Supporting Information

Rhodium(III)-Catalyzed Oxidative Alkenylation of 1,3-Dithiane-Protected Arenecarbaldehydes via Regioselective C-H Bond Cleavage

Yuto Unoh, ${ }^{a}$ Koji Hirano, ${ }^{\mathrm{a}}$ Tetsuya Satoh, ${ }^{\mathrm{a}, \mathrm{b} *}$ and Masahiro Miura ${ }^{\mathrm{a} *}$
a Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
[Fax: (+81)-6-6879-7362; phone: (+81)-6-6879-7361; e-mail: satoh@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp]
b JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

List of Contents for Experimental Section

General: S-2
Synthesis of 1v: S-2
Reaction of 2-Phenyl-1,3-dithiane (1a) with n-Buthyl Acrylate (2a): S-3
Reaction of 3r with Dess-Martin Periodinane: S-3
Reaction of 3r with Raney Ni: S-3
Optimization Study for the Reaction of $\mathbf{1 h}$ with 2a: S-4
Deuterium Labelled Experiments: S-5-S-6
Characterization Data of Products: S-7 - S-13
References: S-13
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Products: S-14 - S-40

Experimental Section

General. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded at $400,100,376$ and 162 MHz for CDCl_{3} solutions. HRMS data were obtained by CI using a TOF mass spectrometer, unless noted. GC analysis was carried out using a silicon OV-17 column (i. d. $2.6 \mathrm{~mm} \times 1.5 \mathrm{~m}$). GC-MS analysis was carried out using a CBP-1 capillary column (i. d. $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$). The structures of all products listed below were unambiguously determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR with the aid of NOE, COSY, HSQC, and HMBC experiments.

2-Aryl-1,3-dithianes and dithiolanes 1b-v were prepared by iodine-catalyzed thioacetalization of corresponding arylaldehydes according to a published procedure. ${ }^{[S 1]}$ Substrate 1v was prepared by a $\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}$-mediated thioacetalization as described below. Substrate 4 was prepared by a bismuth-catalyzed thia-Pictet-Spengler reaction according to a published procedure. ${ }^{[\mathrm{S} 2]}$ Other starting materials were commercially available. All dithianes were purified by recrystallization or silica gel column chromatography before use. The following experimental procedures may be regarded as typical in methodology and scale.

Synthesis of 1v.

To a solution of 2,2,2-trifluoroacetophenone ($5 \mathrm{mmol}, 871 \mathrm{mg}$) and 1,3-propanedithiol ($5 \mathrm{mmol}, 0.5 \mathrm{~mL}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.6 \mathrm{~mL})$ was added by a syringe at room temperature. The resulting mixture was stirred for 4 days at room temperature. The reaction was quenched by sat. NaHCO_{3} aq, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed by brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and volatiles were removed under reduced pressure. The residue was purified by recrystallization from pentane to afford dithiane $\mathbf{1 v}(441 \mathrm{mg}, 33 \%)$ as colorless crystals. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.92-2.02 (m, 1H), 2.13-2.21 (m, 1H), 2.17-2.78 (m, 2H), 3.17-3.25 (m, 2H), 7.34-7.42 (m, 3H), 7.85-7.88 (m, 2H).

Representative Procedure for Rh(III)-catalyzed Oxidative Coupling through C-H Bond Cleavage

 Directed by a 1,3-Dithiane Group.

Reaction of 2-Phenyl-1,3-dithiane (1a) with \boldsymbol{n}-Buthyl Acrylate (2a) (entry 1 in Table 1).

