Supporting Information

Asymmetric Total Synthesis of (+)-Attenol B

Jingyun Ren, Jian Wang and Rongbiao Tong*

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
rtong@ust.hk
Table of Contents

General Information	$\mathrm{S}-2$
Preparation of Phenyltetrazole Sulfide S-a	$\mathrm{S}-3$
Preparation of Phenyltetrazole Sulfone 5	$\mathrm{S}-4$
Preparation of Alkene 6 via Julia-Kocienski Olefination	$\mathrm{S}-4$
Preparation of Diol (-)-3 via Sharpless Asymmetric Dihydroxylation	$\mathrm{S}-5$
Preparation of 6,8-Dioxabicyclo[3.2.1]octane (-)-2 via Sequential Achmatowicz Rearrangement/Bicycloketalization	$\mathrm{S}-7$
Preparation of Bicyclic Ketone (+)-7 via Chemoselctive Conjugate Reduction	$\mathrm{S}-8$
Preparation of Diol (+)-8 by DIBAL-H Reduction	$\mathrm{S}-9$
Preparation of Compound (+)-9	$\mathrm{S}-10$
Preparation of Compound (+)-11 via S \mathbf{N} 2 Substitution	$\mathrm{S}-11$
Preparation of cis-Alkene (+)-12 via Lindlar-Catalyzed Hydrogenation	$\mathrm{S}-13$
Preparation of Compound (+)-S-b	$\mathrm{S}-13$
Preparation of Aldehyde (+)-13 via Dess-Martin Periodinane Oxidation	$\mathrm{S}-14$
Preparation of Compound (+)-14 via Asymmetric Acetate Aldol Reaction	$\mathrm{S}-15$
Preparation of Weinreb Amide (+)-15	$\mathrm{S}-16$
Preparation of Ketone (+)-16 via Grignard Addition	$\mathrm{S}-17$
Preparation of Alcohol (+)-S-e	$\mathrm{S}-18$
Preparation of 1,3-anti-Diol (+)-17 via Evans-Tishchenko reaction	$\mathrm{S}-18$
Preparation of 1,3-anti-Diol (+)-18	$\mathrm{S}-19$
Total Synthesis of (+)-Attenol B	$\mathrm{S}-20$
Equilibration of (-)-Attenol A and (+)-Attenol B in CDCl	
Spectroscopic Data Comparison of (+)-Attenol B	$\mathrm{S}-20$
Spectroscopic Data Comparison of (-)-Attenol A	$\mathrm{S}-21$
${ }^{1} \mathrm{H}$ NMR and ${ }^{13}$ C NMR	$\mathrm{S}-24$

General Information: Reactions were carried out in oven or flame-dried glassware under a nitrogen atmosphere, unless otherwise noted. Tetrahydrofuran (THF) was freshly distilled before use from sodium using benzophenone as indicator. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was freshly distilled before use from calcium hydride $\left(\mathrm{CaH}_{2}\right)$. All other anhydrous solvents were dried over $3 \AA$ or $4 \AA$ molecular sieves. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC, 0.25 mm) on Merck precoated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.062 \mathrm{~mm}$) supplied by Grace. Infrared spectra were collected on a Bruker model TENSOR27 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts are reported in parts per million (ppm) as values relative to the internal chloroform (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.16 ppm for ${ }^{13} \mathrm{C}$) and benzene (7.16 ppm for ${ }^{1} \mathrm{H}$ and 128.06 ppm for ${ }^{13} \mathrm{C}$). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Optical rotations were measured on a JASCO Perkin-Elmer model P-2000 polarimeter. High resolution mass spectra were measured at the Hong Kong University of Science and Technology Mass Spectrometry Service Center on either an Agilent GC/MS 5975C System or an API QSTAR XL System. HPLC (Agilent technologies, 1260 Infinity) was used to determine enantiomeric excess of chiral compounds with eluents of hexane $/ i-\mathrm{PrOH}$.

Asymmetric Total Synthesis of (+)-Attenol B

$(+)-\mathbf{1 4}(\mathrm{dr} 10: 1)$

$(+)-15$

(+)-16

Preparation of Phenyltetrazole Sulfide S-a

To a solution of 6-(benzyloxy)hex-3-yn-1-ol ($8.19 \mathrm{~g}, 40.0 \mathrm{mmol}$) in THF (400 mL) at $0^{\circ} \mathrm{C}$ were added $\mathrm{PPh}_{3}(15.8 \mathrm{~g}, 60.0 \mathrm{mmol}$), 1-phenyl-1 H -tetrazole-5-thiol (PTSH, $10.7 \mathrm{~g}, 60.0 \mathrm{mmol}$) and diisopropyl azodicarboxylate (DIAD, $12.1 \mathrm{~g}, 60.0 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 6 h and then the solvent was evaporated directly in vacuo. The residue was dissolved in saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to afford the desired sulfide product S-a $(12.1 \mathrm{~g}, 33.2 \mathrm{mmol}, 83 \%$ yield) as colorless oil.

IR (neat, cm^{-1}): 3063, 3031, 2934, 1728, 1499, 1238, 1077, 762, 696. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 7.57-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{dt}, J=11.8,6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.76(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.46(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.1,138.2,133.7$, $130.3(2 \times \mathrm{C}), 129.9(2 \times \mathrm{C}), 128.5(2 \times \mathrm{C}), 127.8(2 \times \mathrm{C}), 123.9(2 \times \mathrm{C}), 79.6,78.2,73.0,68.6$, 32.7, 20.3, 19.8. HRMS (TOF, Cl^{+}) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{OS}$, $[\mathrm{M}+\mathrm{H}]^{+} 365.1431$, found 365.1418.

Preparation of Phenyltetrazole Sulfone 5

To a solution of $\mathbf{S}-\mathbf{a}(12.1 \mathrm{~g}, 33.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(13.9 \mathrm{~g}$, 166 mmol) and 3-chloroperbenzoic acid (m-CPBA, $13.5 \mathrm{~g}, 66.4 \mathrm{mmol}, \mathrm{ca} .85 \mathrm{wt} \%$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at room temperature. The reaction was quenched by addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (100 mL). The organic layer was collected and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic fractions were washed with saturated aqueous NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc =5:1) to afford the desired sulfone product 5 (11.2 $\mathrm{g}, 28.2 \mathrm{mmol}, 85 \%$ yield) as colorless oil.

IR (neat, cm^{-1}): 3034, 3031, 2932, 1725, 1407, 1354, 1232, 1108, 739, 694. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.72-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 153.3, 138.1, 133.0, 131.6 ($2 \times \mathrm{C}$), $129.8(2 \times \mathrm{C}), 128.5(2 \times \mathrm{C}), 127.8(2 \times \mathrm{C}), 125.3(2 \times \mathrm{C})$, 80.7, 75.0, 73.0, 68.2, 54.9, 20.1, 13.7. HRMS (TOF, Cl ${ }^{+}$) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$, $[\mathrm{M}+\mathrm{H}]^{+}$397.1329, found 397.1322.

