Supporting Information

Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient electronics, and Biosensors

Suk-Won Hwang,[†] Chi Hwan Lee,[‡] Huanyu Cheng,[§] Jae-Woong Jeong,[∥] Seung-Kyun Kang,[‡] Jae-Hwan Kim,[‡] Jiho Shin,[⊥] Jian Yang,[#] Zhuangjian Liu,[∇] Guillermo A. Ameer,[#] Yonggang Huang,[§] and John A. Rogers^{*,‡,o,}◆

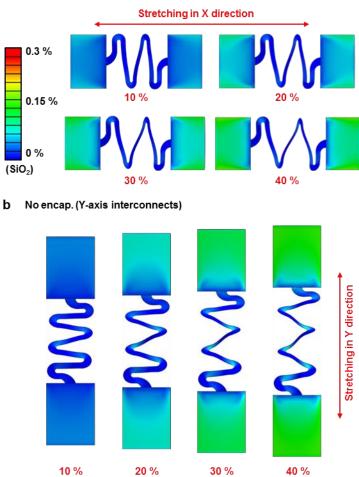
[†]KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Korea

^{*}Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States

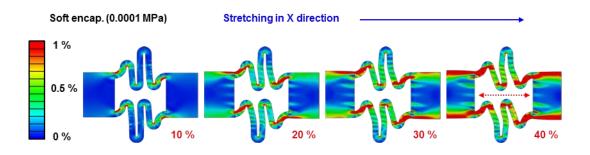
[§]Department of Mechanical Engineering, Civil and Environmental Engineering, Center for Engineering and Health, and Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208, United States

^{II}Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, United States ¹Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States

[#]Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States


^vInstitute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.

^oBeckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinios 61801, United States


• Department of Chemistry, Mechanical Science and Engineering, Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States

KEYWORDS: Stretchable, flexible, transient, biodegradable electronics, biosensors

a No encap. (X-axis interconnects)

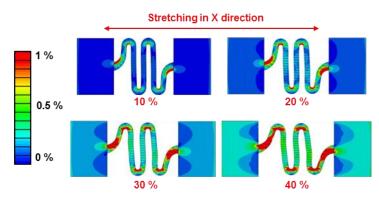


Figure S1. FEA results for a CMOS inverter with a serpentine structure for cases of tensile strain in the (a) x direction, and (b) y direction.

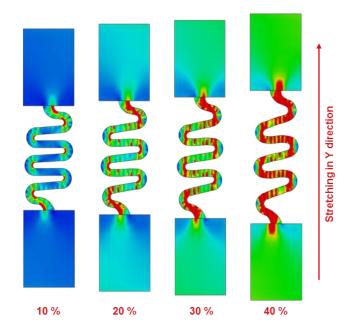
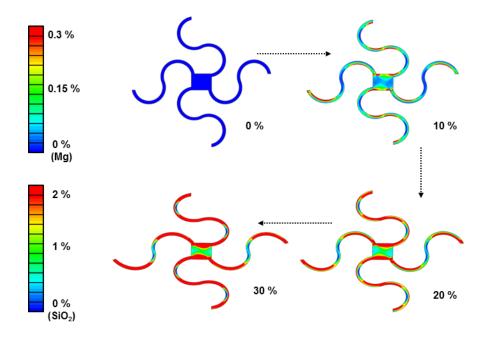
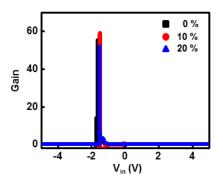
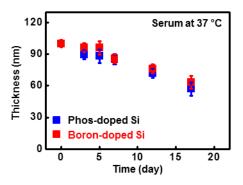


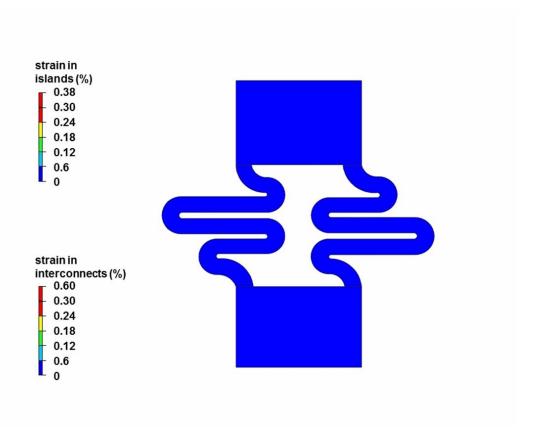
Figure S2. Maximum principal strain distributions determined by FEA for a CMOS inverter with soft encapsulation (0.0001 MPa) for stretching up to 40 %.

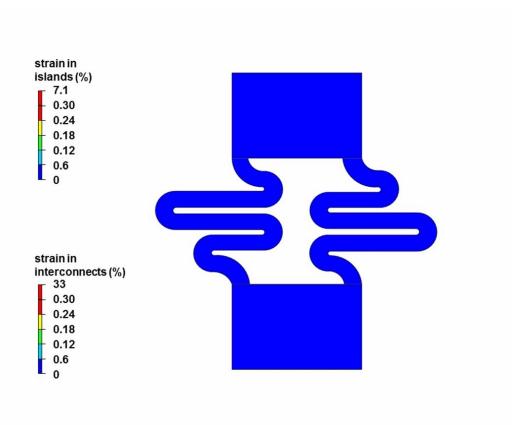
a Hard encap. (2 MPa, X-axis interconnects)

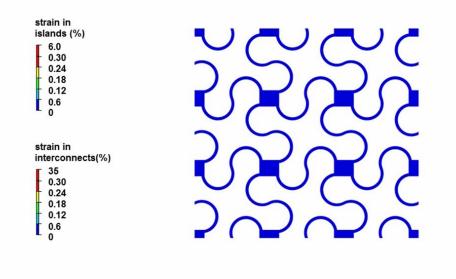
b Hard encap. (2 MPa, Y-axis interconnects)

Figure S3. Maximum principal strain distributions determined by FEA for a CMOS device with hard encapsulation (2 MPa) for stretching in the (a) x direction and (b) y direction.


Figure S4. FEA results for a CMOS inverter with FS structure under tensile loading up to 30 %.


Figure S5. The measured gains of a typical CMOS inverter while applying strain up to 20 % (black, 0 %; red, 10 %; blue, 20 %).


Figure S6. Changes in thickness of boron- (red) and phosphorous-doped (blue) Si while immersed in bovine serum at 37 $^{\circ}$ C.

Movie S1. FEA results for stretching of a CMOS inverter with a typical serpentine structure without encapsulation.

Movie S2. FEA results for stretching of CMOS inverter with a typical serpentine structure, with hard encapsulation.

Movie S3. FEA results for stretching of CMOS inverter with filamentary serpentine structure, with hard encapsulation.