In a schlenk tube, 2-phenyl-1,3-dithiane ($49 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\left(\mathrm{SbF}_{6}\right)_{2}\right](17 \mathrm{mg}, 0.02$ $\mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.5 \mathrm{mmol})$, and dibenzyl ($30 \sim 40 \mathrm{mg}$; as an internal standard) were placed with a magnetic stir bar under N_{2} atmosphere. Then n-butyl acrylate ($64.1 \mathrm{mg}, 0.5 \mathrm{mmol}$), and THF 2 mL were added by a syringe. The reaction mixture was submerged into a pre-heated $60^{\circ} \mathrm{C}$ oil bath for 24 h . After cooling, the reaction mixture was diluted with 10 mL of ethyl acetate, 10 mL of water, and 1 mL of ethylenediamine. Then, insoluble solids were filtered off through a short pad of Celite. The resulting mixture was extracted three times with ethyl acetate and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Volatiles were removed in vacuo and subsequent purification by column chromatography on silica gel with hexane/ethyl acetate ($10: 1, \mathrm{v} / \mathrm{v}$) as an eluent gave product $\mathbf{3 a}(70 \mathrm{mg}, 87 \%)$.

Representative Procedure for Deprotection of a Dithiane Group.

Reaction of 3r with Dess-Martin Periodinane (eq 1).

Oxidative deprotection of 1,3-dithiane was carried out according to the literature reported by Panek et al. ${ }^{[53]}$ with some modifications as follows. In a 50 mL flask, $\mathbf{3 r}$ ($64 \mathrm{mg}, 0.2 \mathrm{mmol}$), and Dess-Martin periodinane ($84 \mathrm{mg}, 0.4 \mathrm{mmol}$) were placed with a magnetic stir bar. Then, $\mathrm{MeCN}(1.6 \mathrm{~mL}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2$ mL), and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ were added and stirred at room temperature under air (capped by septum to prevent the vaporization of solvent). After 24 h , the reaction mixture was diluted with aq. NaHCO_{3} and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Volatiles were removed in vacuo and subsequent purification by column chromatography on silica gel with hexane/ethyl acetate ($20: 1, \mathrm{v} / \mathrm{v}$) as an eluent gave product $7(44 \mathrm{mg}, 94 \%)$.

Reaction of 3r with Raney Ni (eq 2).

Compound 3r ($64 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved to $\mathrm{EtOH}(3 \mathrm{~mL})$ in a 100 mL flask. To the solution, an excess amount of Raney Ni (preactivated as water slurry, purchased from TCI) was added and the
resulting mixture was stirred at room temperature under open air for 6 h . Then, the mixture was filtered through a Celite pad, extracted with EtOAc (20 mL), and washed with brine ($20 \mathrm{~mL} \times 2$). [Caution: Keep Ni catalyst wet during filtration to not to ignite. Dry, activated Raney Ni is pyrophoric.] The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and volatiles were removed in vacuo to give product $\mathbf{8}(39 \mathrm{mg}, 88 \%)$.

Optimization Study for the Reaction of 1 h with 2a (Table S1).
Table S1. Optimization Study.

entry	oxidant (mol\%)	co-oxidant (mol\%)	temp $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	product $(\%)^{a}$
1	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(200)$	-	60	24	16
2	$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(200)$	-	60	24	8
3	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(200)$	-	rt	48	trace
4	activated $\mathrm{MnO}_{2}(200)$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(20)$	60	24	$44(42)$
5	$\mathrm{MnO}_{2}(200)$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(20)$	60	24	0
6	activated $\mathrm{MnO}_{2}(400)$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(20)$	60	48	26
7	activated $\mathrm{MnO}_{2}(200)$	-	60	24	0

[^0]
Deuterium Labelled Experiments.

KIE Experiment (Side by Side)

Figure S1. Time course of the yields of $\mathbf{3 a - d} \mathbf{d}_{\mathbf{0}}$ (diamonds, eq S1) and $\mathbf{3 a - \mathbf { d } _ { \mathbf { 4 } }}$ (squares, eq S2) during the early stages of the reactions of $\mathbf{1 a - d} \mathbf{d}_{\mathbf{0}}$ and $\mathbf{1 a - \mathbf { d } _ { 5 }}$ with $\mathbf{2 a}$.

$$
k_{H} / k_{D}=0.3901 / 0.0963=4.1
$$

KIE Experiment (Intermolecular Competition)

Additionally, we confirmed that the H / D exchange of 3a was negligible at the early stage under standard conditions with or without alkene 2a (eqs S4 and S5). Therefore, C-H bond cleavage step seems to be irreversible.