Preparation of Alkene 6 via Julia-Kocienski Olefination

To a solution of sulfone $5(11.2 \mathrm{~g}, 28.2 \mathrm{mmol})$ in dried THF (300 mL) at $-78^{\circ} \mathrm{C}$, was added potassium bis(trimethylsilyl)amide (KHMDS, 0.5 M in toluene, $67.6 \mathrm{~mL}, 33.8 \mathrm{mmol}$) slowly. The
reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and the aldehyde $4^{1}(8.67 \mathrm{~g}, 45.0 \mathrm{mmol})$ was added very slowly. After the completion of addition, the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for additional 2 h . Then, the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50$ $\mathrm{mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100$ mL). The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=20: 1$) to afford the desired alkene product 6 $(9.00 \mathrm{~g}, 24.5 \mathrm{mmol}, 87 \%$ yield, ratio of E / Z isomers $10 / 1$) as a pale yellow oil.

IR (neat, cm^{-1}): $3030,2981,2866,1733,1678,1299,1187,795,739 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: $7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.01(\mathrm{~m}, 2 \mathrm{H}), 5.98$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.6,153.6,151.6,138.3,128.5(2 \times \mathrm{C}), 127.8$, $127.7(2 \times C), 122.6,119.7,108.0,107.1,79.6,77.8,73.0,68.8,60.6,32.8,23.7,22.1,20.3$, 14.3. HRMS (TOF, Cl^{+}) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{4},[\mathrm{M}+\mathrm{H}]^{+} 367.1904$, found 367.1907.

Preparation of Diol (-)-3 via Sharpless Asymmetric Dihydroxylation of Alkene 6

6

87% yield

To a solution of alkene $6(9.00 \mathrm{~g}, 24.5 \mathrm{mmol})$ in $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1 / 1,100 \mathrm{~mL} / 100 \mathrm{~mL})$ solution at $0{ }^{\circ} \mathrm{C}$ were added sequentially $\mathrm{K}_{2} \mathrm{CO}_{3}(10.1 \mathrm{~g}, 73.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(24.2 \mathrm{~g}, 73.5 \mathrm{mmol})$, (DHQD) $)_{2} \mathrm{PHAL}(190 \mathrm{mg}, 0.245 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(92.0 \mathrm{mg}, 0.245 \mathrm{mmol})$ and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(2.33 \mathrm{~g}, 24.5 \mathrm{mmol})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 days. The reaction was quenched by addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(50 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 2:1) to afford the desired diol (-)-3 ($8.52 \mathrm{~g}, 21.3 \mathrm{mmol}, 87 \%$ yield, $96 \mathrm{ee} \%$) as a yellow oil.

[^0]$[\alpha]_{\mathrm{D}}^{20}=-13.4\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$. IR (neat, cm^{-1}): 3421, 3034, 2914, 2868, 1731, 1156, 1018, 790, 743, 699. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.99(\mathrm{dd}, J=11.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.6,154.2,152.1,138.0,128.5(3 \times \mathrm{C}), 127.8(2 \times \mathrm{C})$, 108.7, 106.2, 80.0, 77.4, 73.0, 71.7, 69.9, 68.6, 60.7, 32.7, 23.8, 23.6, 20.3, 14.3. HRMS (TOF, Cl^{+}) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{6},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 418.2224$, found 418.2235.

Preparation of Racemic Diol (\pm)-3 via Upiohn Oxidation of Alkene 6

Following the procedure described in the literature ${ }^{2}$, to a solution of alkene $6(37 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{~mL} / 0.1 \mathrm{~mL})$ solution at $0{ }^{\circ} \mathrm{C}$ were added OsO_{4} solution (17 mg , 0.0013 mmol , ca. $2.0 \mathrm{wt} \%$ in water) and 4 -methylmorpholine N -oxide ($\mathrm{NMO}, 18 \mathrm{mg}, 0.15 \mathrm{mmol}$). After 2 h , the reaction was quenched by addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=2: 1$) to afford the desired diol-product $(\pm)-3(34$ $\mathrm{mg}, 0.086 \mathrm{mmol}, 86 \%$ yield) as a yellow oil.

HPLC Data of Diol 3

HPLC conditions: Daicel CHIRALPAK AD-H column; 10\% i-PrOH in hexanes; $1.0 \mathrm{~mL} / \mathrm{min}$

[^1]| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.803 | BB | 0.3801 | 1106.65308 | 43.90429 | 49.8486 |
| 2 | 18.676 | | 0.4270 | 1113.37585 | 39.24723 | 50.1514 |
| Total | s : | | | 2220.02893 | 83.15152 | |

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.550		0.3786	8772.62598	349.76163	98.0480
2	18.401		0.3963	174.64885	6.78407	1.9520
Total	s :			8947.27483	356.54570	

Preparation of 6,8-Dioxabicyclo[3.2.1]octane (-)-2 via Sequential Achmatowicz Rearrangement/Bicycloketalization of (-)-3

To a solution of diol (-)-3 ($8.52 \mathrm{~g}, 21.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added 3chloroperbenzoic acid (m-CPBA, $5.40 \mathrm{~g}, 27.0 \mathrm{mmol}, \mathrm{ca} .85 .0 \mathrm{wt} \%$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , and then CSA ($5.10 \mathrm{~g}, 22.0 \mathrm{mmol}$) was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for additional 20 min . Then the reaction was quenched by addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ and NaHCO_{3} solution $(30 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure.

The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=5: 1)$ to afford the desired product (-) $-2(7.20 \mathrm{~g}, 18.1 \mathrm{mmol}, 85 \%$ yield) as a yellow oil.
$[a]_{\mathrm{D}}^{20}=-15.2\left(\mathrm{c} 0.80, \mathrm{CHCl}_{3}\right)$. IR (neat, cm^{-1}): 3031, 2933, 1732, 1703, 1314, 1181, 1096, 1012, 897, 699, 680. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=9.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.89$ ($\mathrm{m}, 1 \mathrm{H}$), $3.57(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.38(\mathrm{~m}, 6 \mathrm{H}), 2.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 194.3,172.9,150.2,138.2,128.5(2 \times \mathrm{C}), 127.8(2 \times \mathrm{C})$, 127.8, 126.6, 105.1, 83.9, 80.1, 75.7, 74.6, 73.1, 68.6, 60.8, 29.5, 27.3, 24.2, 20.2, 14.3. HRMS (TOF, Cl^{+}) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{6},[\mathrm{M}+\mathrm{H}]^{+} 399.1802$, found 399.1795.

