 6.6 Hz, 1H), 3.76 (s, 1H), 3.45 (br s, 1H), 3.34 (t, *J* = 5.4 Hz, 2H), 2.91 (br s, 1H), 2.42 – 2.36 (m, 2H), 2.32 – 2.28 (m, 1H), 2.02 (d, *J* = 6.9 Hz, 2H), 1.88 – 1.72 (m, 4H), 1.59 – 1.48 (m, 6H), 1.46 – 1.31 (m, 4H), 1.25 –

S-19

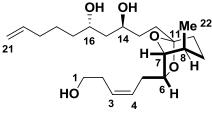
1.18 (m, 1H), 1.06 (dd, J = 11.6, 6.4 Hz, 1H), 1.01 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, C₆D₆) δ : 139.3, 139.2, 129.1, 128.6, 128.3, 127.9, 127.8, 127.6, 127.1, 114.6, 109.7, 82.9, 80.4, 73.0, 70.0, 69.9, 69.1, 43.5, 37.5, 34.9, 34.3, 34.1, 31.5, 31.3, 30.8, 28.8, 25.6, 23.6, 17.2. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₉H₄₅O₅, [M+H]⁺ 473.3262, found 473.3287.


Total Synthesis of (+)-Attenol B

To a stirred solution of naphthalene (51 mg, 0.40 mmol) in THF (2 mL) was added lithium (2.1 mg, 0.30 mmol). The reaction mixture was stirred at room temperature until the lithium was completely dissolved. The resulting dark-green solution of lithium naphthalenide was cooled to -20 °C, and a solution of 1,3-*anti*-diol (+)-**18** (47 mg, 0.10 mmol) in THF (2 mL) was added dropwise. After stirring for 30 min, the reaction mixture was quenched by addition of saturated aqueous NH₄Cl (10 mL). The organic phase was collected and the aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic fractions were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 1:3) to afford (+)-attenol B (33 mg, 0.086 mmol, 86% yield) as a colorless oil.

 $[\alpha]_{D}^{20}$ = +31.0 (*c* 0.10, CHCl₃). **IR** (neat, cm⁻¹): 3388, 3373, 2924, 2853, 1727, 1537, 1459, 1414, 1376, 1351, 1293, 1224, 1173, 1121, 1042, 993, 968, 908, 877, 858. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₂H₃₉O₅, [M+H]⁺ 383.3792, found 383.2798. For other data: please see Table S3 and S4.

Equilibration of (-)-Attenol A and (+)-Attenol B in CDCl₃



The (+)-**attenol B** (5.0 mg, 0.013 mmol) in $CDCI_3$ (0.5 mL) was added into the NMR tube. The (-)-attenol A and (+)-attenol B equilibrated after 40 min with a constant A/B ratio of 10/1.

Separation of attenols A from B through column chromatography on silica gel (hexane/EtOAc = 1:3) to provide (–)-attenol A (4.5 mg, 0.012 mmol, 91% yield) as a colorless oil.

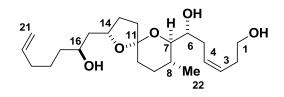
 $[\alpha]_D^{20} = -10.2$ (*c* 0.90, CHCl₃). **IR** (neat, cm⁻¹): 3367, 2927, 2859, 1639, 1488, 1457, 1375, 1249, 1087, 1043, 1012, 978. **HRMS** (TOF, Cl⁺) m/z calculated for C₂₂H₃₈O₅Na, [M+Na]⁺ 405.2611, found 405.2593. For other data: please see Table S5 and S6.

Spectroscopic Data Comparison of (+)-Attenol B

(+)-Attenol B

Table S3. ¹H NMR Comparison

100				
No.	Natural (+)-Attenol B (Reported by Daisuke Uemura ³) ¹ H NMR (600 MHz, CDCl ₃)	Synthetic (+)-Attenol B (Reported Jhillu S. Yadav ⁴) ¹ H NMR (500 MHz, CDCl ₃)	Synthetic (+)-Attenol B (Reported by Makoto Sasaki ⁵) ¹ H NMR (600 MHz, CDCl ₃)	Synthetic (+)-Attenol B (Our Sample) ¹ H NMR (400 MHz, CDCl ₃)
1	3.63 (2H, m)	3.63 (2H, m)	3.61 (2H, m)	3.63 (2H, m)
2	2.31 (m), 2.39 (m)	2.29 (m), 2.39 (m)	2.29 (m), 2.38 (m)	2.29 (m), 2.40 (m)
3	5.53 (m)	5.53 (m)	5.52 (m)	5.54 (m)
4	5.54 (m)	5.53 (m)	5.52 (m)	5.54 (m)
5	2.31 (m), 2.39 (m)	2.29 (m), 2.39 (m)	2.29 (m), 2.38 (m)	2.29 (m), 2.40 (m)
6	4.09 (t, 6.7)	4.08 (t, 7.0)	4.07 (t, 6.5)	4.09 (t, 6.8)
7	3.92 (s)	3.93 (br s)	3.90 (s)	3.93 (s)
8	1.67 (m)	1.61 (m)	1.59 (m)	1.63 (m)
9	1.34 (dd, 15.2, 5.7), 2.02 (m)	1.34 (dd, 14.0, 5.4), 2.01 (m)	1.33 (dd, 15.2, 5.0), 2.00 (m)	1.34 (dd, 13.9, 5.0), 2.00 (m)
10	1.51 (m), 1.68 (m)	1.61 (m), 1.78 (m)	1.59 (2H, m)	1.53 (m), 1.63 (m)
12	1.85 (m), 1.90 (m)	1.87 (m), 2.01 (m)	1.85 (2H, m)	1.82 (2H, m)
13	1.61 (m), 1.81 (m)	1.61 (m), 1.87 (m)	1.59 (m), 1.85 (m)	1.63 (m), 1.84 (m)
14	3.95 (m)	3.95 (m)	3.94 (m)	3.96 (m)
15	1.58 (m), 1.65 (m)	1.61 (m), 1.78 (m)	1.59 (2H, m)	1.63 (2H, m)
16	3.93 (m)	3.95 (m)	3.94 (m)	3.96 (m)
17	1.43 (m), 1.54 (m)	1.43 (m), 1.61 (m)	1.42 (m), 1.59 (m)	1.45 (m), 1.63 (m)
18	1.40 (m), 1.53 (m)	1.43 (m), 1.61 (m)	1.42 (m), 1.59 (m)	1.45 (m), 1.63 (m)
19	2.08 (2H, m)	2.08 (2H, m)	2.06 (2H, m)	2.08 (2H, m)
20	5.81 (ddt, 17.2, 10.1, 6.8)	5.81 (ddt, 17.1, 10.1, 7.0)	5.79 (m)	5.81 (m)
21	4.95 (br d, 10.1), 5.01 (br d, 17.2)	4.95 (br d, 10.1), 5.01 (dd, 17.1, 1.6)	4.93 (d, 10.3), 4.98 (d, 17.0)	4.95 (d, 10.0), 5.01 (d, 17.3)
22	1.12 (3H, d, 7.0)	1.12 (3H, d, 7.0)	1.10 (3H, d, 7.0)	1.12 (3H, d, 7.1)

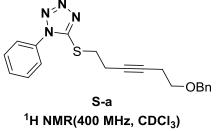

³ Takada, N.; Suenaga, K.; Yamada, K.; Zheng, S.-Z.; Chen, H.-S.; Uemura, D. *Chem. Lett.* **1999**, 1025-1026.

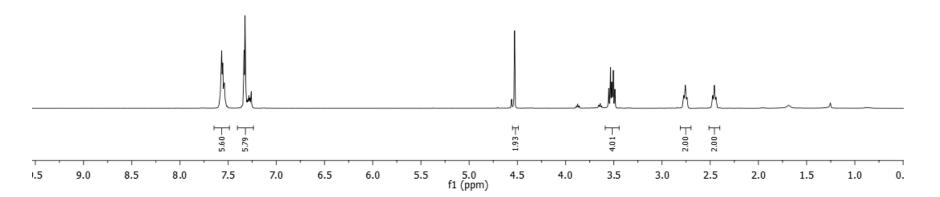
⁴ Yadav, J. S.; Narayana Reddy, P. A.; Jayasudhan Reddy, Y.; Meraj, S.; Prasad, A. R. *Eur. J. Org. Chem.* **2013**, 6317-6324. ⁵ Fuwa, H.; Sasaki, M. *Org. Lett.* **2008**, *10*, 2549-2552.

Table S4.	¹³ C NMR	Comparison
-----------	---------------------	------------

NO.	Natural (+)-Attenol B (Reported by Daisuke Uemura) ¹³ C NMR (150 MHz, CDCl ₃)	Synthetic (+)-Attenol B (Reported by Jhillu S. Yadav) ¹³ C NMR (75 MHz, CDCl ₃)	Synthetic (+)-Attenol B (Reported by Makoto Sasaki) ¹³ C NMR (150 MHz, CDCl ₃)	Synthetic (+)-Attenol B (Our Sample) ¹³ C NMR (100 MHz, CDCl ₃)
1	61.9	61.8	61.9	61.9
2	31.3	31.1	31.3	31.3
3	128.5	128.4	128.5	128.5
4	127.9	127.7	127.8	127.9
5	33.7	33.7	33.7	33.7
6	80.1	80.0	80.1	80.1
7	83.1	83.0	83.1	83.1
8	31.2	31.2	31.3	31.2
9	23.1	23.0	23.1	23.1
10	30.3	30.3	30.3	30.3
11	109.6	109.6	109.5	109.6
12	34.5	34.2	34.5	34.5
13	30.3	30.3	30.3	30.2
14	70.2	69.8	70.3	70.2
15	42.5	42.5	42.4	42.5
16	69.2	68.9	69.1	69.2
17	36.9	36.8	36.8	36.9
18	25.0	25.0	25.0	25.1
19	33.7	33.6	33.7	33.7
20	138.8	138.8	138.8	138.8
21	114.5	114.5	114.5	114.5
22	16.9	16.9	16.9	16.9