H / D Exchange Test

Characterization Data of Products

(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)phenyl)acrylate (3a): colorless oil, 70.2 mg (87\%); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{qt}, J=9.3,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{tt}, J=9.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.95$ (dtt, $J=14.1,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dtt}, J=14.1,4.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{ddd}, J=14.5,3.2,3.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.09-3.16 (m, 2H), $4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (ddd, $J=7.4,7.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=7.5,7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.19(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,25.1,30.8,32.3,48.1,64.5$, 121.3, 127.2, 128.6, 128.8, 130.4, 132.7, 137.9, 141.3, 166.9; HRMS m/z (M+H $\left.{ }^{+}\right)$Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{2}$: 323.1134. Found 323.1130.
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-5-methylphenyl)acrylate (3b): colorless oil, $54.2 \mathrm{mg}(64 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.46 ($\mathrm{qt}, J=9.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.70(\mathrm{tt}, J=9.6,6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.93(\mathrm{dtt}, J=14.3,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dtt}, J=14.2,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.91$ (ddd, $J=14.5,4.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.15(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2$, 21.1, 25.1, 30.8, 32.3, 47.8, 64.5, 120.9, 127.7, 128.7, 131.2, 132.4, 135.1, 138.4, 141.4, 167.0; HRMS m/z (M+H $\left.{ }^{+}\right)$Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{2}: 337.1290$. Found 337.1281.
(E)-n-Butyl 3-(5-Chloro-2-(1,3-dithian-2-yl)phenyl)acrylate (3c): colorless solid, mp $79-81{ }^{\circ} \mathrm{C}, 65.8$ $\operatorname{mg}(74 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{qt}, J=9.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{tt}$, $J=9.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{dtt}, J=14.2,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dtt}, J=14.2,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=14.5,3.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.14(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,24.9,30.7,32.2,47.4,64.7,122.5,127.0,130.2,130.3$, 134.48, 134.49, 136.3, 140.0, 166.5; HRMS m/z $\left(M+H^{+}\right)$Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClO}_{2} \mathrm{~S}_{2}: 357.0744$. Found 357.0743.
(E)-n-Butyl 3-(5-Bromo-2-(1,3-dithian-2-yl)phenyl)acrylate (3d): colorless solid, mp $87-89^{\circ} \mathrm{C}, 73.8$ $\operatorname{mg}(74 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{qt}, J=9.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{tt}$, $J=9.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{dtt}, J=14.1,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dtt}, J=14.2,4.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=14.4,3.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.14(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,24.9,30.7,32.2,47.4,64.7,122.56,122.60,130.0,130.5$, 133.2, 134.8, 136.8, 139.9, 166.5; HRMS m/z $\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrO}_{2} \mathrm{~S}_{2}: 401.0239$. Found 401.0230 .
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-5-(trifluoromethyl)phenyl)acrylate (3e): colorless solid, mp $119-120{ }^{\circ} \mathrm{C}, 72.7 \mathrm{mg}(75 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.49 (qt, $J=9.4,7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.71 (tt, $J=9.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.97 ($\mathrm{dtt}, J=14.2,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22 ($\mathrm{dtt}, J=14.2,4.2,2.5$ Hz, 1H), 2.91-2.97 (m, 2H), 3.09-3.17 (m, 2H), $4.25(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,24.9,30.7,32.2,47.6,64.8,123.6(\mathrm{q}, J=270.7 \mathrm{~Hz}$), 123.1, 124.1 (q, $J=3.7 \mathrm{~Hz}$), $126.7(\mathrm{q}, J=3.7 \mathrm{~Hz}), 129.6,131.7(\mathrm{q}, J=32.7 \mathrm{~Hz}) 133.6,139.9,141.4$, 166.4; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-62.9$; HRMS m/z $\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}: 391.1008$. Found 391.1006.