Preparation of Bicyclic Ketone (+)-7 via Chemoselctive Reduction of Enone (-)-2

${ }^{(+)-7}$

7

Table S1

Entry	$\left[\mathrm{H}_{2}\right]$	Temp ${ }^{\circ} \mathrm{C}$)	Time	Yield (7,\%)
1	$\mathrm{TiCl} / 4$ Hantzsch ester	$-78 \rightarrow 60$	8 h	<5
2	TFA/Hantzsch ester	$-78 \rightarrow 60$	8 h	<5
3	L-selectride	-78	2 h	$<20^{\mathrm{b}}$
4^{a}	MeLi/Cul, DIBAL-H	-78	10 min	0^{b}
5^{a}	$\mathrm{Cul} /$ DIBAL-H	$-78 \rightarrow \mathrm{rt}$	4 h	0
6^{a}	$\mathrm{CuI} / \mathrm{LiAlH}_{4}$	-78	10 min	86

Note: ${ }^{a}$ THF/HMPA $=4 / 1$ as the solvent. ${ }^{b}$ Compound 7' was isolated as a major or only product. TFA: trifluoroacetic acid; DIBAL-H: diisobutylaluminum hydride.

Based on the results in Table S1, we performed the conjugate reduction on a gram scale under the condition of the entry 6 to achieve the desired product (+)-7. Flame-dried Cul was dissolved in HMPA at $50^{\circ} \mathrm{C}$, and the solution was cooled to room temperature. To a vigorously stirred suspension of $\mathrm{LiAlH}_{4}(1.21 \mathrm{~g}, 32.0 \mathrm{mmol})$ in anhydrous THF (200 mL) was added dropwise the solution of $\mathrm{Cul}(6.08 \mathrm{~g}, 32.0 \mathrm{mmol})$ in HMPA $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The generated orange suspension gradually turned to brown. The stirring continued for additional 1 h , and then enone (-)-2 ($6.36 \mathrm{~g}, 16.0 \mathrm{mmol}$) in anhydrous THF (20 mL) was added dropwise at the same
temperature. Within 10 min , the enone was completely consumed. The reaction mixture was quenched with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and the resulting mixture was warmed to room temperature. The reaction mixture was filtered through a pad of silica gel, which was washed with EtOAc (200 mL). The combined filtrates were washed with water (200 mL) and brine (20 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvents were evaporated under reduced pressure to give the crude product, which was purified by column chromatography (hexane/EtOAc, 9:1) to give bicyclic ketone (+)-7 (5.50 g, 13.7 mmol , $86 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+10.2\left(c 0.75, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2979,2935,2863,1732,1221,1112,1076,743$, 699. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$, $4.32(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.33(\mathrm{~m}, 8 \mathrm{H}), 2.23-2.19(\mathrm{~m}$, $2 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 204.9,173.1$, $138.2,128.4(2 \times \mathrm{C}), 127.8(2 \times \mathrm{C}), 127.7,109.3,83.3,79.9,77.6,75.8,73.0,68.6,60.6,34.5$, 32.5, 31.4, 28.2, 24.6, 20.2, 14.3. HRMS (TOF, CI+) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{6}$, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 418.2224, found 418.2221.

Preparation of Diol (+)-8 by DIBAL-H Reduction of Bicyclic Ketone (+)-7

To a solution of bicyclic ketone (+)-7 (5.00 g, 12.5 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added diisobutylaluminum hydride solution (DIBAL-H, $1.0 \mathrm{M}, 62.5 \mathrm{~mL}, 62.5 \mathrm{mmol}$) dropwise. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 2 h , the reaction was quenched by addition of saturated aqueous Rochelle salt (sodium potassium tartrate) solution (50 mL). The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to afford desired diol (+)-8 ($3.96 \mathrm{~g}, 11.0 \mathrm{mmol}, 88 \%$ yield) as a yellow oil.
$[\alpha]_{\mathrm{D}}^{20}=+9.80\left(c 0.72, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3476,3031,2873,1642,1435,1076,1059,1027$, 799, 738. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) ~ \delta: 7.25(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=8.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H})$,
$3.47(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.80-1.60$ (m, 6H), 1.55-1.38 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) ~ \delta: ~ 138.7,128.6,128.3,128.1,128.0$, 127.8, 109.4, 81.0, 79.5, 78.0, 74.9, 72.8, 69.0, 66.1, 62.7, 34.0, 33.6, 26.8, 26.6, 25.7, 20.4. HRMS (TOF, Cl^{+}) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{5},[\mathrm{M}+\mathrm{H}]^{+} 361.2010$, found 361.2002.

Preparation of Compound (+)-9

To a solution of (+)-8 ($3.60 \mathrm{~g}, 10.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added triethylamine $\left(\mathrm{NEt}_{3}, 1.51 \mathrm{~g}, 15.0 \mathrm{mmol}\right.$), triisopropylsilyl chloride (TIPSCI, $2.09 \mathrm{~g}, 11.0 \mathrm{mmol}$) and 4 -(dimethylamino)pyridine (DMAP, $122 \mathrm{mg}, 1.00 \mathrm{mmol}$). After the completion of addition, the reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched by addition of water (60 mL). The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$. The combined organic fractions were washed with saturated aqueous NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=4: 1$) to afford the desired product $(+)-9$ (4.43 g , $8.60 \mathrm{mmol}, 86 \%$ yield) as a colorless oil.
$[\alpha]_{D}^{20}=+24.2\left(c 1.00, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3440,2958,2865,1512,1288,1100,1027,800$, 733. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=$ $9.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=16.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.90(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 7 \mathrm{H}), 1.10-1.03(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.0$, $128.6(2 \times C), 128.0,127.9,127.8,109.4,80.5,79.1,77.6,74.6,72.9,68.8,66.0,63.4,33.8$, 33.1, 26.8, 26.1, 25.2, 20.1, $18.1\left(6 \times\right.$ C), $12.1(3 \times C)$. HRMS (TOF, $\left.\mathrm{Cl}^{+}\right) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{Si},[\mathrm{M}+\mathrm{H}]^{+} 517.3344$, found 517.3331 .

Preparation of Compound (+)-11 via $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ Substitution of 9 with Methyl Nucleophile

Table S2

Entry	(a)	(b)	Temp (${ }^{\circ} \mathrm{C}$)	Time	Yield (11,\%)
1	$\mathrm{Ms}_{2} \mathrm{O}$	MeLi	$-20 \rightarrow 60$	4 h	$0^{\text {a }}$
2	$\mathrm{Ms}_{2} \mathrm{O}$	Me ${ }_{2} \mathrm{CuLi}$	$-20 \rightarrow \mathrm{rt}$	4 h	$0^{\text {b }}$
3	$\mathrm{Ms}_{2} \mathrm{O}$	$\mathrm{MeMgBr} / \mathrm{CuBr}-\mathrm{Me}_{2} \mathrm{~S}$	$-20 \rightarrow \mathrm{rt}$	4 h	$0^{\mathrm{b}, \mathrm{c}}$
4	TsCl	MeLi	$-20 \rightarrow \mathrm{rt}$	4 h	$0^{\text {c }}$
5	TsCl	$\mathrm{Me}_{2} \mathrm{CuLi}$	$-20 \rightarrow \mathrm{rt}$	4 h	$0^{\text {c }}$
6	Picolinate	$\mathrm{MeMgBr} / \mathrm{ZnCl}_{2} / \mathrm{CuBr}-$ $\mathrm{Me}_{2} \mathrm{~S}$	$-20 \rightarrow \mathrm{rt}$	2 h	$0^{\text {a }}$
7	$\mathrm{Tf}_{2} \mathrm{O}$	MeLi/Cul	$-10 \rightarrow \mathrm{rt}$	4 h	$64^{\text {d }}$

Note: ${ }^{a}$ No $\mathrm{S}_{\mathrm{N}} 2$ substitution reaction occurred at $-20^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$, and decomposition was observed at reflux. ${ }^{\text {b }}$ Starting material 9 was isolated probably due to desulfonation by methyl nucleophile. ${ }^{\text {c }} 11$ ' was isolated as the major product. ${ }^{\text {d }}$ Isolated yield for two steps

Based on the results in Table S2, we performed $S_{N} 2$ substitution of 9 with methyl nucleophile on a gram scale under the conditions of the entry 7 to achieve the desired product (+)-11.