Spectroscopic Data Comparison of (-)-Attenol A


(-)-Attenol A


Table S5.	¹ H NMR Con	nparison

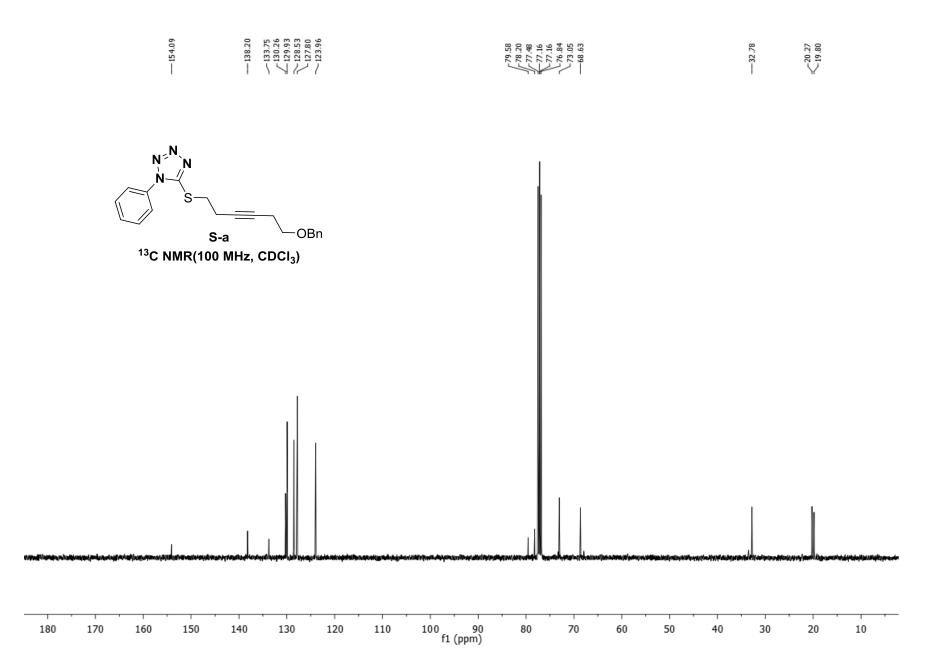
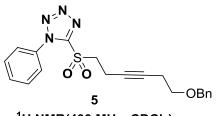
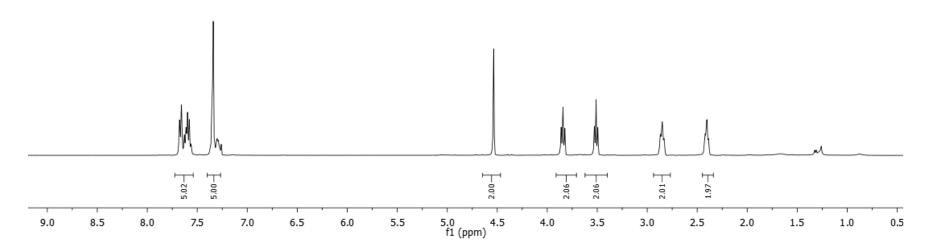
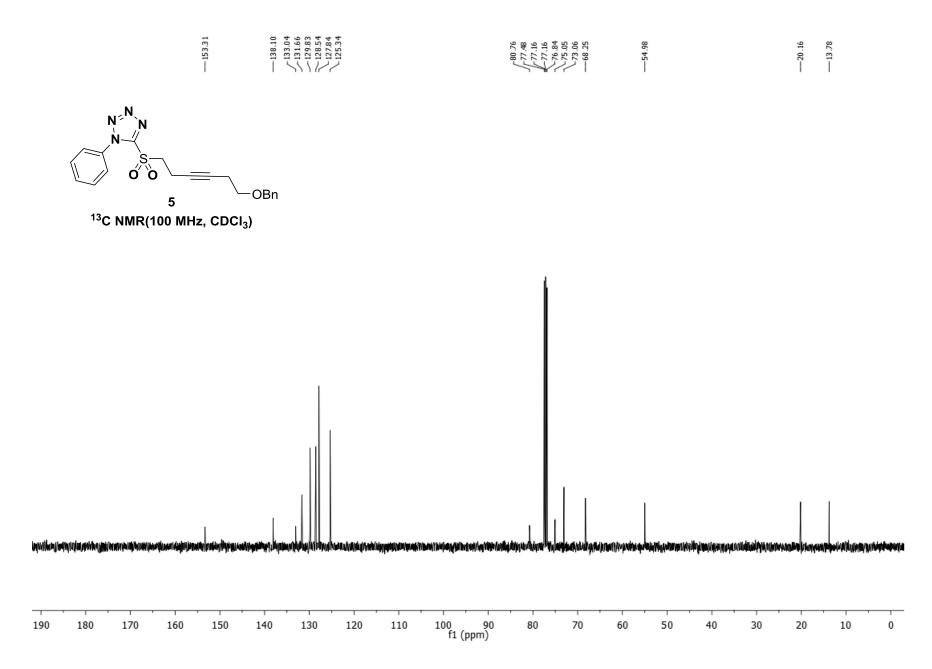
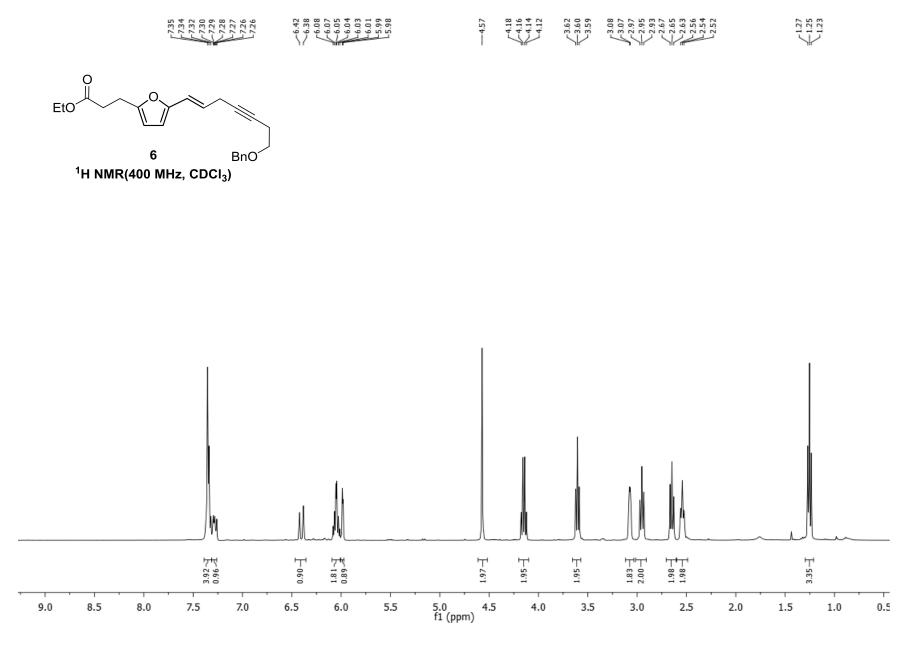

lab	le S5. ¹ H NMR Con	nparison	1	
No.	Natural (–)-Attenol A (Reported by Daisuke Uemura) ¹ H NMR (400 MHz, CDCl ₃)	Synthetic (–)-Attenol A (Reported by Jhillu S. Yadav) ¹ H NMR (500 MHz, CDCl ₃)	Synthetic (–)-Attenol A (Reported by Makoto Sasaki) ¹ H NMR (600 MHz, CDCl ₃)	Synthetic (–)-Attenol A (Our Sample) ¹ H NMR (400 MHz, CDCl ₃)
1	3.65 (2H, m)	3.66 (2H, m)	3.67 (2H, m)	3.68 (2H, m)
2	2.29 (m), 2.41 (m)	2.29 (m), 2.42 (m)	2.27 (m), 2.42 (m)	2.25 (m), 2.41 (m)
3	5.54 (m)	5.56 (m)	5.55 (m)	5.54 (m)
4	5.68 (m)	5.68 (m)	5.67 (m)	5.68 (m)
5	2.12 (m), 2.51 (br dt, 14.8, 8.8)	2.11 (m), 2.52 (m)	2.10 (m), 2.52 (m)	2.05 (m), 2.53 (m)
6	3.72 (m)	3.66 (m)	3.67 (m)	3.67 (m)
7	3.31 (dd, 10.4, 1.2)	3.32 (dd, 10.1, 1.4)	3.32 (d, 10.3)	3.31 (d, 10.1)
8	1.74 (m)	1.70 (m)	1.59 (m)	1.74 (m)
9	1.50 (m), 1.65 (m)	1.49 (m), 1.70 (m)	1.59 (2H, m)	1.51 (2H, m)
10	1.64 (m), 1.75 (m)	1.70 (2H, m)	1.59 (2H, m)	1.51 (2H, m)
12	1.70 (m), 2.02 (m)	1.70 (m), 2.01 (m)	1.59 (m), 2.10 (m)	1.51 (m), 2.05 (m)
13	1.84 (m), 2.02 (m)	1.84 (m), 2.01 (m)	1.83 (m), 2.10 (m)	1.74 (m), 2.05 (m)
14	4.31 (m)	4.32 (m)	4.31 (m)	4.32 (m)
15	1.72 (2H, m)	1.70 (2H, m)	1.59 (2H, m)	1.74 (2H, m)
16	3.83 (m)	3.83 (m)	3.82 (br s)	3.83 (m)
17	1.50 (2H, m)	1.49 (2H, m)	1.59 (2H, m)	1.51 (2H, m)
18	1.43 (m), 1.56 (m)	1.49 (2H, m)	1.59 (2H, m)	1.74 (2H, m)
19	2.09 (2H, m)	2.11 (2H, m)	2.10 (2H, m)	2.05 (2H, m)
20	5.81 (ddt, 17.2, 10.2, 6.8)	5.81 (ddt, 16.9, 10.2, 6.7)	5.81 (m)	5.81 (m)
21	4.95 (br d, 10.2), 5.01 (br d, 17.2)	4.95 (d, 10.1), 5.01 (dd, 17.2, 1.8)	4.96 (d, 10.0), 5.02 (d, 17.0)	4.96 (d, 10.2), 5.01 (d, 17.2)
22	0.87 (3H, d, 6.4)	0.88 (3H, d, 6.6)	0.88 (3H, d, 6.5)	0.88 (3H, d, 5.9)

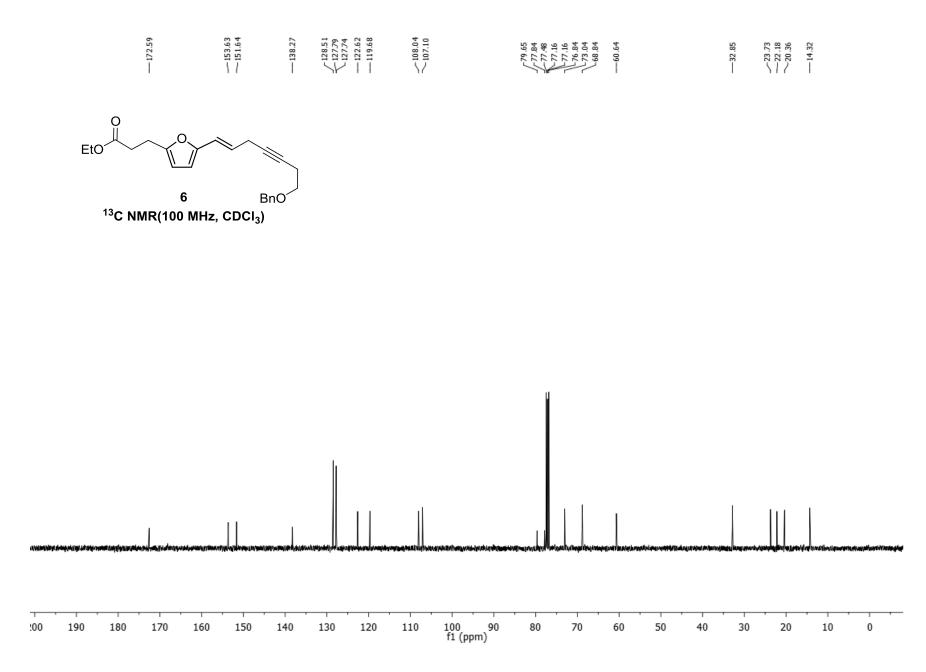
Table S6.	¹³ C NMR	Comparison
-----------	---------------------	------------