(E)-n-Butyl 3-(5-Acetyl-2-(1,3-dithian-2-yl)phenyl)acrylate (3f): colorless solid, mp 101-103 ${ }^{\circ} \mathrm{C}$, 76.8 $\mathrm{mg}(84 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{tt}, J=9.5$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.97 (dtt, $J=14.1,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.94$ (ddd, $J=14.4$, $3.7,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-3.17(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,24.9,26.7,30.7,32.2,47.8,64.7,122.7,127.1,129.3,129.8$, 133.4, 137.0, 140.4, 142.4, 166.6, 197.0; HRMS m/z (M+H $\left.{ }^{+}\right)$Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}_{2}: 365.1240$. Found 365.1241 .
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-5-nitrophenyl)acrylate (3g): colorless oil, $37.0 \mathrm{mg}(40 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{tt}, J=9.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97$ (dtt, $J=14.2,12.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dtt}, J=14.3,4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=14.4,3.8,3.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.10-3.17 (m, 2H), 4.26 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.13(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,24.8,30.7,32.1,47.4,64.9,122.2,124.1,124.5,130.3,134.5,139.0,144.2$, 147.7, 166.2; HRMS m/z $\left(M+H^{+}\right)$Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}_{2}: 368.0985$. Found 368.0984.
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-5-methoxyphenyl)acrylate (3h): colorless oil, $37.1 \mathrm{mg}(42 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{qt}, J=9.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{t}, J=9.5,6.9 \mathrm{~Hz}$, 2 H), 1.92 (dtt, $J=14.1,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (dtt, $J=14.2,4.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=13.8,3.8$, $3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,25.0,30.8,32.4,47.5,55.4,64.6,112.0,116.2,121.3$, 130.2, 130.3, 133.9, 141.4, 159.4, 166.9; HRMS m/z (M+H ${ }^{+}$) Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}_{2}: 353.1240$. Found 353.1241 .
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-5-(methylthio)phenyl)acrylate (3i): colorless solid, mp $95-97{ }^{\circ} \mathrm{C}$, $52.7 \mathrm{mg}(57 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{qt}, J=9.3,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.71(\mathrm{tt}, J=9.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{dtt}, J=14.1,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dtt}, J=14.2,4.3,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}), 2.91$ (ddd, $J=14.5,4.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.14$ (m, 2H), 4.23 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.39$ (s, $1 \mathrm{H}), 6.39(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.13(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,15.6,19.2,25.0,30.8,32.3,47.6$, $64.6,121.7,124.6,128.0,129.3,133.2,134.5,139.5,141.0,166.8 ;$ HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{3}: 369.1011$. Found 369.1017.
(E)-n-Butyl 3-(3-(1,3-Dithian-2-yl)naphthalen-2-yl)acrylate (3j): colorless solid, mp 87-89 ${ }^{\circ} \mathrm{C}, 77.4$ $\operatorname{mg}(83 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.99$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.48 (qt, $J=9.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.73 (tt, $J=9.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{dtt}, J=14.2,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dtt}, J=14.2,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.99$ (m, 2H), 3.14-3.21 (m, 2H), 4.26 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.80-7.84(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 13.8,19.3,25.2,30.8,32.6,48.3,64.5,121.5,127.0,127.2,127.3,127.9,128.0,128.3,131.1$, 132.8, 133.9, 135.0, 141.9, 166.9; HRMS m/z (M+H $\left.{ }^{+}\right)$Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{2}: 373.1290$. Found 373.1290.
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-4-methoxyphenyl)acrylate (3k): colorless oil, $62.3 \mathrm{mg}(71 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{tt}, J=9.4,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.95 (dtt, $J=14.1,12.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.92$ (ddd, $J=14.4,3.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.17$ (m, 2H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.7$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8,19.2,25.1,30.8,32.3,48.0,55.5,64.4,113.6,115.0,118.7,124.9,128.6,139.7$, 140.7, 161.4, 167.3; HRMS m/z $\left(M+H^{+}\right)$Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}_{2}: 353.1240$. Found 353.1244.
