Supporting information for

Phase-vanishing Method with Acetylene Evolution and Its Utilization in Several Organic Syntheses

Ryosuke Matake, Yuki Niwa, Hiroshi Matsubara*
Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
E-mail: matsu@c.s.osakafu-u.ac.jp

Table of Contents

I. General Remarks S2
II. Materials S2
III. General Procedure for the Preparation of Azides 3a-h S2
IV. Typical Procedure for Sonogashira coupling by the Phase-vanishing Method. S3
V. Typical Procedure for Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) by the Phase-vanishing Method S3
VI. Typical Procedure for Aldehyde-Alkyne-Amine Coupling (A ${ }^{3}$-coupling) by the Phase-vanishing Method S4
VII. Spectroscopic Data S5
VIII. References S10
IX. NMR Spectra S11

I. General Remarks

Melting points were obtained with Yanako micro melting point apparatus and are not corrected. Products were purified by column chromatography on silica gel (Kanto Chemical Co., Inc., Silica Gel 60N (spherical, neutral), $63-210 \mathrm{~mm}) .{ }^{1} \mathrm{H}$ NMR spectra were recorded with a JEOL-ECP-500 $(500 \mathrm{MHz})$ and a JEOL-ECS-400 (400 MHz) spectrometer in CDCl_{3}. Chemical shifts were reported in parts per million (δ) referenced to the solvent peak at $7.26 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectra were recorded with a JEOL-ECP-500 (126 MHz) and a JEOL-ECS-400 $(100 \mathrm{MHz})$ spectrometer in CDCl_{3} and referenced to the solvent peak at 77.0 ppm . Coupling constants, J, were reported in Hertz (Hz), and splitting patterns were designated as s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet) and m (multiplet). IR spectra were obtained on a JASCO FT/IR-4100 spectrometer; absorptions were reported in reciprocal centimeters. Conventional mass spectra were recorded with a SHIMADZU GCMS-QP2010Plus spectrometer and high-resolution mass spectra were recorded with a JEOL MS-700 spectrometer.

II. Materials

Benzyl azides (3a-3h) were prepared according to procedures (Methods A-C) in literature. The other compounds were purchased from commercially available sources and used without further purification.

III. General Procedures for the Preparation of Azides 3a-h

3a
Method $\mathbf{A}^{\text {S1 }}$: Benzyl chloride (10 mmol) was suspended in water at a concentration of 1.5 M . To the suspension, sodium azide (10.6 mmol) and ammonium chloride (20 mmol) were added, and the mixture was heated at $70^{\circ} \mathrm{C}$ for 48 h with vigorous stirring. After cooling, the mixture was extracted with diethyl ether, and collected organic layer was dried over sodium sulfate. After filtration, evaporation of the solvent yielded pure benzyl azide.

3b-g
Method $\mathbf{B}^{\mathbf{S 2}}$: A mixture of substituted benzyl chloride (10 mmol) and sodium azide (11 mmol) in DMF (5 mL) was gradually heated to $60^{\circ} \mathrm{C}$ and stirred for 6 h . After cooling, diethyl ether and water were added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with water and brine, and dried over sodium sulfate. After filtration, evaporation of the solvent yielded the analytically pure substituted azidomethylbenzenes.

Method C ${ }^{\text {S3 }}$: To a solution of sodium azide (11 mmol) in DMSO (5 mL), 1-(chloromethyl)naphthalene (10 mmol) was added, and the mixture was stirred at room temperature for 1 h . After checking that the starting material (chloromethylnaphthalene) was consumed, the reaction was quenched with water and allowed to cool to room temperature with stirring. The mixture was then extracted with ethyl acetate. The collected organic layer was washed with water and brine, and dried over sodium sulfate. After filtration, the solvent was evaporated and the residue was purified by column chromatography on silica gel to afford 1-(azidomethyl)naphthalene.

IV. Typical Procedure for Sonogashira Coupling by the Phase-vanishing Method (Table 1, entry 1)

Calcium carbide ($512 \mathrm{mg}, 8.0 \mathrm{mmol}$) and a magnetic stirring bar (oval, $10 \mathrm{~mm} \times 5 \mathrm{~mm}$) were placed in a Pyrex test tube ($15 \mathrm{~mm} \phi \times 130 \mathrm{~mm}$), to which Galden HT135 (2 mL) was added slowly using a syringe. Subsequently, water ($420 \mathrm{mg}, 23.3 \mathrm{mmol}$), a solution of phenyl iodide ($408 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (4 mL), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(115 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{CuI}(24 \mathrm{mg}, 0.13 \mathrm{mmol})$, and triethylamine ($409 \mathrm{mg}, 4.0 \mathrm{mmol}$) were added slowly in order, forming four layers. A rubber septum was fitted to the test tube, and a needle equipped with a balloon, which acted as a reservoir of acetylene gas during the reaction, was then pricked into the septum. The air in the test tube was removed by a syringe until the balloon was completely flattened. The test tube was heated in an oil bath at $55^{\circ} \mathrm{C}$ for 20 h with slow stirring, taking care not to mix the layers, then allowed to cool to ambient temperature. After removal of the Galden HT135 by glass pipette, the organic layer and inorganic salts were moved to a separatory funnel using diethyl ether and water. The organic layer was separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were then dried over sodium sulfate, filtered, and concentrated. Purification by column chromatography on silica gel with hexane gave diphenylacetylene as white crystalline solid ($165 \mathrm{mg}, 94 \%$).
V. Typical Procedure for Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) by the Phase-vanishing Method (Table 2, entry 1)