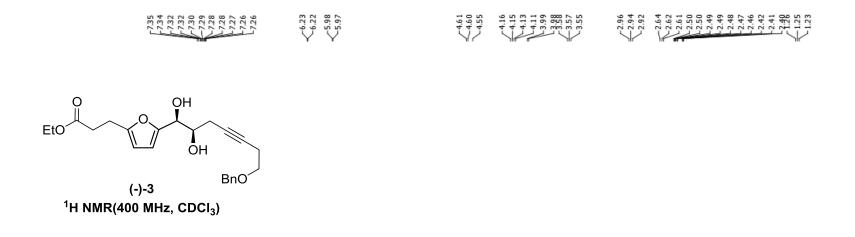

NO.	Natural (–)-Attenol A (Reported by Daisuke Uemura) ¹³ C NMR (100 MHz, CDCl ₃)	Synthetic (–)-Attenol A (Reported by Jhillu S. Yadav) ¹³ C NMR (75 MHz, CDCl ₃)	Synthetic (–)-Attenol A (Reported by Makoto Sasaki) ¹³ C NMR (150 MHz, CDCl ₃)	Synthetic (–)-Attenol A (Our Sample) ¹³ C NMR (100 MHz, CDCl ₃)
1	61.9	61.8	61.9	61.9
2	30.9	30.8	30.84	30.9
3	128.0	128.0	128.0	128.0
4	129.6	129.4	129.6	129.6
5	33.0	32.8	33.0	33.0
6	70.1	70.0	70.1	70.1
7	78.0	77.9	78.0	78.0
8	30.4	30.8	30.4	30.4
9	29.0	29.0	29.0	29.0
10	33.9	33.8	33.9	33.9
11	106.4	106.3	106.4	106.4
12	38.5	38.5	38.5	38.5
13	30.8	30.8	30.83	30.9
14	78.0	77.9	78.0	78.0
15	43.6	43.7	43.6	43.7
16	69.6	69.5	69.6	69.6
17	36.6	36.6	36.6	36.6
18	25.1	25.0	25.0	25.1
19	33.7	33.6	33.7	33.7
20	138.7	138.6	138.7	138.7
21	114.6	114.5	114.6	114.6
22	17.3	17.2	17.3	17.3

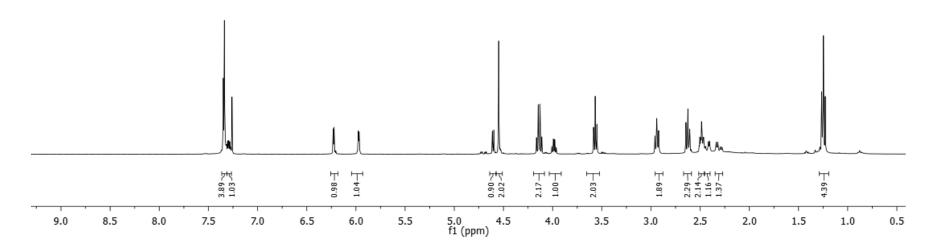


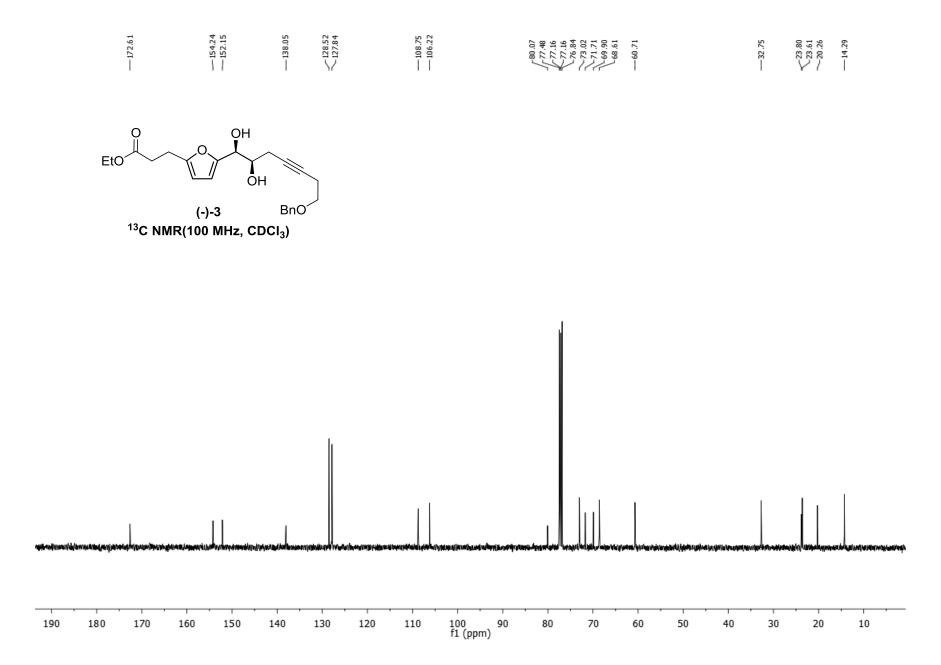



$$\begin{array}{c} 7.68 \\ 7.56 \\ 7.56 \\ 7.56 \\ 7.56 \\ 7.56 \\ 7.56 \\ 7.56 \\ 7.56 \\ 7.56 \\ 7.75 \\ 7.73 \\ 7.$$

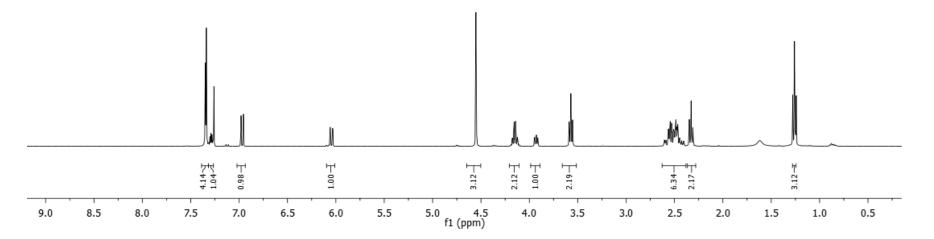


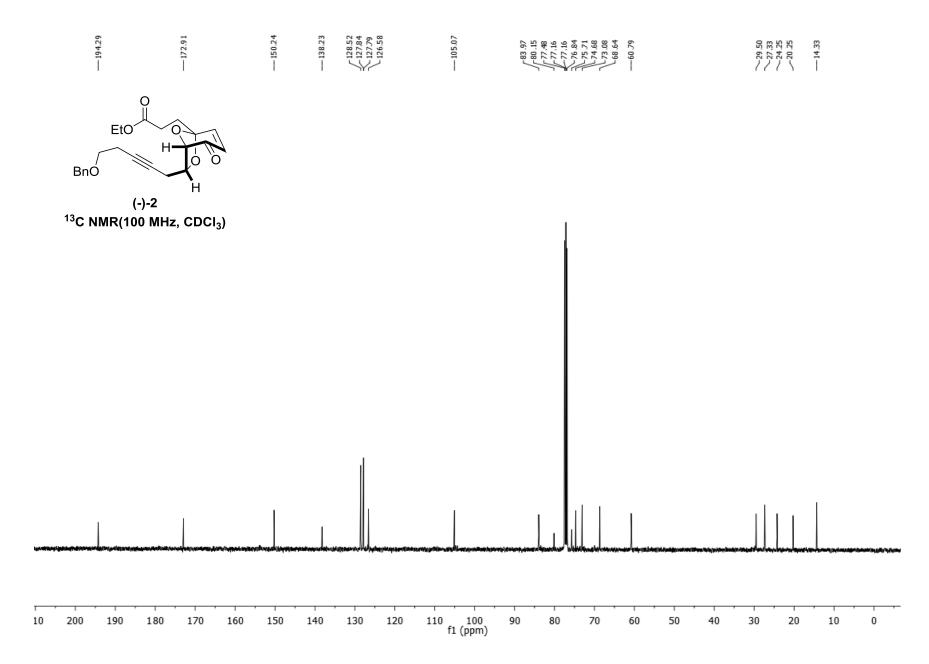

¹H NMR(400 MHz, CDCl₃)