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-6-methoxyphenyl)acrylate (3k'): colorless oil, $15.4 \mathrm{mg}(17 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.01(\mathrm{~m}$, $1 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{tt}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.40$ $(\mathrm{s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.87(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.3,25.1,30.8,32.4,48.7,55.7,64.5,110.7,121.2,122.1,124.0$, 130.4, 138.1, 139.1, 158.1, 167.3; HRMS m/z (M+H $)$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}_{2}: 353.1240$. Found 353.1245.
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-4-phenoxyphenyl)acrylate (31): colorless oil, $78.2 \mathrm{mg}(75 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{qt}, J=9.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{tt}, J=9.6,6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.92$ (dtt, $J=14.1,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (dtt, $J=14.2,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.93$ (m, 2H), 3.07-3.14 (m, 2H), $4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.6,2.6$
$\mathrm{Hz}, 1 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,25.0,30.8,32.3,48.0$, $64.5,118.2,118.6,119.6,119.7,124.1,127.2,128.8,129.9,139.9,140.6,156.0,159.3,167.1 ;$ HRMS m/z $\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}_{2}: 415.1396$. Found 415.1401.
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-6-phenoxyphenyl)acrylate (31'): colorless oil, $18.7 \mathrm{mg}(18 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{qt}, J=9.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{tt}, J=9.6,6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.96(\mathrm{dtt}, J=14.1,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dtt}, J=14.2,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.95(\mathrm{~m}, 2 \mathrm{H})$, 3.07-3.14 (m, 2H), $4.19(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.2,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), ~ 6.95-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,25.1,30.7,32.4,48.5$, $64.5,118.5,119.1,123.7,123.9,124.7,125.0,129.9,130.3,137.3,139.5,155.7,156.5,167.0$; HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}_{2}: 415.1396$. Found 415.1399.
(E)-n-Butyl \quad 3-(6-(1,3-Dithian-2-yl)benzo[d][1,3]dioxol-5-yl)acrylate (3m) $\quad+\quad$ (E)-n-Butyl 3-(5-(1,3-dithian-2-yl)benzo[d][1,3]dioxol-4-yl)acrylate (3m') [7:1 mixture]: colorless oil, 76.1 mg (83%); 3m: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{qt}, J=9.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{tt}$, $J=9.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=13.8 .3 .9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-3.15(\mathrm{~m}$, $2 \mathrm{H}), 4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,25.1$, $30.8,32.6,47.8,64.5,101.6,109.6,115.5,122.5,123.5,131.7,135.6,146.9,147.6,167.6 ; 3 \mathbf{m}^{\prime}$ (only detected peaks are noted) : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}$, $2 \mathrm{H}), 6.27(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 14.1,22.7,25.0,31.6,32.3,47.6,101.8,106.2,109.0,119.3,140.6,148.1 ;$ HRMS m/z $\left(\mathrm{M}+\mathrm{H}^{+}\right)$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}_{2}: 367.1032$. Found 367.1034.
(E)-n-Butyl 3-(2-(1,3-Dithian-2-yl)-3-methylphenyl)acrylate (3n): colorless oil, $28.1 \mathrm{mg}(33 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.10(\mathrm{~m}$, $1 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.08(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.62$ $(\mathrm{s}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 9.11(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8,19.3,20.5,25.4,30.8,30.9,33.0,47.8,64.3,117.9,126.1,128.3,132.2,135.3$, 136.0, 144.9, 167.3; HRMS m/z (M+H+) Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}_{2}$: 337.1290. Found 337.1283.
(E)-n-Butyl 3-(2-(1,3-Dithiolan-2-yl)-3-methylphenyl)acrylate (3o): pale yellow solid, mp 79-81 ${ }^{\circ} \mathrm{C}$, $62.8 \mathrm{mg}(78 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{qt}, J=9.4,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.69(\mathrm{tt}, J=9.6,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.74(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$,