Preparation of Compound (+)-10

To a solution of (+)-9 $(4.12 \mathrm{~g}, 8.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ were added $2,6-$ lutidine ($1.03 \mathrm{~g}, 9.60 \mathrm{mmol}$) and trifluoromethanesulfonic anhydride $\left(\mathrm{Tf}_{2} \mathrm{O}, 1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 9.60 $\mathrm{mL}, 9.60 \mathrm{mmol}$). After the completion of addition, the reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution (60 mL). The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$.

The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to afford the desired product (+)-10 (4.35 g, $6.72 \mathrm{mmol}, 84 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+8.20\left(c 0.80, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2942,2892,1416,1210,1146,938,883 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-$ $4.73(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-$ $2.14(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.16-0.91(\mathrm{~m}$, $21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 139.0,128.5,128.3,128.1(2 \times \mathrm{C}), 127.8,127.7,109.8,82.6$, 80.3, 77.6, 76.1, 75.3, 72.9, 68.9, 63.4, 34.2, 33.0, 27.1, 25.0, 23.9, 20.4, 18.3 ($6 \times$ C), $12.3(3 \times$ C). HRMS (TOF, CI ${ }^{+}$) m/z calculated for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{SSi},[\mathrm{M}]^{+} 648.2758$, found 648.2771 .

Preparation of Compound (+)-11 via $\mathbf{S}^{2} \underline{2}$ substitution of (+)-10

To a stirred suspension of $\mathrm{Cul}(1.90 \mathrm{~g}, 10.0 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added methyllithium ($1.60 \mathrm{M}, 12.5 \mathrm{~mL}, 20.0 \mathrm{mmol}$) dropwise. After 30 min a solution of (+)-10 (4.35 g , 6.72 mmol) in THF (50 mL) was added dropwise. The resulting yellow suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (60 mL). The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 80 mL). The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=10: 1$) to afford the desired product $(+)-11$ (2.62 g , $5.10 \mathrm{mmol}, 76 \%$ yield) as a colorless oil.
$(+)-11:[\alpha]_{\mathrm{D}}^{20}=+18.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3030,2890,1432,1103,1039,969,734$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}$ $=8.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=5.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.62(\mathrm{~m}$, $6 \mathrm{H}), 1.46$ (dd, $J=13.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.38-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-0.95$
$(\mathrm{m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 138.3,128.5(2 \times \mathrm{C}), 127.8(3 \times \mathrm{C}), 110.3,82.8,78.9$, $78.4,77.7,73.1,68.9,63.6,34.1,31.3,30.4,26.6,25.6,23.4,20.3,18.2(6 \times \mathrm{C}), 17.2,12.1(3 \times$ C). HRMS (TOF, $\left.\mathrm{Cl}^{+}\right) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{Si},[\mathrm{M}+\mathrm{H}]^{+} 515.3551$, found 515.3541 .

Preparation of cis-Alkene (+)-12 via Lindlar-Catalyzed Hydrogenation of (+)-11

To a solution of alkyne (+)-11 ($2.62 \mathrm{~g}, 5.10 \mathrm{mmol})$ in ethyl acetate was added Lindlar catalyst ($540 \mathrm{mg}, 0.255 \mathrm{mmol}, 5.00 \mathrm{wt} \% \mathrm{Pd}$) and quinoline ($1.97 \mathrm{~g}, 15.3 \mathrm{mmol}$) under $\mathrm{N}_{2}(\mathrm{~g})$ at room temperature. The reaction flask was flushed by H_{2} (balloon) for 10 min , and then the gas outlet was closed and the reaction mixture was stirred under H_{2} (balloon, 1 atm) atmosphere at room temperature for 2 h before filtration through celite. The solvent (EtOAc) was removed under reduced pressure and the resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=8: 1$) to afford $(+)-12(2.29 \mathrm{~g}, 4.43 \mathrm{mmol}, 87 \%$ yield) as a yellow oil. $[\alpha]_{\mathrm{D}}^{20}=+25.8\left(c 0.80, \mathrm{CHCl}_{3}\right) . \operatorname{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 3034,3027,2891,1585,1173,969,733 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.45(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H})$, $3.99(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{tq}, J=14.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.65-$ 1.56 (m, 1H), 1.46 (dd, $J=13.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=13.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.6,128.5(2 \times \mathrm{C}), 127.7(2 \times \mathrm{C})$, $127.6(2 \times \mathrm{C}), 127.0,109.7,82.9,80.1,73.0,69.9,63.7,34.3,33.8,31.4,30.4,28.3,26.8,23.4$, $18.2(6 \times \mathrm{C}), 17.2,12.1(3 \times \mathrm{C})$. HRMS $\left(\right.$ TOF, $\left.\mathrm{Cl}^{+}\right) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{O}_{4} \mathrm{Si},[\mathrm{M}+\mathrm{H}]^{+}$ 517.3708, found 517.3706.

Preparation of Compound (+)-S-b

To a solution of the (+)-12 ($2.29 \mathrm{~g}, 4.43 \mathrm{mmol}$) in THF (50 mL) at $0{ }^{\circ} \mathrm{C}$ was added tetrabutylammonium fluoride hydrate solution (TBAF, 1.0 M in THF, 6.65 mL 6.65 mmol). The reaction was allowed to warm to room temperature. After 1 h , the reaction was quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc =5:1) to afford (+)-S-b ($1.43 \mathrm{~g}, 3.99 \mathrm{mmol}, 90 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+10.6\left(c 0.50, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3432,3063,2870,1495,1453,1250,1107,969$, 734, 698. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 7.34-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.64-5.44(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})$, $3.32(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{dt}, J=19.1,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.81-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{dt}, J=12.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{dd}, J=13.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.19$ ($\mathrm{m}, 1 \mathrm{H}$), 1.07 (dd, $J=14.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$: $139.3,128.9,128.6,128.3,128.1,127.8,127.6,127.2,109.7,82.8,80.3,73.0,70.0,63.0,34.9$, 34.1, 31.5, 30.7, 28.7, 26.9, 23.7, 17.2. HRMS (TOF, CI ${ }^{+}$m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{4},[\mathrm{M}+\mathrm{H}]^{+}$ 361.2373, found 361.2375 .