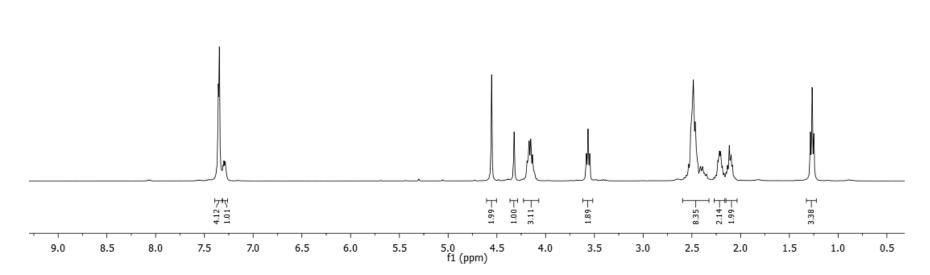


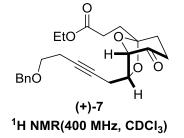


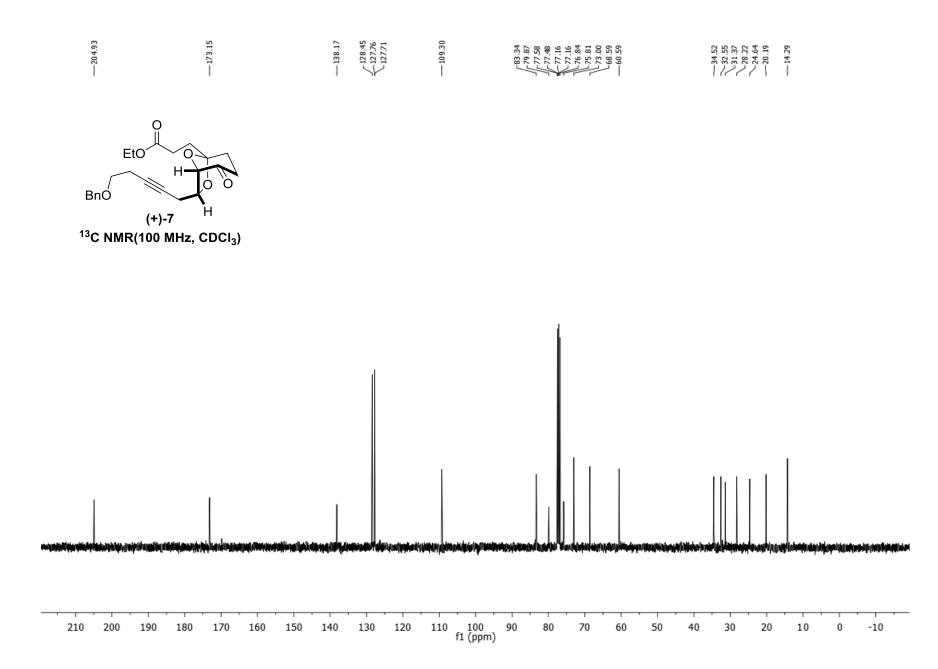


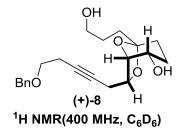


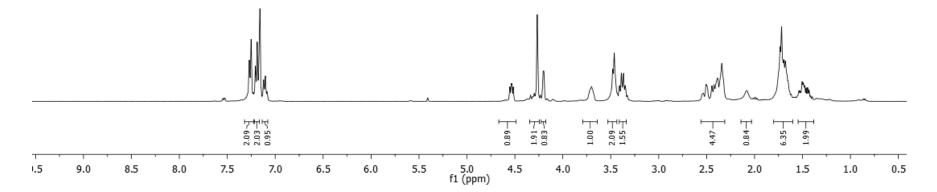


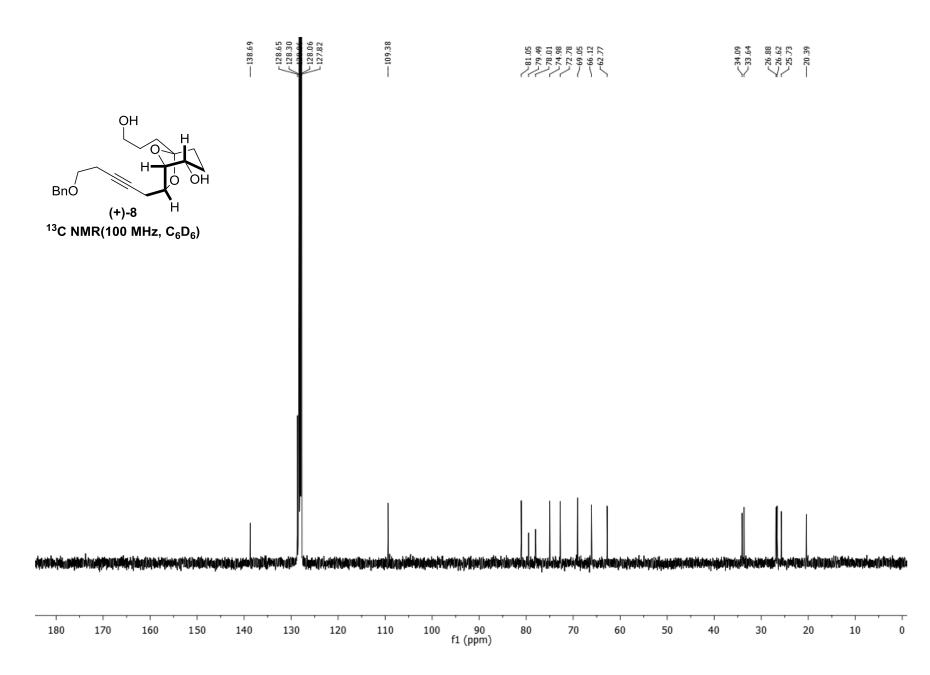


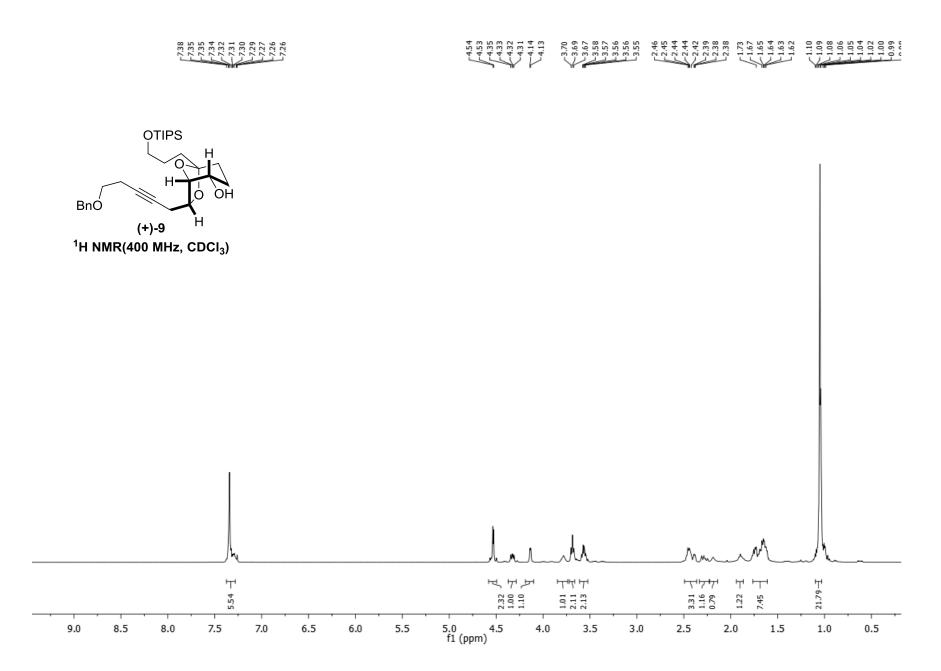


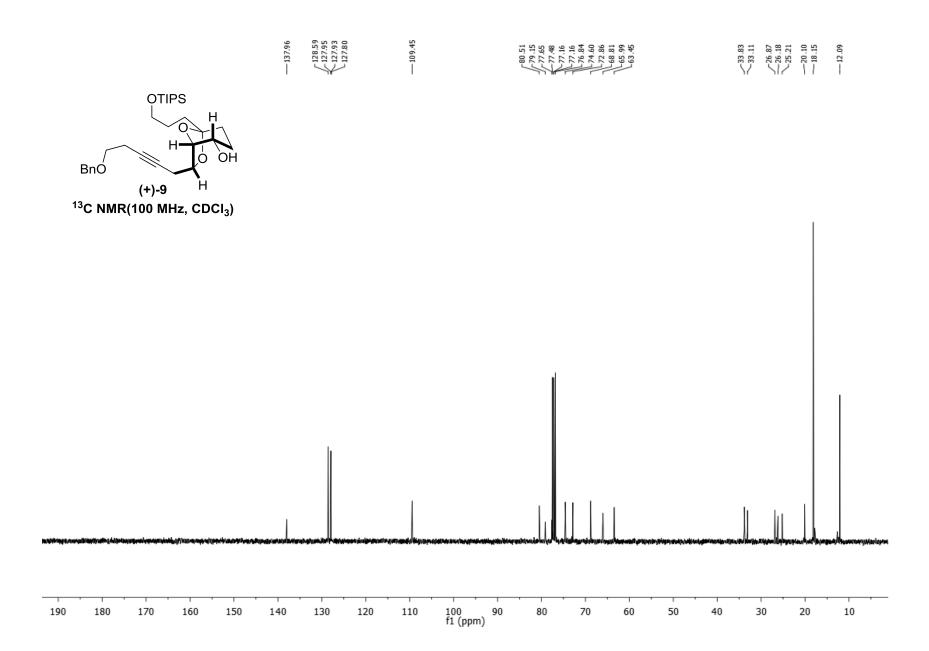


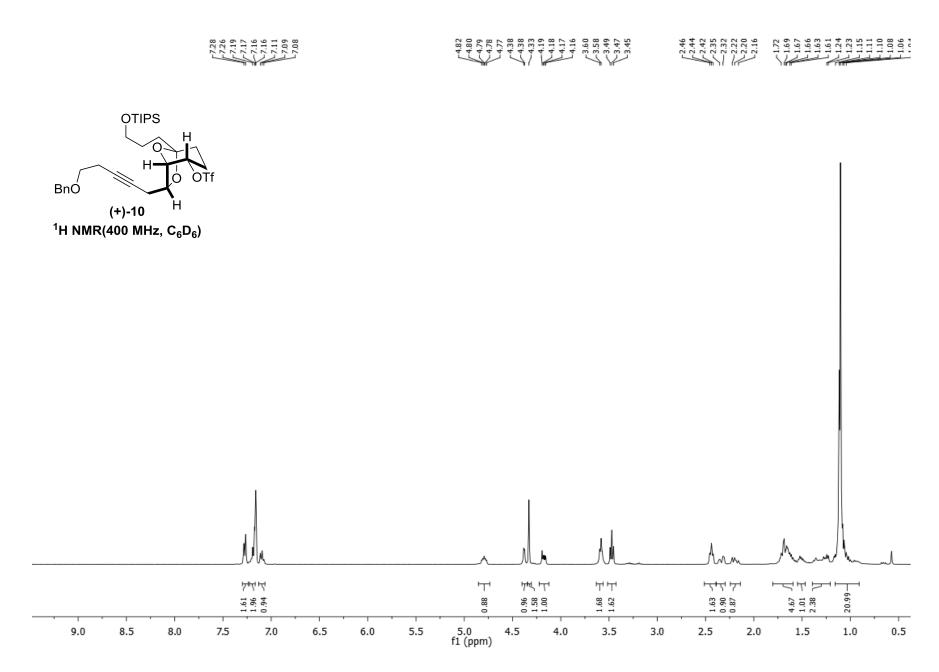


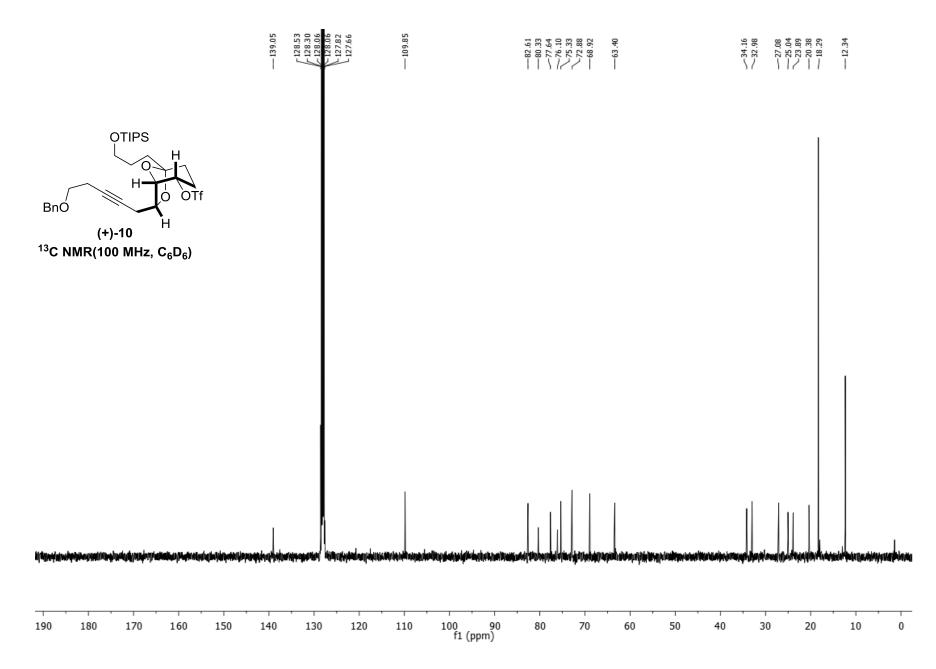


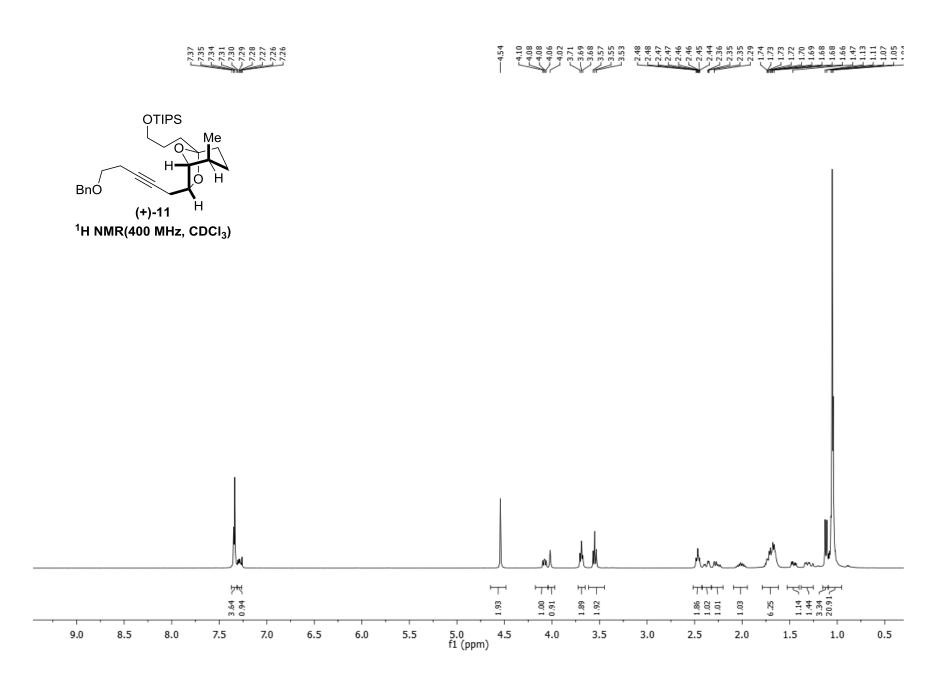

4.15 4.19 4.13 4.13 4.13 4.13	3358 3556 3555	2.553 2.512 2.223 2.233 2.233 2.212 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112	1.28 1.27 1.25
	\checkmark		\leq

