
Supporting Information

for

Novel Antioxidants Protect Mitochondria from the Effects of Oligomeric Amyloid Beta and Contribute to the Maintenance of Epigenome Function

Diego Mastroeni, Omar M. Khdour, Pablo M. Arce, Sidney M. Hecht, and Paul D. Coleman

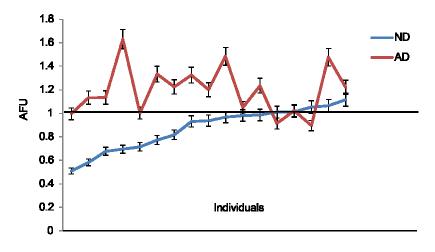


Figure S1. Heat maps of relative gene expression levels of control brain (ND) vs AD brain. Magnitude of expression depicted as a heat map with red representing higher and green lower levels of relative gene expression levels.

Gene list

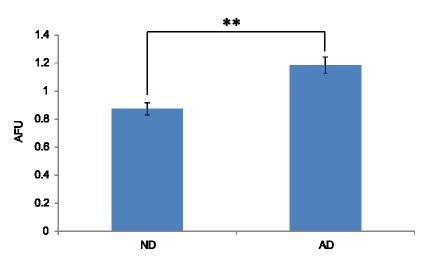
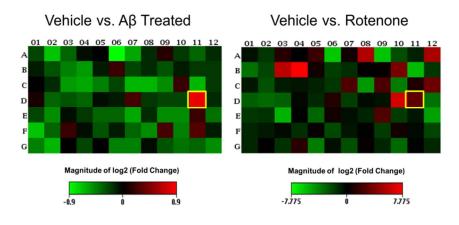

	1	2	3	4	5	6	7	0	9	10	11	12
٨	KOM1A.	ASHI L	ATF2	ALRIA	aling	AURIC	CARM1	CDML	апа	CHRIST	DNMT1	DNMT3A
B	DNMT3B	DOTIL	DZIPS	ehmt2	E3001	E9002	HATI	HDACI	HDACIO	HDAC11	HDAC2	HDAC3
C	HDAOI	HDACS	HDAOB	HDAC7	HDACB	НСАСЭ	KOM58	KDM5C	KOMMA	KOMMC	Kome	Kat2a
D	KATZE	Kats	MED2	MLL	MLL3	MLL5	MYSM1	KATB	KAT7	KATBA	Kater	NCOA1
E	NCD43	NCOAB	NB66	NEDI	Paki	FRIMTI	PFM/T2	PRMT3	PRMT5	FRATE	FRMIT7	HIMIB
F	FNF2	rnf20	RP98KA3	rpeekas	SEIDIA	SEID1B	SEID2	SEIDS	SEID4	9805	9ED8	9EID7
Q	SEID6	SEID81	SEIDE2	SMYD3	SLV38H1	SUA420H1	UBEZA	URE28	uspie	USP21	USP22	WHSCI

Figure S2. Genes for 84 epigenetic modifying enzymes whose expression was monitored in AD brain and $A\beta$ -treated neuronal cells.



Hippocampal KAT6B Expression in 17 controls and 17 AD cases using Human 2.0 microarray.

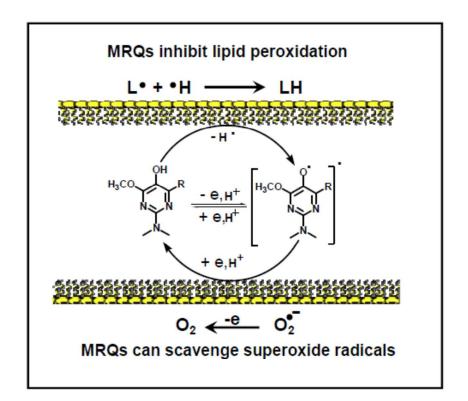


Figure S3. Hippocampal expression of histone aceytltransferase gene KAT6B in AD and normal human conrols.

Figure S4. Heat maps, which shows the magnitude of log2 (fold change) of 84 epigenetic transcripts in differentiated SH-SY5Y cells for (left panel) vehicle control vs. oligomeric A β O-treated (2 μ M) and (B) vehicle control vs. rotenone treated (10 nM). The data show that there is a significant correlation between 31 of the down regulated epigenetic transcripts (r = 0.55, *p* < 0.05) and 8 up-regulated transcripts (r = 0.88, *p* < 0.001).The highlighted box (KAT6B gene) represents an example of a significant (*p* < 0.001) upregulated gene.

Figure S5. Proposed mechanism of action of an MRQ, involving coordinated reductive quenching of lipid radicals and oxidative quenching of superoxide.³⁴