Preparation of Aldehyde (+)-13 via Dess-Martin Periodinane Oxidation of (+)-S-b

To a solution of alcohol (+)-S-b (1.43 g, 3.99 mmol$)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{NaHCO}_{3}(1.66 \mathrm{~g}, 20.0 \mathrm{mmol})$ and Dess-Martin periodinane (DMP, $\left.3.38 \mathrm{~g}, 7.98 \mathrm{mmol}\right)$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Then, the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=5: 1$) to afford the desired aldehyde (+)-13 ($1.21 \mathrm{~g}, 3.39 \mathrm{mmol}, 85 \%$ yield) as a pale yellow oil.
$[\alpha]_{\mathrm{D}}^{20}=+22.6\left(c 0.80, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3028,2935,2870,1723,1453,1172,1102,991$, 735, 698. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H})$, $5.62-5.40(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 3 \mathrm{H})$, 1.71 (td, $J=12.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61$ (dd, $J=13.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47$ (dd, $J=13.3,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.35-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 202.6,138.5,128.8$, $128.5(2 \times \mathrm{C}), 127.7(2 \times \mathrm{C}), 127.6,126.6,108.6,82.8,80.3,73.0,69.8,37.6,33.5,31.3,30.9$, 29.6, 28.4, 23.2, 17.0. HRMS (TOF, $\left.\mathrm{Cl}^{+}\right) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{4},[\mathrm{M}+\mathrm{H}]^{+} 359.2217$, found 359.2229.

Preparation of Compound (+)-14 via Asymmetric Acetate Aldol Reaction

To a solution of (S)-1-(4-isopropyl-2-thioxothiazolidin-3-yl)ethanone S-c ($1.37 \mathrm{~g}, 6.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(1.0 \mathrm{M}, 6.78 \mathrm{~mL}, 6.78 \mathrm{mmol})$ dropwise followed by N, N-diisopropylethylamine ($i-\mathrm{Pr}_{2} \mathrm{NEt}, 787 \mathrm{mg}, 6.10 \mathrm{mmol}$) dropwise. After stirring at $-40{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture is cooled to $-78{ }^{\circ} \mathrm{C}$ and aldehyde $(+)-13(1.21 \mathrm{~g}, 3.39 \mathrm{mmol})$ was added dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched by addition of pH 7.0 phosphate buffer and warm to room temperature. The aqueous layer is extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude desired product (+)-S-d, which was used directly in next step without further purification.

To a solution of the crude (+)-S-d in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ were added 2,6-lutidine ($543 \mathrm{mg}, 5.08 \mathrm{mmol}$) and triethylsilyl trifluoromethanesulfonate (TESOTf, 1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.08$ $\mathrm{mL}, 5.08 \mathrm{mmol})$. After the completion of addition, the reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution (60 mL). The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=10: 1$) with the minor isomer being removed to afford the desired product (+)-14 ($1.65 \mathrm{~g}, 2.44 \mathrm{mmol}, 72 \%$ yield, 2 steps,) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+24.1\left(\mathrm{c} 0.80, \mathrm{CHCl}_{3}\right)$. IR (neat, cm^{-1}): 3027, 2954, 2874, 1697, 1495, 1455, 1312, 1281, 1168, 1041, 733, 699. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H})$, 5.51 (dt, $J=17.8,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.25-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=17.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48-2.19(\mathrm{~m}, 5 \mathrm{H}), 2.16-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.40(\mathrm{~m}, 7 \mathrm{H}), 1.04(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 12 \mathrm{H}), 0.86(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.70-0.51(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 202.4,172.0,138.8,129.1(2 \times \mathrm{C}), 128.5(2 \times \mathrm{C}), 127.8,127.6,127.0$, 106.3, 76.6, 73.4, 73.0, 71.7, 70.2, 46.3, 38.8, 34.4, 31.6, 31.0, 30.9, 30.5, 30.2, 29.8, 29.7, 28.4, 19.2, 17.9, 17.8, $7.3(2 \times \mathrm{C}), 7.2,5.6(2 \times \mathrm{C}), 5.5$. HRMS (TOF, $\left.\mathrm{Cl}^{+}\right) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Si},[\mathrm{M}+\mathrm{H}]^{+} 676.3520$, found 676.3513 .

Preparation of Weinreb Amide (+)-15

To a solution of $\mathrm{MeO}(\mathrm{Me}) \mathrm{NH} \cdot \mathrm{HCl}(476 \mathrm{mg}, 4.88 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added triethylamine $\left(\mathrm{NEt}_{3}, 591 \mathrm{mg}, 5.86 \mathrm{mmol}\right)$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Then the compound (+)-14 ($1.65 \mathrm{~g}, 2.44 \mathrm{mmol}$) and DMAP ($24.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added to the reaction mixture. After the completion of addition, the reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched by addition of water (60 $\mathrm{mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 80 mL). The combined organic fractions were washed with saturated aqueous NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=2: 1$) to afford the desired product (+)-15 ($1.18 \mathrm{~g}, 2.05 \mathrm{mmol}, 84 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+16.0\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$. IR (neat, cm^{-1}): 2951, 2874, 1823, 1663, 1458, 1364, 1098, 976, 731, 696. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\mathbf{~ : ~} 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.42(\mathrm{~m}$, $2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.24(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{dd}, J=13.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.6$,
$128.5(3 \times \mathrm{C}), 127.7(2 \times \mathrm{C}), 127.6(2 \times \mathrm{C}), 127.0,109.5,82.8,80.1,73.0,69.9,69.2,61.4,33.7$, $33.5,33.1,31.4,31.3,30.5,29.5,28.3,23.4,17.2,7.0(3 \times \mathrm{C}), 5.0(3 \times \mathrm{C})$. HRMS (TOF, $\left.\mathrm{Cl}^{+}\right)$ m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{NO}_{6} \mathrm{Si},[\mathrm{M}+\mathrm{H}]^{+} 576.3715$, found 576.3707 .

Preparation of Ketone (+)-16 via Grignard Addition

To a suspension of magnesium turnings ($240 \mathrm{mg}, 10.0 \mathrm{mmol}$) in dry THF (10 mL) was added 5-bromo-1-pentene ($1.49 \mathrm{~g}, 10.0 \mathrm{mmol}$) dropwise over a period time of 10 min at room temperature. After complete addition, the mixture was allowed to stir for another 2 h . Then to a solution of Weinreb amid (+)-15 (1.18 g, 2.05 mmol$)$ in THF (50 mL) was added the Grignard reagent at $-78^{\circ} \mathrm{C}$ dropwise. After 5 min , the mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=10: 1$) to afford the desired ketone $(+)-16(1.03 \mathrm{~g}, 1.76 \mathrm{mmol}, 86 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+21.0\left(c 0.80, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right):$ 2952, 2875, 1714, 1495, 1381, 1239, 1096, 1006, 910, 734, 697. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.81-$ $5.69(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.41(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{t}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=15.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=$ $14.9,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 8 \mathrm{H}), 1.43(\mathrm{dd}, J$ $=12.8,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.58$ ($\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 209.7,138.6,138.2,128.5(2 \times \mathrm{C}), 128.4(2 \times$ C), 127.7, 127.6, 126.9, 115.3, 109.4, 82.8, 80.1, 73.0, 69.9, 68.8, 50.2, 43.8, 33.7, 33.2, 33.0, $31.4,31.1,30.5,28.3,23.4,22.6,17.2,7.0(3 \times C), 5.1(3 \times C)$. HRMS (TOF, CI ${ }^{+}$) m/z calculated for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{O}_{5} \mathrm{Si},[\mathrm{M}+\mathrm{H}]^{+} 585.3970$, found 585.3951 .