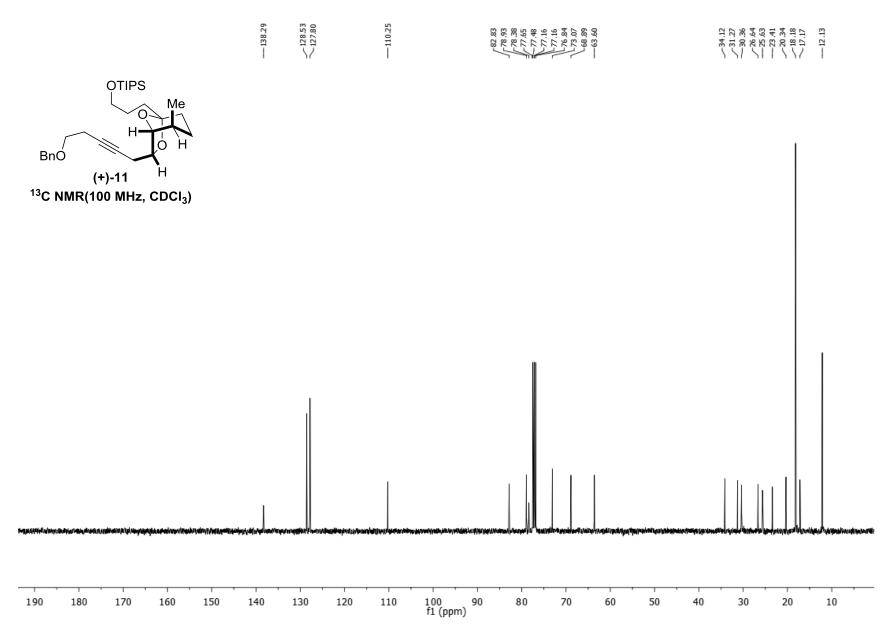


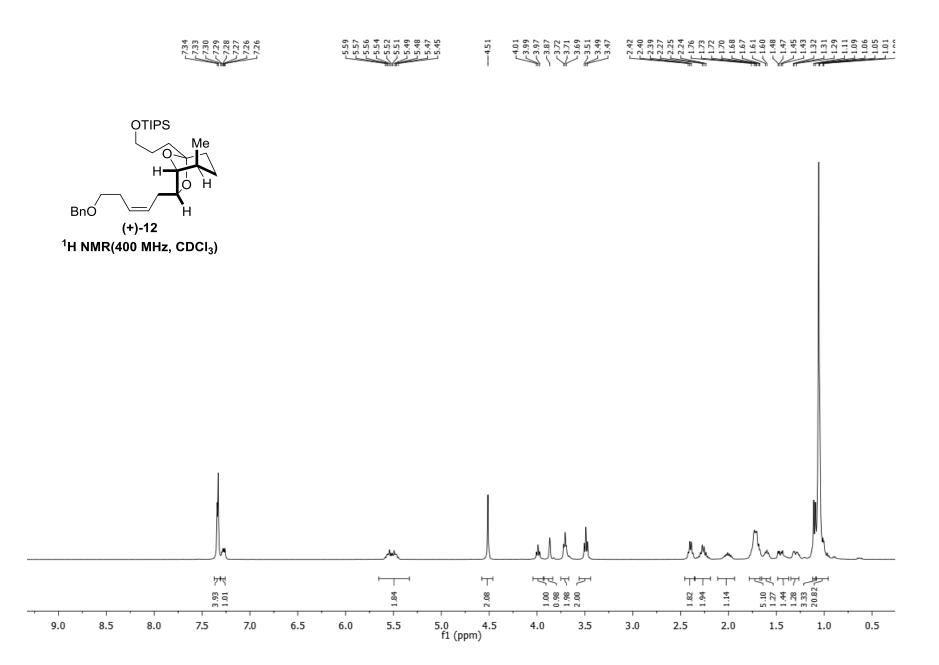


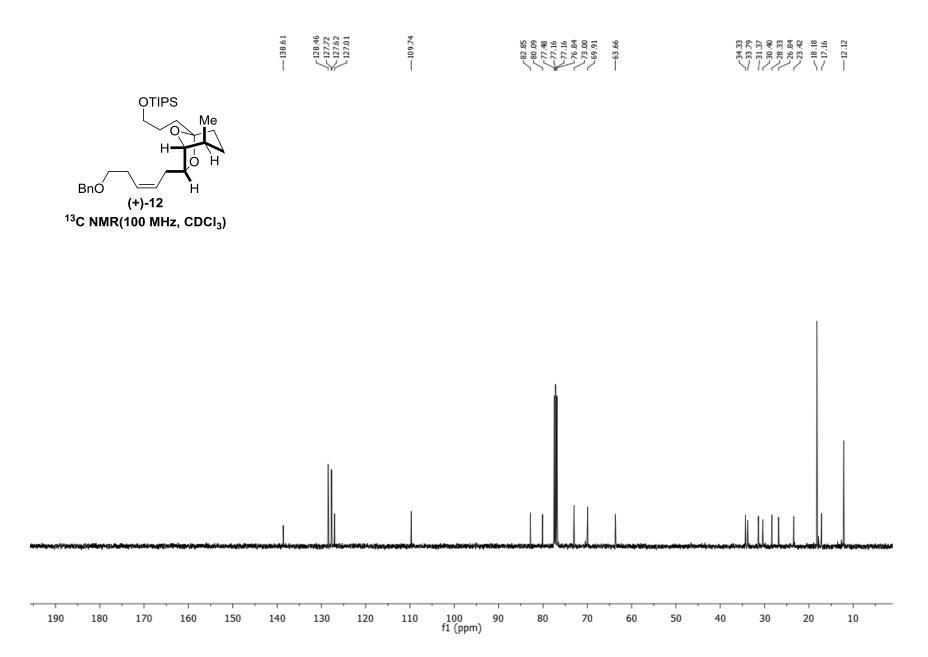


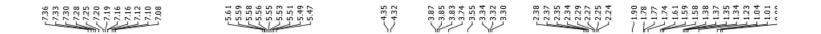


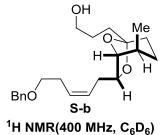

S-40

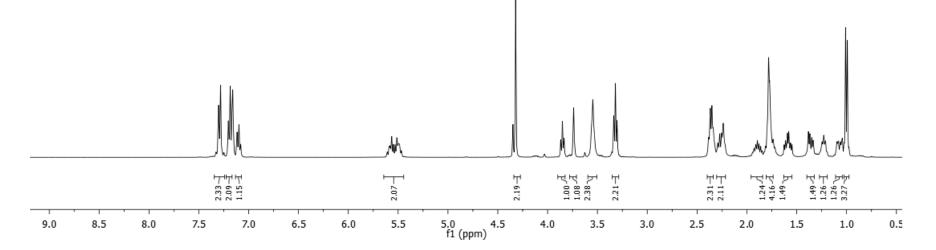


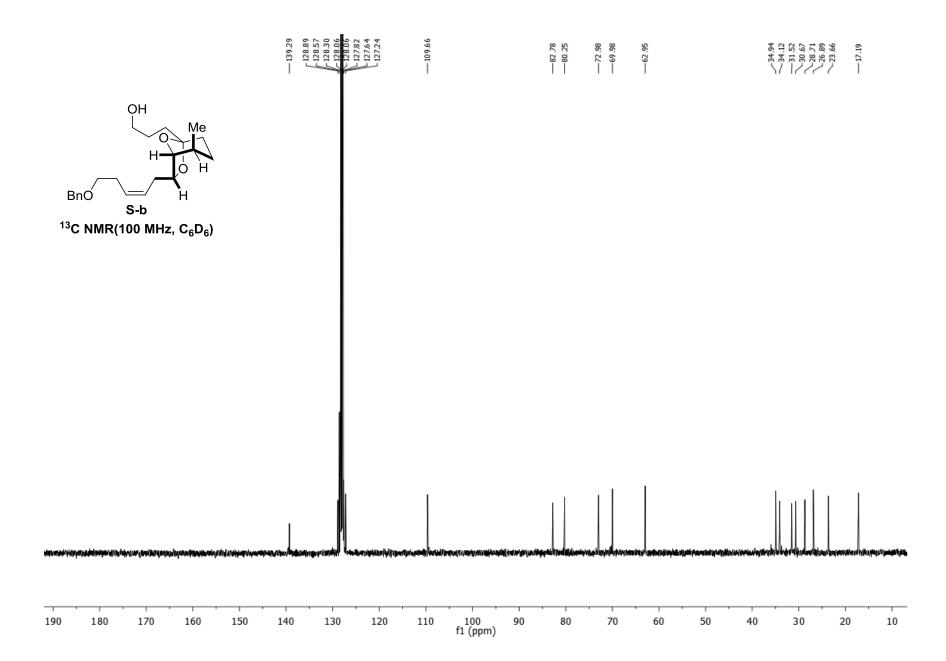


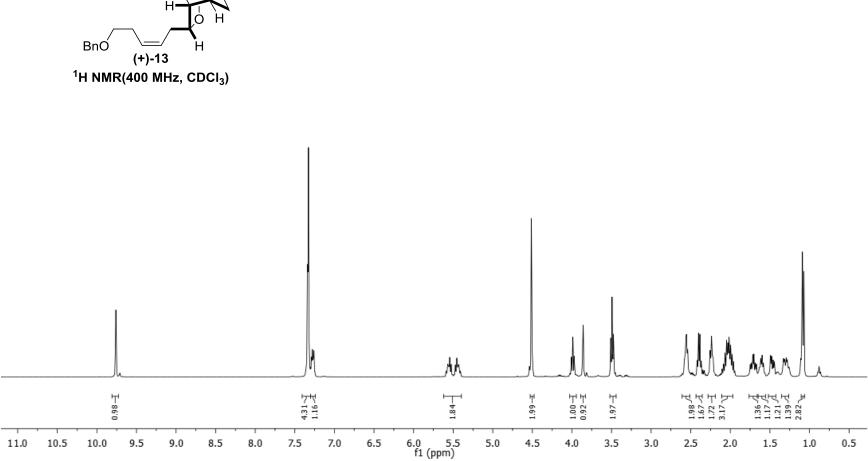


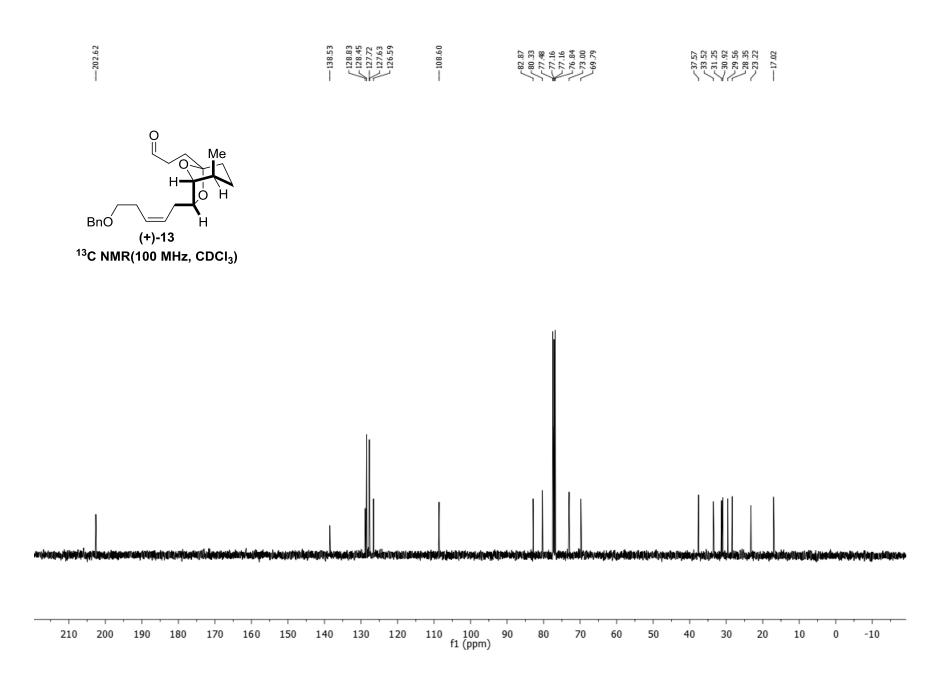