6.21 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,20.9,30.8,40.6,50.8,64.3,118.1,126.7,128.3$, 132.3, 133.8, 136.0, 138.0, 144.7, 167.4; HRMS m/z $\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{2}$: 323.1134. Found 323.1129.
(\boldsymbol{E})-n-Butyl 3-(2-(1,3-Dithiolan-2-yl)-3-fluorophenyl)acrylate (3p): colorless oil, $73.4 \mathrm{mg}(90 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{qt}, J=9.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{tt}, J=9.6,6.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.41(\mathrm{dd}, J=11.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=20.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.706(\mathrm{dd}, J=20.3,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.708(\mathrm{dd}, J=11.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{ddd}, J=10.2,8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{ddd}, J=7.8,7.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.63(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,30.8,40.9,45.5(\mathrm{~d}, J=7.0 \mathrm{~Hz}$), $64.5,116.8$ (d, $J=23.9 \mathrm{~Hz}), 120.0,123.8$, (d, $J=3.2 \mathrm{~Hz}$), 124.5 (d, $J=2.2 \mathrm{~Hz}$), 129.5 (d, $J=9.6 \mathrm{~Hz}$), $137.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 142.3(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 161.2(\mathrm{~d}, J=247.2 \mathrm{~Hz}), 166.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-114.1; HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FO}_{2} \mathrm{~S}_{2}: 327.0883$. Found 327.0878.
(E)-n-Butyl 3-(4-(1,3-Dithian-2-yl)dibenzo[b,d]furan-3-yl)acrylate (3q): colorless solid, mp $182-183^{\circ} \mathrm{C}, 55.0 \mathrm{mg}(53 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{qt}, J=9.4,7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.74(\mathrm{tt}, J=9.7,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.01(\mathrm{~m}, 2 \mathrm{H})$, $3.19-3.27(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=7.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.4,8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (d, J $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.05(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8$, 19.3, 25.4, 30.9, 32.9, 43.9, 64.4, 112.0, 118.9, 120.6, 120.9, 122.2, 122.3, 123.2, 124.1, 125.6, 128.0, 133.5, 143.1, 153.5, 156.4, 167.1; $\mathrm{HRMS} \mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}_{2}$: 413.1240. Found 413.1239.
(E)-t-Butyl 3-(2-(1,3-Dithian-2-yl)phenyl)acrylate (3r): colorless solid, mp $106-108{ }^{\circ} \mathrm{C}, 69.3 \mathrm{mg}$ (86\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.55$ (s, 9H), 1.95 (dtt, $J=14.2,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (dtt, $J=$ $14.1,4.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=14.5,4.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.16(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{ddd}, J=7.6,7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.1,28.3,32.3,48.0$, 80.7, 123.1, 127.1, 128.6, 128.8, 130.2, 132.8, 137.8, 140.1, 166.2; HRMS m/z (M+H $\left.{ }^{+}\right)$Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{2}:$ 323.1134. Found 323.1132.
(E)-Phenyl 3-(2-(1,3-Dithian-2-yl)phenyl)acrylate (3s): colorless solid, mp $96-98^{\circ} \mathrm{C}$, $71.3 \mathrm{mg}(83 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.95$ (dtt, $\left.J=14.2,12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.20$ (dtt, $J=14.2,4.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.93 (ddd, $J=14.5,4.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-3.17(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.45$ $(\mathrm{m}, 7 \mathrm{H}), 7.62(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}): $\delta 25.0,32.3,48.1,120.2,121.7,125.9,127.3,128.8,129.0,129.5,130.9,132.4$, 138.1, 143.3, 150.8, 165.3; HRMS m/z $\left(M+H^{+}\right)$Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}_{2}: 343.0821$. Found 343.0828.
(E)-Diethyl 2-(1,3-Dithian-2-yl)styrylphosphonate (3t): pale yellow oil, 83.2 mg (93%); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.94(\mathrm{dtt}, J=14.1,12.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dtt}, J=14.2,4.2,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.16(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{qd}, J=7.2,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=$ $18.4,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (ddd, $J=7.7,7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=7.5,7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=$ $7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=22.5,17.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 16.5(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 25.0,32.2,47.9,62.0(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=188.2 \mathrm{~Hz}), 126.9(\mathrm{~d}, J$ $=1.0 \mathrm{~Hz}), 128.6,128.8,130.4,133.3(\mathrm{~d}, J=22.9 \mathrm{~Hz}) 137.5,145.4(\mathrm{~d}, J=7.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $162 \mathrm{MHz}): \delta 18.6 ;$ HRMS m$/ \mathrm{z}\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{PS}_{2}: 359.0899$. Found 359.0908.