Preparation of Alcohol (+)-S-e via Desilylation of Ketone (+)-16

To a solution of ketone (+)-16 ($877 \mathrm{mg}, 1.50 \mathrm{mmol}$) in wet $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added a solution of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF, $825 \mathrm{mg}, 3.00 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ at room temperature. After stirring for 4 h , the mixture was filtered through a pad of silica gel which was carefully rinsed with EtOAc. The combined filtrates were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=2: 1$) to afford the desired alcohol (+)-S-e ($636 \mathrm{mg}, 1.35 \mathrm{mmol}, 90 \%$ yield) as a colorless oil.
$[\alpha]_{D}^{20}=+16.4\left(c 0.90, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3447,2933,2870,1708,1495,1361,1249,1099$, 1029, 992, 910, 735, 698. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ : $7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.53(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{dd}, J=13.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~s}$, $1 \mathrm{H}), 3.88(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.26$ (m, 2H), $2.14-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.57$ $-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{dd}, J=13.1,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{dd}, J=13.8,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 210.3,139.3,138.4,128.9,128.6$, 128.3, 127.8, 127.7, 127.6, 127.3, 115.2, 109.6, 82.8, 80.3, 73.0, 70.0, 68.1, 49.7, 42.6, 34.3, $34.2,33.4,31.5,30.9,30.7,28.8,23.7,22.8,17.2$. HRMS (TOF, Cl^{+}) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{5},[\mathrm{M}+\mathrm{H}]^{+} 471.3105$, found 471.3133 .

Preparation of 1,3-anti-Diol (+)-17 via Evans-Tishchenko Reaction

To a solution of acetaldehyde ($440 \mathrm{mg}, 10.0 \mathrm{mmol}$) in dry THF (10 mL) at $0^{\circ} \mathrm{C}$ was added Sml_{2} solution ($0.1 \mathrm{M}, 11.0 \mathrm{ml}, 1.10 \mathrm{mmol}$) dropwise. The solution was stirred for 5 min before cooling to $-20^{\circ} \mathrm{C}$. A solution of compound (+)-S-e ($471 \mathrm{mg}, 1.00 \mathrm{mmol}$) in THF (10 mL) was added dropwise and the reaction was maintained at $-20^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched
by addition of saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=4: 1$) to afford the 1,3-anti-diol (+)-17 ($442 \mathrm{mg}, 0.860 \mathrm{mmol}, 86 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+27.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3496,2935,2869,1733,1716,1496,1373,1246$, 1100, 1026, 993, 909, 736, 698. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.26$ (m, 1H), 5.78 (dq, $J=10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=22.7$, $13.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 4 \mathrm{H}), 2.40-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.62-$ $1.57(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{dd}, J=13.6,5.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.28(\mathrm{dd}, J=17.6,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.5,138.8,138.5,128.6(2 \times \mathrm{C})$, $128.4(2 \times \mathrm{C}), 127.7,127.6(2 \times \mathrm{C}), 126.7,114.6,109.1,82.9,80.1,72.9,71.9,69.8,67.1,43.1$, $36.5,33.8,33.7,33.4,31.3,30.6,28.3,25.2,23.3,21.2,17.1$. HRMS (TOF, $\left.\mathrm{Cl}^{+}\right) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{O}_{6},[\mathrm{M}+\mathrm{H}]^{+} 515.3367$, found 515.3376 .

Preparation of 1,3-anti-Diol (+)-18

To a solution of $(+)-17(103 \mathrm{mg}, 0.200 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$ at room temperature was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($276 \mathrm{mg}, 2.00 \mathrm{mmol}$) dropwise. After stirring for 4 h , the mixture was filtered through a pad of silica gel which was carefully rinsed with EtOAc. The combined filtrates were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=2: 1$) to afford the desired 1,3-anti-diol (+)-18 ($86.8 \mathrm{mg}, 0.184 \mathrm{mmol}, 92 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+28.1\left(c 0.80, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3472,3035,2934,2859,1710,1548,1453,1310$, 1248, 1172, 1077, 992, 734, 614. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 7.30(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{dd}, J=$ $23.0,13.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.01-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.45$ (br s, 1H), $3.34(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.91 (br s, 1H), $2.42-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H})$, $2.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.25-$
$1.18(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{dd}, J=11.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta: 139.3,139.2,129.1,128.6,128.3,127.9,127.8,127.6,127.1,114.6,109.7,82.9,80.4,73.0$, $70.0,69.9,69.1,43.5,37.5,34.9,34.3,34.1,31.5,31.3,30.8,28.8,25.6,23.6,17.2$. HRMS (TOF, Cl^{+}) m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{5},[\mathrm{M}+\mathrm{H}]^{+} 473.3262$, found 473.3287.

Total Synthesis of (+)-Attenol B

To a stirred solution of naphthalene ($51 \mathrm{mg}, 0.40 \mathrm{mmol}$) in THF (2 mL) was added lithium (2.1 $\mathrm{mg}, 0.30 \mathrm{mmol})$. The reaction mixture was stirred at room temperature until the lithium was completely dissolved. The resulting dark-green solution of lithium naphthalenide was cooled to $-20^{\circ} \mathrm{C}$, and a solution of 1,3-anti-diol (+)-18 (47 mg, 0.10 mmol$)$ in THF (2 mL) was added dropwise. After stirring for 30 min , the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=1: 3$) to afford (+)-attenol B ($33 \mathrm{mg}, 0.086 \mathrm{mmol}, 86 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=+31.0\left(c 0.10, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3388,3373,2924,2853,1727,1537,1459,1414$, 1376, 1351, 1293, 1224, 1173, 1121, 1042, 993, 968, 908, 877, 858. HRMS (TOF, Cl ${ }^{+}$) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{5},[\mathrm{M}+\mathrm{H}]^{+} 383.3792$, found 383.2798. For other data: please see Table S3 and S4.

Equilibration of (-)-Attenol A and (+)-Attenol B in CDCl_{3}

The (+)-attenol B($5.0 \mathrm{mg}, 0.013 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added into the NMR tube. The $(-)$-attenol A and (+)-attenol B equilibrated after 40 min with a constant A / B ratio of 10/1.

Separation of attenols A from B through column chromatography on silica gel (hexane/EtOAc = $1: 3$) to provide (-)-attenol A ($4.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 91 \%$ yield) as a colorless oil.
$[\alpha]_{\mathrm{D}}^{20}=-10.2\left(c 0.90, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3367,2927,2859,1639,1488,1457,1375,1249$, 1087, 1043, 1012, 978. HRMS (TOF, Cl^{+}) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{Na},[\mathrm{M}+\mathrm{Na}]^{+}$405.2611, found 405.2593. For other data: please see Table S5 and S6.