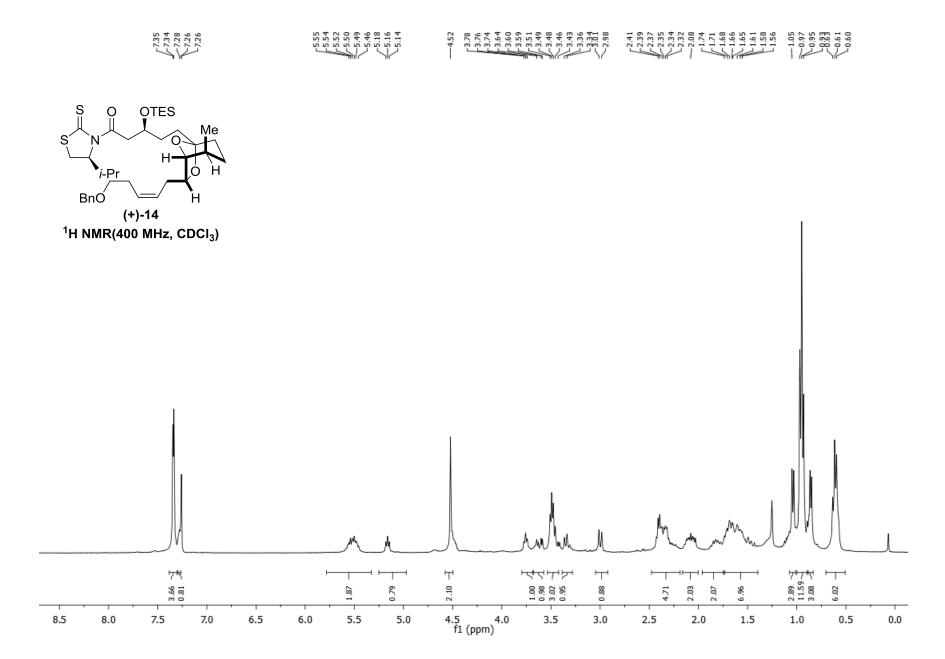

S-46

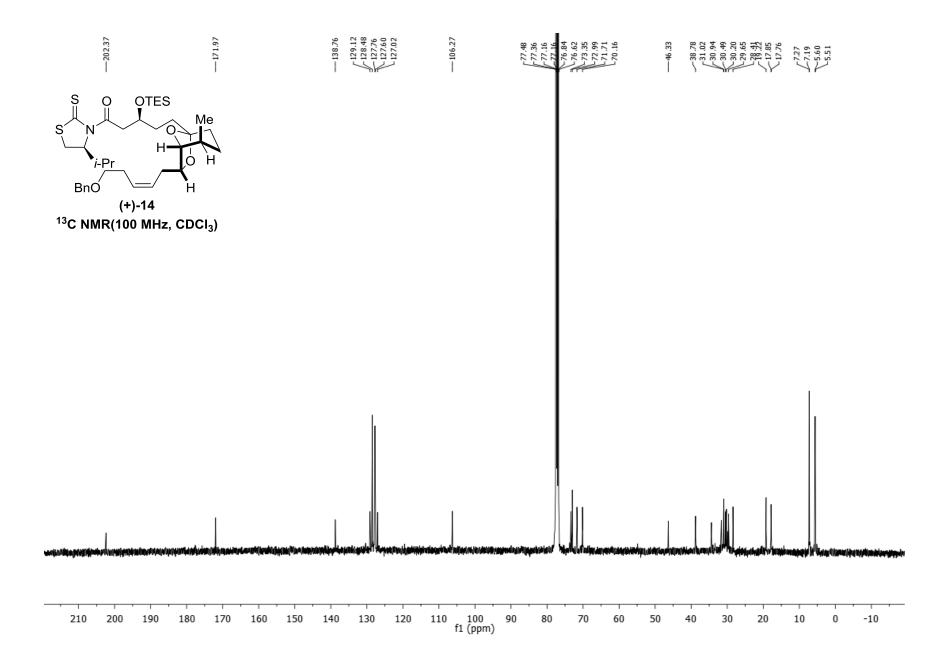


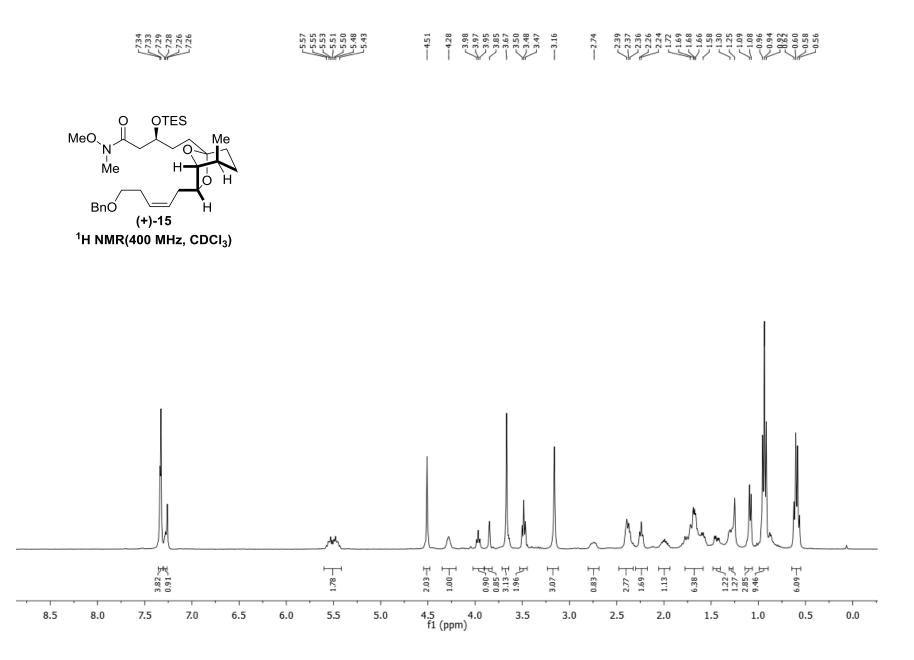


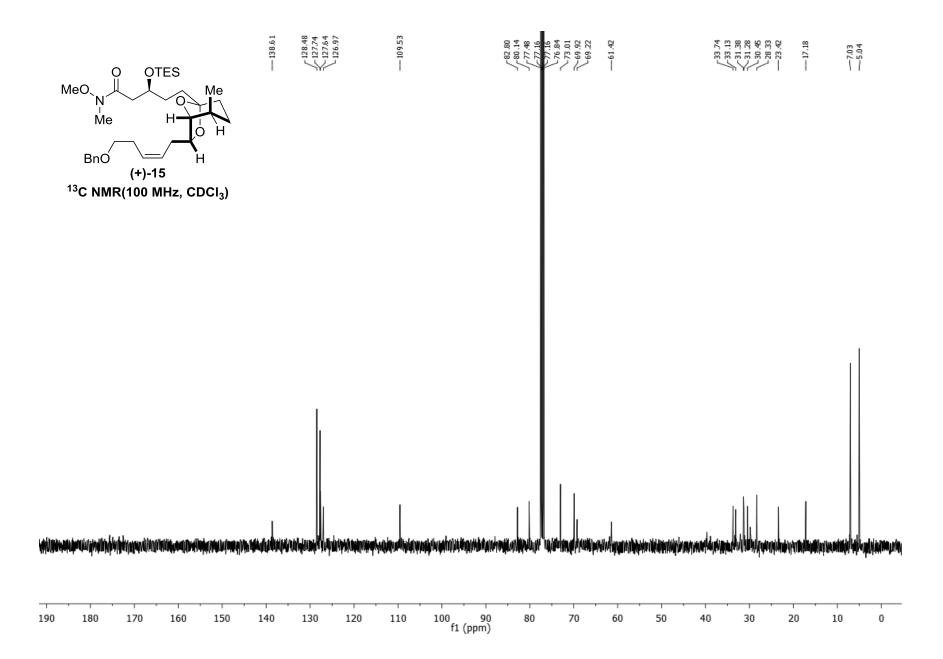


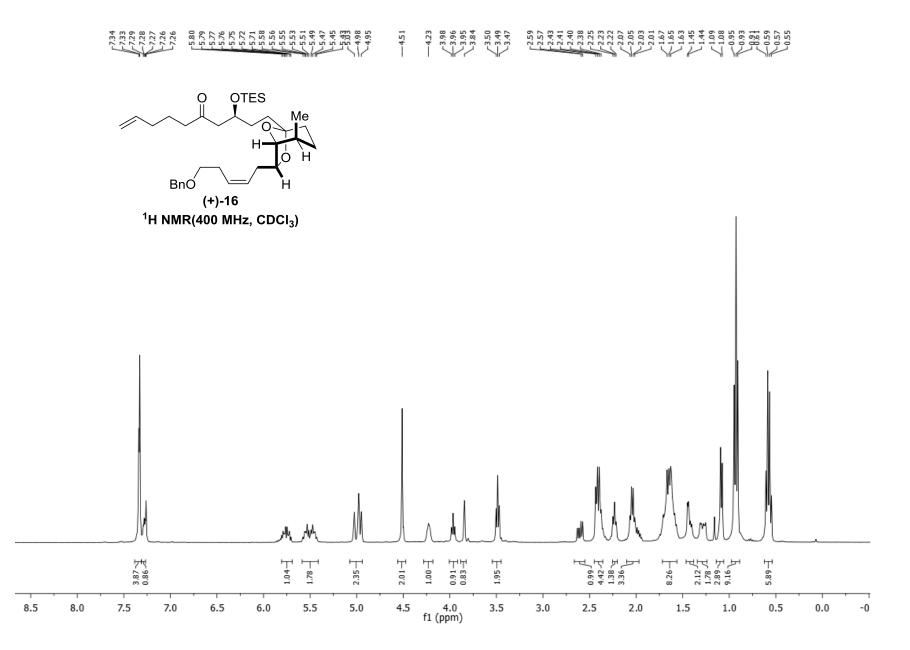


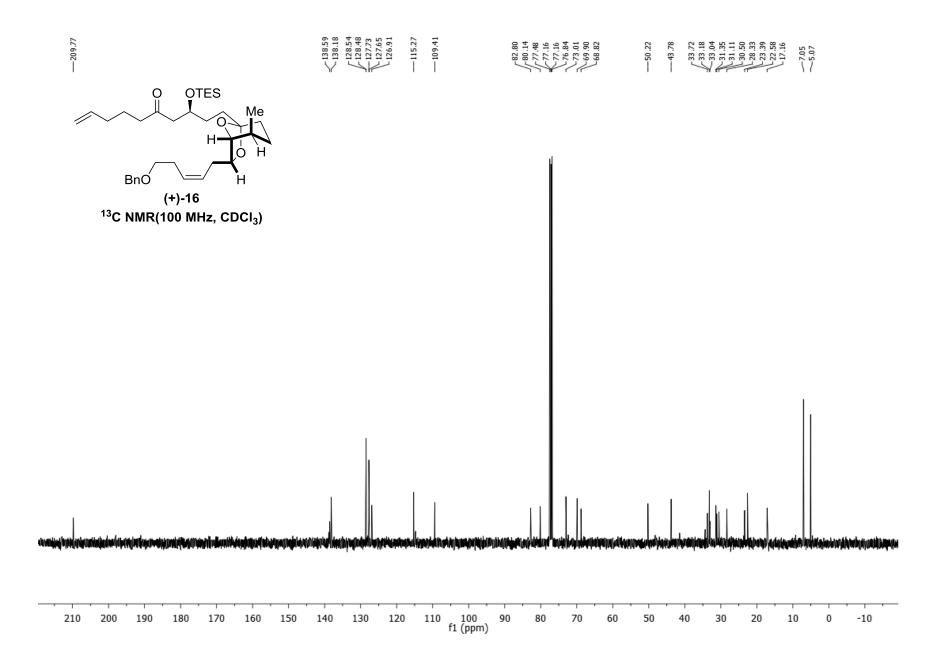


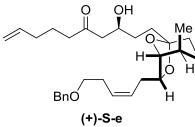


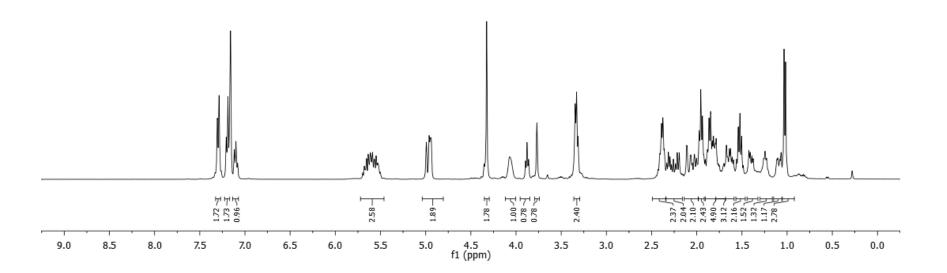

9.76

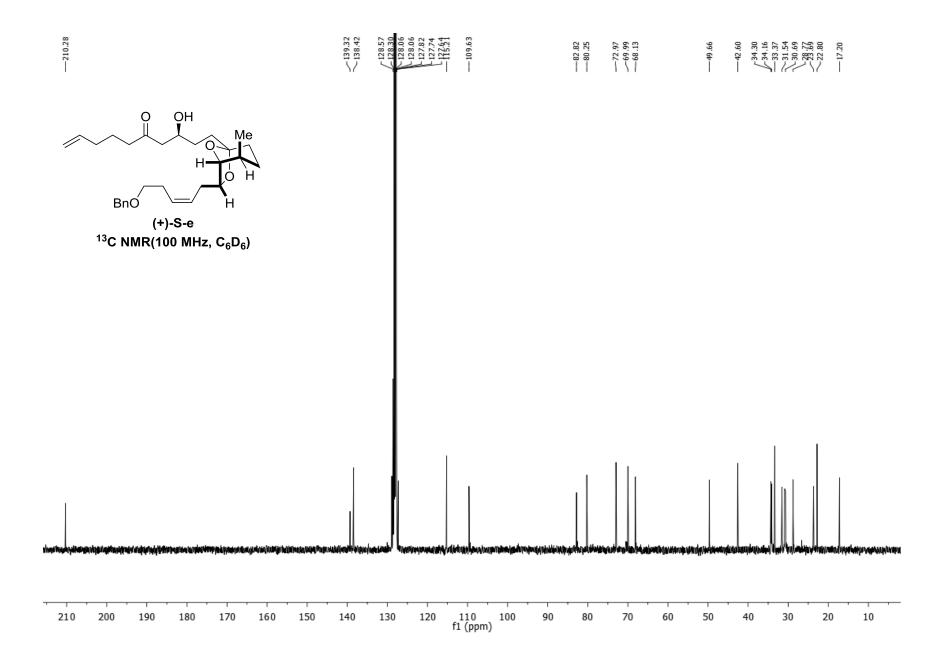