(E)-n-Butyl 3-(2-(2-(Trifluoromethyl)-1,3-dithian-2-yl)phenyl)acrylate (3v): colorless oil, 77.6 mg (79\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{tt}, J=9.5,6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.20-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.78(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.25(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.71(\mathrm{~m}, 1 \mathrm{H}), 9.35(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,19.2,22.1,29.0,30.8,56.6$ (d, $J=28.0 \mathrm{~Hz}$), 64.4, 117.0, 127.4 ($\mathrm{q}, ~ J=282.0 \mathrm{~Hz}$), 129.1 (br, m), 129.2, 129.6, 130.5, 132.6, 136.6, 147.2, 167.4, ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-65.1 ;$ HRMS m/z $\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}: 391.1008$. Found 391.1005.
(E)-n-Butyl 3-(2-(Isothiochroman-1-yl)phenyl)acrylate (5): colorless oil, 64.1 mg (73\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{tt}, J=9.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.87$ (ddd, $J=13.1,8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J=13.1,6.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{ddd}, J=16.3,8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.25-3.32 (m, 1H), 4.19 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.8,19.2,25.0,30.8,31.1,42.5,64.5,120.5,126.3,127.0,127.4,127.6,128.8,129.5$, 129.9, 130.2, 133.7, 136.4, 136.8, 141.7, 141.9, 166.8; HRMS m/z $\left(\mathrm{M}+\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}$: 353.1570 . Found 353.1571 .
(2E, $\mathbf{2}^{\prime} \boldsymbol{E}$)-dibutyl 3,3'-(2-(Isothiochroman-1-yl)-1,3-phenylene)diacrylate (6): colorless oil, 112.0 mg (94\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.94$ (t, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}$), 1.33-1.42 (m, 4H), 1.59-1.66 (m, 4H), 2.92-2.98 (m, 1H), 3.14-3.25 (m, 2H), 3.48-3.55 (m, 1H), 4.13 (t, $J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 6.19$ (d(br), $J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.7$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8$, 19.2, 27.7, 30.7, 31.9, 41.4, 64.4, 126.57, 126.64, 127.9, 128.3, 129.3 (2C, overlapped), 130.2, 135.8, 136.1, 136.4, 139.2, 143.2, 166.5; HRMS m/z (M+H $\left.\mathrm{H}^{+}\right)$Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{~S}: 479.2251$. Found 479.2253.
(E)-t-Butyl 3-(2-Formylphenyl)acrylate (7): ${ }^{[54]}$ colorless oil, $43.5 \mathrm{mg}(94 \%) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.55(\mathrm{~s}, 9 \mathrm{H}), 6.31(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{ddd}, J=7.2,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.64(\mathrm{~m}, 2 \mathrm{H})$, 7.87-7.89 (m, 1H), $8.42(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.2,81.0$, 125.3, 128.0, 129.6, 131.7, 133.8, 133.9, 137.0, 139.6, 165.5, 191.7; HRMS m/z (M+H ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}$: 233.1178. Found 233.1176.
\boldsymbol{t}-Butyl 3-(4-Methylphenyl)propanoate (8): colorless oil, $38.9 \mathrm{mg}(88 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.92(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.15(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.3,28.1,28.4,35.7,80.4,126.0,126.3,128.5,130.2,136.0,138.9,172.5$; HRMS (EI) $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: 220.1463. Found 220.1465.

References
[S1] Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H. J. Org. Chem. 2001, 66, 7527-7529.
[S2] Lherbet, C.; Soupaya, D.; Baudoin-Dehoux, C.; André, C.; Blonski, C.; Hoffmann, P. Tetrahedron Lett. 2008, 49, 5449-5451.
[S3] Langille, N. F.; Dakin, L. A.; Panek, J. S. Org. Lett. 2003, 5, 575-578.
[S4] Zhang, T.; Wu, L.; Li, X. Org. Lett. 2013, 15, 6294-6297.

3a

3a

3c
$\begin{array}{llllllllllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

3 g

3h

3j

3j

31

$3 v$

[^0]: ${ }^{\text {a }}$ NMR yield using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. Isolated yield is shown in parentheses.