Spectroscopic Data Comparison of (+)-Attenol B

Table S3. ${ }^{1} \mathrm{H}$ NMR Comparison

No.	Natural (+)-Attenol B (Reported by Daisuke Uemura ${ }^{3}$) ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$	Synthetic (+)-Attenol B (Reported Jhillu S. Yadav ${ }^{4}$) ${ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\begin{gathered} \text { Synthetic (+)-Attenol B } \\ \text { (Reported by Makoto } \\ \text { Sasaki }{ }^{5} \text {) } \\ { }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	$\left.\begin{array}{c} \text { Synthetic (+)-Attenol } \\ \text { B (Our Sample) } \\ { }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \\ \mathrm{CDCl} \end{array}{ }^{3}\right) .$
1	3.63 (2H, m)	3.63 (2H, m)	3.61 (2H, m)	3.63 (2H, m)
2	2.31 (m), 2.39 (m)	2.29 (m), 2.39 (m)	2.29 (m), 2.38 (m)	2.29 (m), 2.40 (m)
3	5.53 (m)	5.53 (m)	5.52 (m)	5.54 (m)
4	5.54 (m)	5.53 (m)	5.52 (m)	5.54 (m)
5	2.31 (m), 2.39 (m)	2.29 (m), 2.39 (m)	2.29 (m), 2.38 (m)	2.29 (m), 2.40 (m)
6	4.09 (t, 6.7)	4.08 (t, 7.0)	4.07 (t, 6.5)	4.09 (t, 6.8)
7	3.92 (s)	3.93 (br s)	3.90 (s)	3.93 (s)
8	1.67 (m)	1.61 (m)	1.59 (m)	1.63 (m)
9	$\begin{gathered} 1.34(\mathrm{dd}, 15.2,5.7), \\ 2.02(\mathrm{~m}) \end{gathered}$	1.34 (dd, 14.0, 5.4), 2.01 (m)	1.33 (dd, 15.2, 5.0), 2.00 (m)	$\begin{gathered} 1.34(\mathrm{dd}, 13.9,5.0) \\ 2.00(\mathrm{~m}) \end{gathered}$
10	1.51 (m), 1.68 (m)	1.61 (m), 1.78 (m)	1.59 (2H, m)	1.53 (m), 1.63 (m)
12	1.85 (m), 1.90 (m)	1.87 (m), 2.01 (m)	1.85 (2H, m)	1.82 (2H, m)
13	1.61 (m), 1.81 (m)	1.61 (m), 1.87 (m)	1.59 (m), 1.85 (m)	1.63 (m), 1.84 (m)
14	3.95 (m)	3.95 (m)	3.94 (m)	3.96 (m)
15	1.58 (m), 1.65 (m)	1.61 (m), 1.78 (m)	1.59 (2H, m)	1.63 (2H, m)
16	3.93 (m)	3.95 (m)	3.94 (m)	3.96 (m)
17	1.43 (m), 1.54 (m)	1.43 (m), 1.61 (m)	1.42 (m), 1.59 (m)	1.45 (m), 1.63 (m)
18	1.40 (m), 1.53 (m)	1.43 (m), 1.61 (m)	1.42 (m), 1.59 (m)	1.45 (m), 1.63 (m)
19	2.08 (2H, m)	2.08 (2H, m)	2.06 (2H, m)	2.08 (2H, m)
20	$\begin{gathered} 5.81 \text { (ddt, 17.2, 10.1, } \\ 6.8) \end{gathered}$	5.81 (ddt, 17.1, 10.1, 7.0)	5.79 (m)	5.81 (m)
21	$\begin{aligned} & 4.95(\text { br d, 10.1), } \\ & 5.01(\text { br d, 17.2) } \end{aligned}$	$\begin{gathered} 4.95 \text { (br d, 10.1), } 5.01 \text { (dd, } \\ 17.1,1.6) \end{gathered}$	4.93 (d, 10.3), 4.98 (d, 17.0)	$\begin{gathered} 4.95(\mathrm{~d}, 10.0), 5.01 \\ (\mathrm{~d}, 17.3) \end{gathered}$
22	1.12 (3H, d, 7.0)	1.12 (3H, d, 7.0)	1.10 (3H, d, 7.0)	1.12 (3H, d, 7.1)

[^2]Table S4. ${ }^{13} \mathrm{C}$ NMR Comparison

NO.	Natural (+)-Attenol B (Reported by Daisuke Uemura) ${ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3})	Synthetic (+)-Attenol B (Reported by Jhillu S. Yadav) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	Synthetic (+)-Attenol B (Reported by Makoto Sasaki) $\left.{ }^{13} \mathrm{C} \text { NMR (} 150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	```Synthetic (+)-Attenol B (Our Sample) * C NMR (100 MHz, CDCl3)```
1	61.9	61.8	61.9	61.9
2	31.3	31.1	31.3	31.3
3	128.5	128.4	128.5	128.5
4	127.9	127.7	127.8	127.9
5	33.7	33.7	33.7	33.7
6	80.1	80.0	80.1	80.1
7	83.1	83.0	83.1	83.1
8	31.2	31.2	31.3	31.2
9	23.1	23.0	23.1	23.1
10	30.3	30.3	30.3	30.3
11	109.6	109.6	109.5	109.6
12	34.5	34.2	34.5	34.5
13	30.3	30.3	30.3	30.2
14	70.2	69.8	70.3	70.2
15	42.5	42.5	42.4	42.5
16	69.2	68.9	69.1	69.2
17	36.9	36.8	36.8	36.9
18	25.0	25.0	25.0	25.1
19	33.7	33.6	33.7	33.7
20	138.8	138.8	138.8	138.8
21	114.5	114.5	114.5	114.5
22	16.9	16.9	16.9	16.9