734 7733 7729 7729 7729 7726 7726 7726 ---4.51

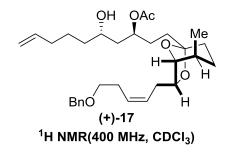


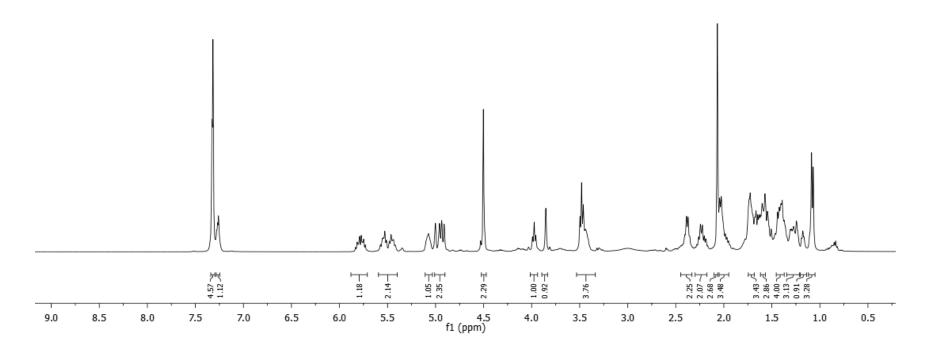


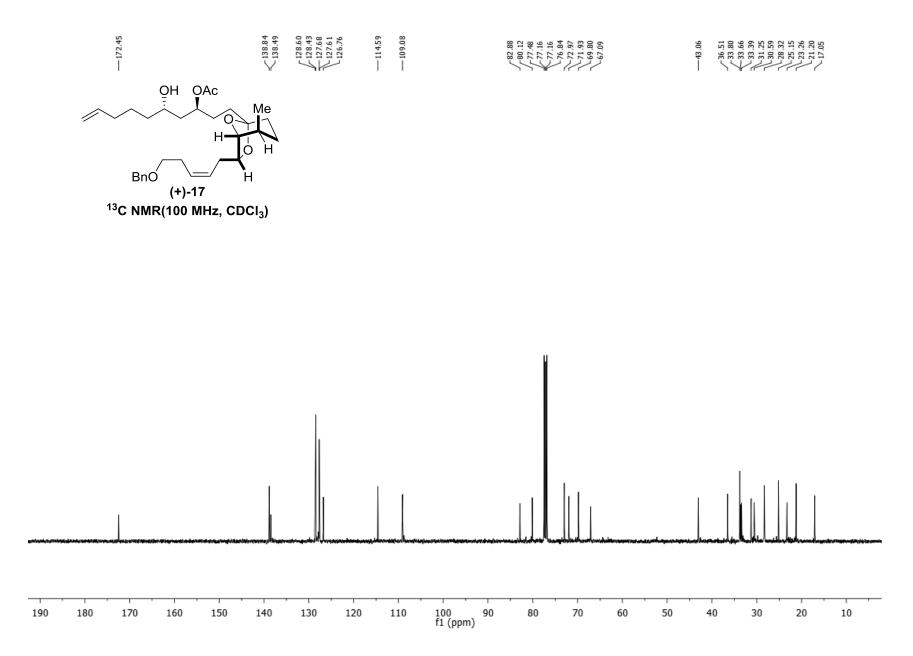




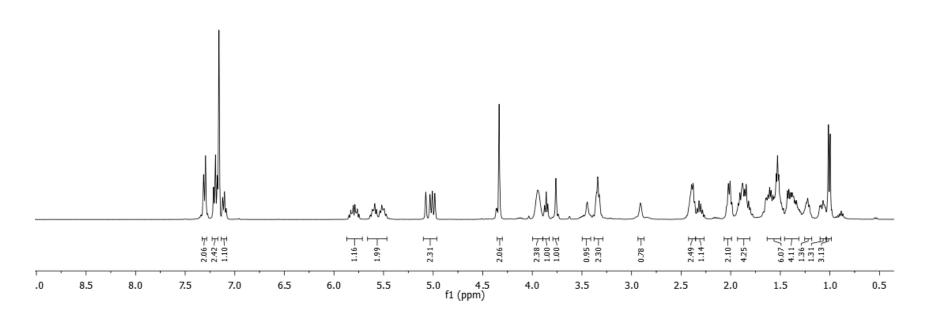


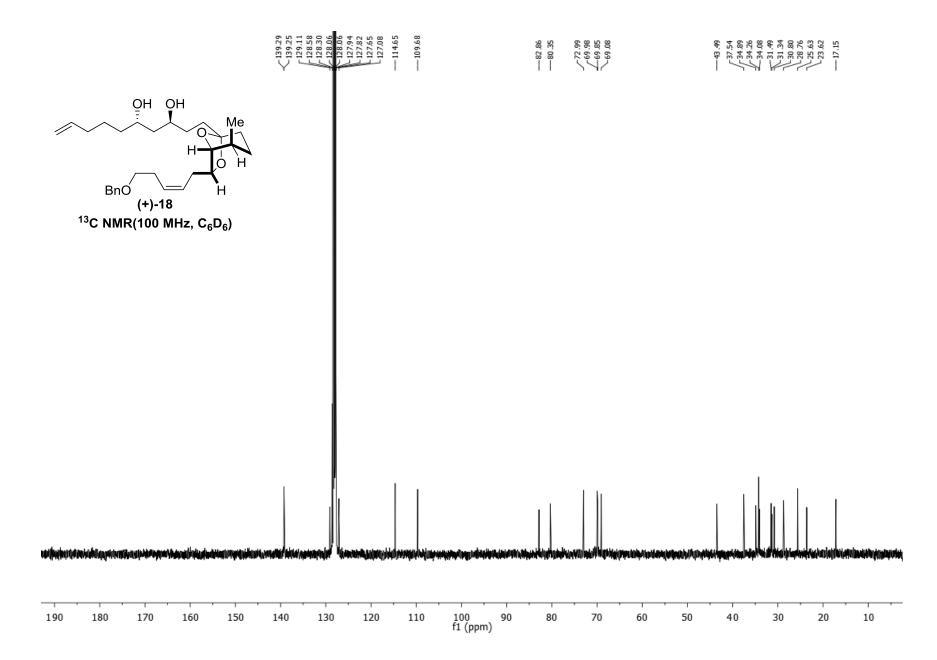



¹H NMR(400 MHz, C₆D₆)



он он

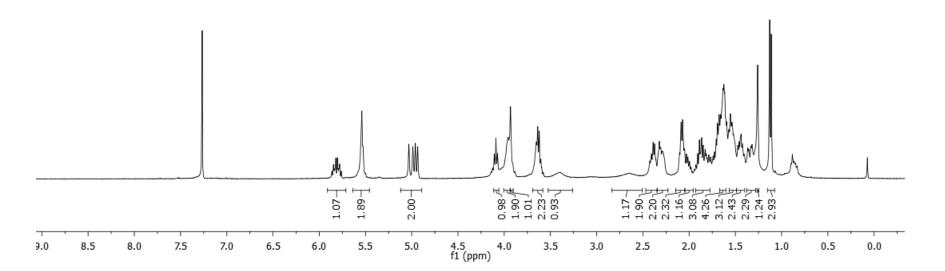

(+)-18 ¹H NMR(400 MHz, C₆D₆)