Spectroscopic Data Comparison of (-)-Attenol A

Table S5. ${ }^{1} \mathrm{H}$ NMR Comparison

No.	Natural (-)-Attenol A (Reported by Daisuke Uemura) ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$	$\begin{gathered} \text { Synthetic (-)-Attenol A } \\ \text { (Reported by Jhillu S. } \\ \text { Yadav) } \\ { }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	Synthetic (-)-Attenol A (Reported by Makoto Sasaki) ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	```Synthetic (-)-Attenol A (Our Sample) '1H NMR (400 MHz, CDCl3)```
1	3.65 (2H, m)	3.66 (2H, m)	3.67 (2H, m)	3.68 (2H, m)
2	2.29 (m), 2.41 (m)	2.29 (m), 2.42 (m)	2.27 (m), 2.42 (m)	2.25 (m), 2.41 (m)
3	5.54 (m)	5.56 (m)	5.55 (m)	5.54 (m)
4	5.68 (m)	5.68 (m)	5.67 (m)	5.68 (m)
5	$\begin{gathered} 2.12(\mathrm{~m}), 2.51 \text { (br dt, } \\ 14.8,8.8) \end{gathered}$	2.11 (m), 2.52 (m)	2.10 (m), 2.52 (m)	2.05 (m), 2.53 (m)
6	3.72 (m)	3.66 (m)	3.67 (m)	3.67 (m)
7	3.31 (dd, 10.4, 1.2)	3.32 (dd, 10.1, 1.4)	3.32 (d, 10.3)	3.31 (d, 10.1)
8	1.74 (m)	1.70 (m)	1.59 (m)	1.74 (m)
9	1.50 (m), 1.65 (m)	1.49 (m), 1.70 (m)	1.59 (2H, m)	1.51 (2H, m)
10	1.64 (m), 1.75 (m)	1.70 (2H, m)	1.59 (2H, m)	1.51 (2H, m)
12	1.70 (m), 2.02 (m)	1.70 (m), 2.01 (m)	1.59 (m), 2.10 (m)	1.51 (m), 2.05 (m)
13	1.84 (m), 2.02 (m)	1.84 (m), 2.01 (m)	1.83 (m), 2.10 (m)	1.74 (m), 2.05 (m)
14	4.31 (m)	4.32 (m)	4.31 (m)	4.32 (m)
15	1.72 (2H, m)	1.70 (2H, m)	1.59 (2H, m)	1.74 (2H, m)
16	3.83 (m)	3.83 (m)	3.82 (br s)	3.83 (m)
17	1.50 (2H, m)	1.49 (2H, m)	1.59 (2H, m)	1.51 (2H, m)
18	1.43 (m), 1.56 (m)	1.49 (2H, m)	1.59 (2H, m)	1.74 (2H, m)
19	2.09 (2H, m)	2.11 (2H, m)	2.10 (2H, m)	2.05 (2H, m)
20	$\begin{gathered} 5.81 \text { (ddt, 17.2, } \\ 10.2,6.8) \end{gathered}$	5.81 (ddt, 16.9, 10.2, 6.7)	5.81 (m)	5.81 (m)
21	$\begin{aligned} & 4.95 \text { (br d, 10.2), } \\ & 5.01 \text { (br d, 17.2) } \end{aligned}$	$\begin{gathered} 4.95 \text { (d, 10.1), } 5.01 \text { (dd, 17.2, } \\ 1.8) \end{gathered}$	4.96 (d, 10.0), 5.02 (d, 17.0)	$\begin{gathered} 4.96(\mathrm{~d}, 10.2), 5.01 \\ (\mathrm{~d}, 17.2) \end{gathered}$
22	0.87 (3H, d, 6.4)	0.88 (3H, d, 6.6)	0.88 (3H, d, 6.5)	0.88 (3H, d, 5.9)

Table S6. ${ }^{13} \mathrm{C}$ NMR Comparison

NO.	Natural (-)-Attenol A (Reported by Daisuke Uemura) ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$	$\begin{gathered} \text { Synthetic (-)-Attenol A } \\ \text { (Reported by Jhillu S. } \\ \text { Yadav) } \\ { }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	Synthetic (-)-Attenol A (Reported by Makoto Sasaki) $\left.{ }^{13} \mathrm{C} \text { NMR (} 150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\begin{gathered} \text { Synthetic (-)-Attenol } \\ \text { A (Our Sample) } \\ { }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz,} \\ \left.\mathrm{CDCl}_{3}\right) \end{gathered}$
1	61.9	61.8	61.9	61.9
2	30.9	30.8	30.84	30.9
3	128.0	128.0	128.0	128.0
4	129.6	129.4	129.6	129.6
5	33.0	32.8	33.0	33.0
6	70.1	70.0	70.1	70.1
7	78.0	77.9	78.0	78.0
8	30.4	30.8	30.4	30.4
9	29.0	29.0	29.0	29.0
10	33.9	33.8	33.9	33.9
11	106.4	106.3	106.4	106.4
12	38.5	38.5	38.5	38.5
13	30.8	30.8	30.83	30.9
14	78.0	77.9	78.0	78.0
15	43.6	43.7	43.6	43.7
16	69.6	69.5	69.6	69.6
17	36.6	36.6	36.6	36.6
18	25.1	25.0	25.0	25.1
19	33.7	33.6	33.7	33.7
20	138.7	138.6	138.7	138.7
21	114.6	114.5	114.6	114.6
22	17.3	17.2	17.3	17.3

S-a
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
|
```


${ }^{13} \mathrm{C}$ NMR（100 MHz， CDCl_{3} ）

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { m }}{\substack{m \\ \sim}}$	
1	

$\stackrel{:}{\square}$

${ }^{13} \mathrm{C}$ NMR($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)


```
へิ
```


${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\sim}{n}$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$(-)-2$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

佥

(-)-2
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(

${ }^{13} \mathrm{C}$ NMR($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

1	1	1	,	1	1	1	1	1	1	T	1	1	1	1	1	1	1	T
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

```
~~~~~~~~N~N~N~N~N~N~NNN~N~N
~NNNNNN
```


${ }^{1} \mathrm{H}$ NMR(400 MHz, CDCl_{3})

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1	1	1	,	,	1					,	,	,						
190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f}_{1}(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR(400 MHz, CDCl_{3})

(+)-12
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	T	1	1	,	,	1		1		,	1	1		1	,			
190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f}_{1}(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

嫘

(+)-13
${ }^{13} \mathrm{C}$ NMR($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)


```
烈解
```


(+)-14
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1	1		1	1		,	1			1	1	1		1	,	1		
190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

(+)-16
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(+)-16
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1	1	1	1	,	1	1	1	1	1	1	, 1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

(+)-S-e
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

1	1	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	${ }^{110}$	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f}_{1}(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

1	1	1	1	1	1	1	1	1	1	1	1	1	,	,	1	I	1	,
190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f1}(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

(+)-Attenol B
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(-A)

${ }^{3} \mathrm{C}$ NMR(100 MHz, CDCl_{3})

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
70	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

[^0]: ${ }^{1}$ (a) Zhu, L.; Song, L.; Tong, R. Org. Lett. 2012, 14, 5892-5898. (b) Ren, J.; Tong, R. J. Org. Chem. 2014, 79, 69876995.

[^1]: ${ }^{2}$ For a review in dihydroxylation, see: Schröder, M. Chem. Rev. 1980, 80, 187-213. For a representative example, see: Molander, G. A.; Figueroa, R. Org. Lett. 2006, 8, 75-78.

[^2]: ${ }^{3}$ Takada, N.; Suenaga, K.; Yamada, K.; Zheng, S.-Z.; Chen, H.-S.; Uemura, D. Chem. Lett. 1999, 1025-1026.
 ${ }^{4}$ Yadav, J. S.; Narayana Reddy, P. A.; Jayasudhan Reddy, Y.; Meraj, S.; Prasad, A. R. Eur. J. Org. Chem. 2013, 63176324.
 ${ }^{5}$ Fuwa, H.; Sasaki, M. Org. Lett. 2008, 10, 2549-2552.