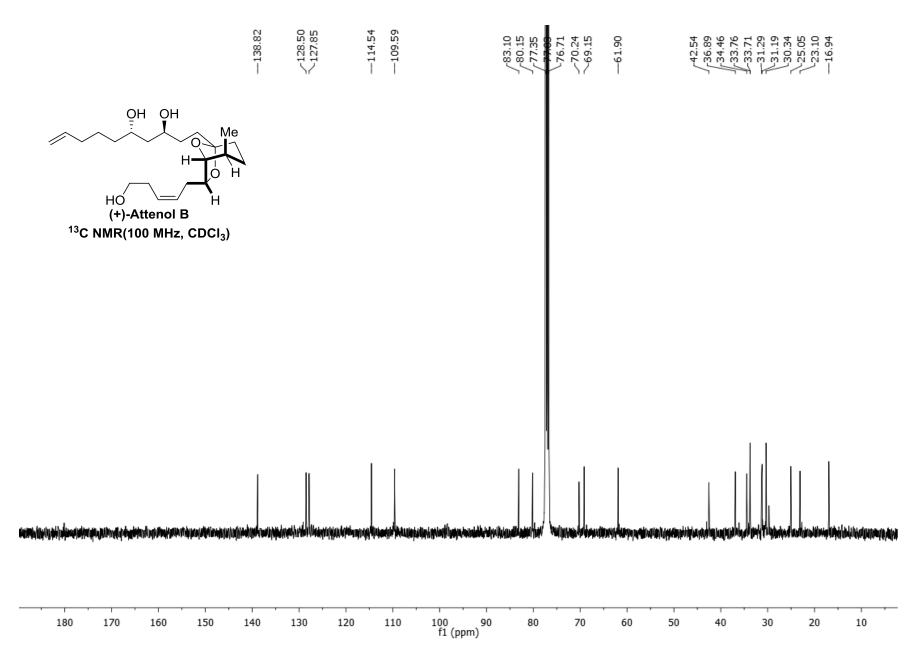

BnÓ

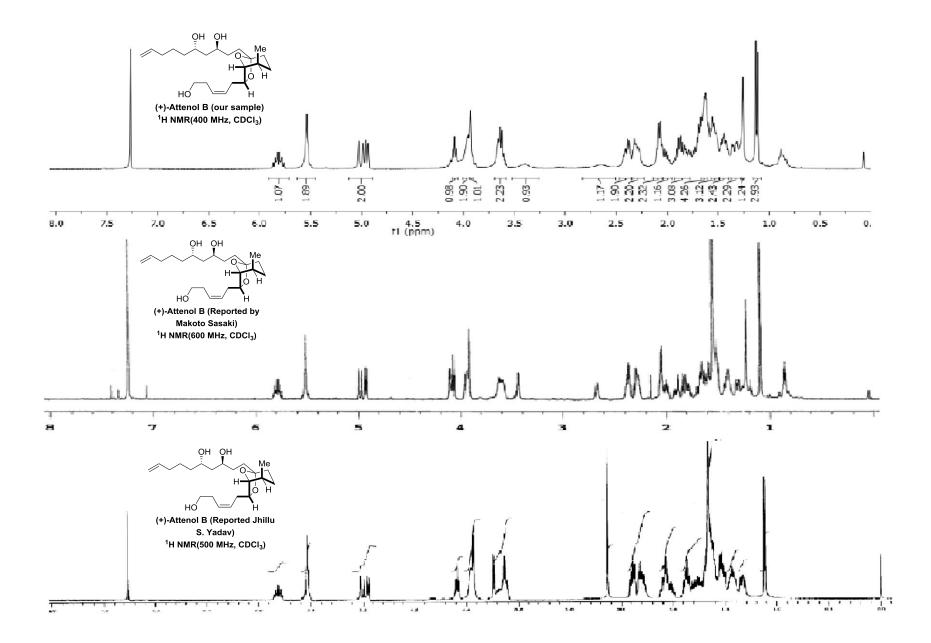
Me

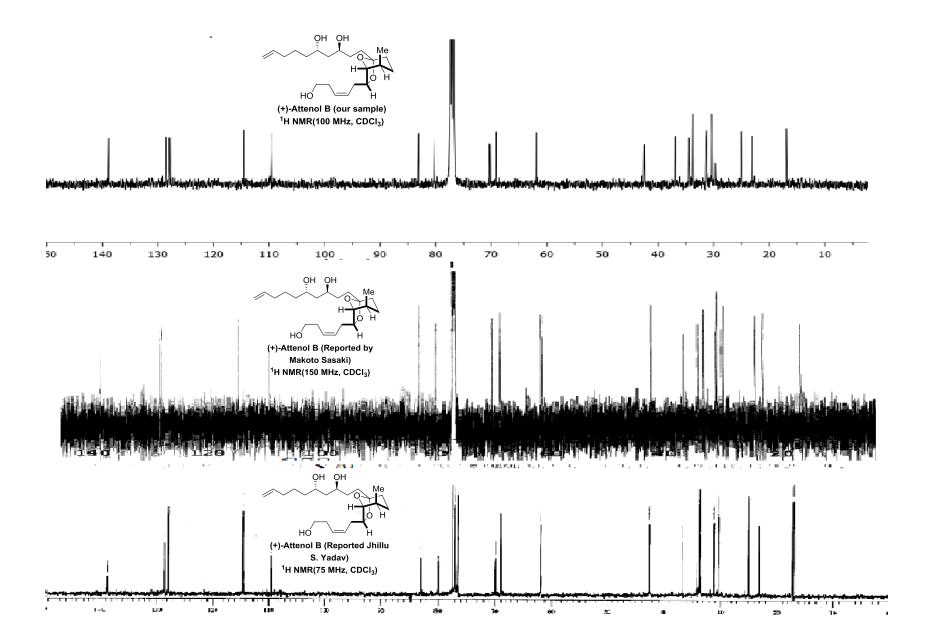
όH

H

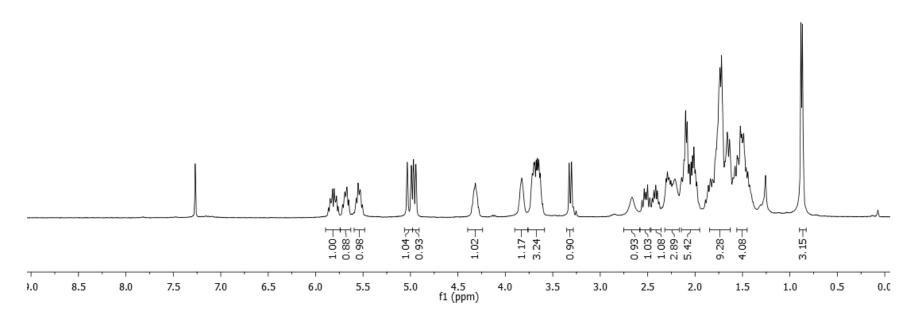


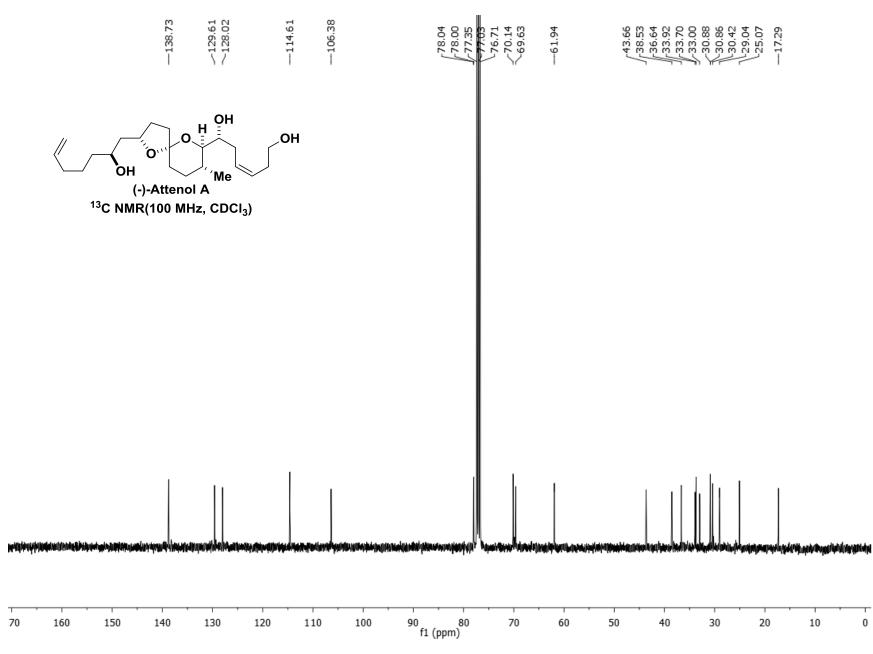


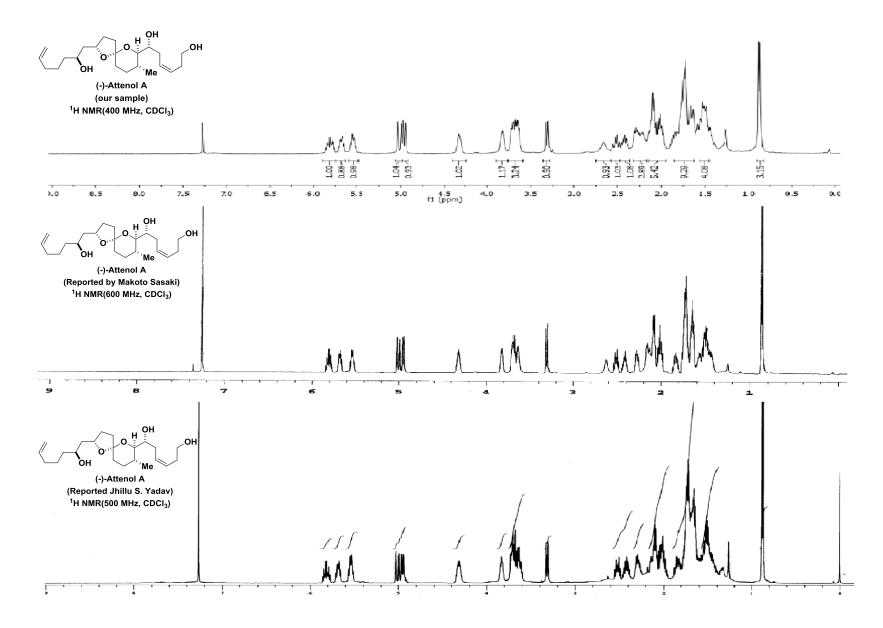

8888888777779 888888888777777	

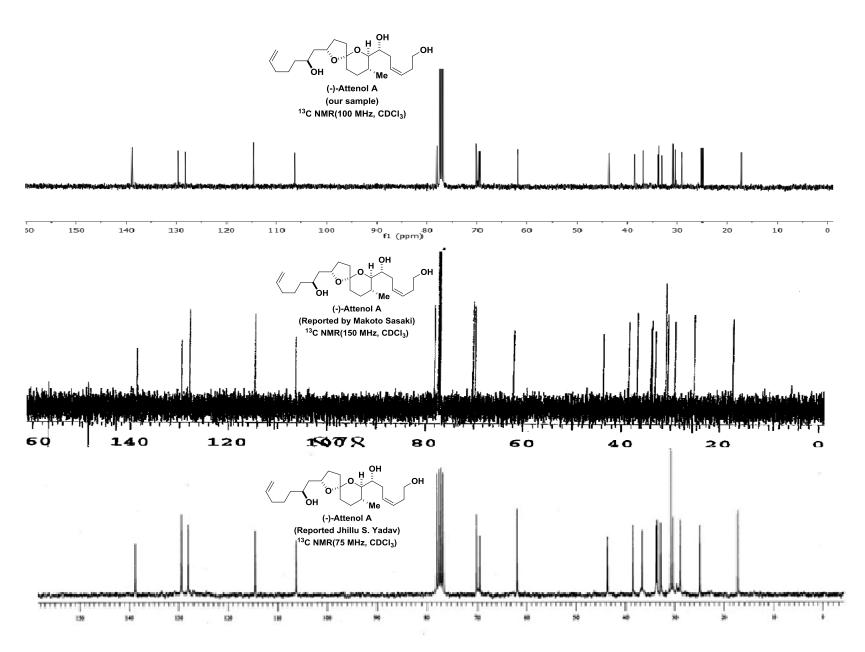

он он Me H٠ н Ò нό Ή

(+)-Attenol B ¹H NMR(400 MHz, CDCl₃)






て 200 タ 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
<u>, Ι α α ν ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο</u>	
<u>┝</u> ┝┅┅┅┅┅┅┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉	οọ


OH H = O ,OH он ́Ме

(-)-Attenol A ¹H NMR(400 MHz, CDCl₃)