Calcium carbide ($259 \mathrm{mg}, 4.0 \mathrm{mmol}$) and a magnetic stirring bar (oval, $10 \mathrm{~mm} \times 5 \mathrm{~mm}$) were placed at bottom of a Pyrex test tube ($15 \mathrm{~mm} \phi \times 130 \mathrm{~mm}$), to which Galden HT135 $(2 \mathrm{~mL})$ was added slowly using a syringe. Subsequently, water ($300 \mathrm{mg}, 16.6 \mathrm{mmol}$), a solution of benzyl azide ($132 \mathrm{mg}, 1.0 \mathrm{mmol}$) in triethylamine (4 mL), and $\mathrm{CuI}(20 \mathrm{mg}, 0.11 \mathrm{mmol})$ were added slowly in order, forming four layers. A rubber septum was fitted to the test tube, and a needle equipped with a balloon, which acted as a reservoir of acetylene gas during the reaction, was then pricked into the septum. The air in the test tube was removed by a syringe until the balloon was completely flattened. The test tube was heated in an oil bath at $55^{\circ} \mathrm{C}$ for 20 h with slow stirring, taking care not to mix the layers, and then allowed to cool to ambient temperature. The organic layer was taken up with a glass pipette. Ethyl acetate was placed on the residual Galden HT135 layer, and then decanted. The collected organic layer was mixed with hydrochloric acid (2 M). After checking that the pH was less than 7 with pH indicator paper, the layers was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and concentrated. Purification by column chromatography on silica gel with hexane-ethyl acetate (1:1) gave 1-benzyl-1H-1,2,3-triazole as pale yellow crystalline solid ($137 \mathrm{mg}, 85 \%$).

VI. Typical Procedure for Aldehyde-Alkyne-Amine Coupling (A ${ }^{3}$-coupling) by the Phase-vanishing Method (Table 3, entry 1)

Calcium carbide ($259 \mathrm{mg}, 4.0 \mathrm{mmol}$) and a magnetic stirring bar (oval, $10 \mathrm{~mm} \times 5 \mathrm{~mm}$) were placed in a Pyrex test tube ($15 \mathrm{~mm} \phi \times 130 \mathrm{~mm}$), to which Galden HT135 (2 mL) was added slowly using a syringe. Subsequently, water ($250 \mathrm{mg}, 13.9 \mathrm{mmol}$), a solution of benzaldehyde (1a) ($110 \mathrm{mg}, 1.0 \mathrm{mmol}$) in DMF (4 mL), pyrrolidine ($147 \mathrm{mg}, 2.1 \mathrm{mmol}$), and $\mathrm{CuI}(40 \mathrm{mg}, 0.21 \mathrm{mmol})$ were added slowly in order, forming four layers. A rubber septum was fitted to the test tube, and a needle equipped with a balloon, which acted as a reservoir of acetylene gas during the reaction, was then pricked into the septum. The air in the test tube was removed by a syringe until the balloon was completely flattened. The test tube was heated in an oil bath at
$55^{\circ} \mathrm{C}$ for 20 h with slow stirring, taking care not to mix the layers, and then allowed to cool to ambient temperature. After removal of the Galden HT135 by glass pipette, the organic layer and inorganic salts were moved to a separatory funnel using diethyl ether and water. The organic layer was separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were then dried over sodium sulfate, filtered, and concentrated. Purification by a column chromatography on silica gel with hexane-ethyl acetate (4/1) gave 1-(1-phenylprop-2-ynyl)pyrrolidine (6a) as reddish yellow oil (144 mg, 75\%).

VII. Spectroscopic Data

Diphenyl acetylene (2a) ${ }^{\text {S4 }}$:

 White crystalline solid (165 mg); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.56-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.50,128.23,128.14,123.16$, 89.26 .

1,2-Bis(4-methoxyphenyl)acetylene (2b) ${ }^{\text {S4 }}$:

Yellow crystalline solid (186 mg); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H})$, $3.83(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.32,132.81$, 115.65, 113.91, 87.90, 55.21.

Bis(p-tolyl)acetylene (2c) ${ }^{\text {S4 }}$:

Pale yellow crystalline solid (196 mg)) ; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H})$, $2.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.15,131.41$, 129.07, 120.37, 88.85, 21.48.

1,2-Bis(4-fluorophenyl)acetylene (2d) ${ }^{\text {S4 }}$:

Pale yellow crystalline solid (208 mg); ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.50(\mathrm{dt}, J=8.7,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.33\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=251\right.$
$\mathrm{Hz}), 133.23\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}\right), 119.00,115.53\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.1\right.$ Hz), 87.84.

1,2-Bis(4-(trifluoromethyl)phenyl)acetylene (2e) ${ }^{\text {S4 }}$:

Greenish pale yellow crystalline solid (302 mg); ${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67-7.62(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 131.96,130.46\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}\right), 126.36$, $125.37\left(\right.$ broad d, $\left.J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 123.84\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.6 \mathrm{~Hz}\right)$, 90.11 .

Benzyl azide (3a) ${ }^{\text {s5 }}$:

Pale yellow oil (1.15 g); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.26(\mathrm{~m}, 5 \mathrm{H})$, $4.34(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 135.23, 128.69, 128.12, 128.05, 54.56.

1-(Azidomethyl)-4-methylbenzene (3b) ${ }^{52}$:

Pale yellow oil (646 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.20(\mathrm{~m}, 4 \mathrm{H})$, $4.29(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.15,132.26,129.50$, 128.27, 54.56, 21.18.

1-(Azidomethyl)-2-methylbenzene (3c) ${ }^{\text {S6 }}$:

Pale yellow oil (617 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.21(\mathrm{~m}, 4 \mathrm{H})$, $4.35(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 136.77, 133.37, 130.64, 129.31, 128.62, 126.20, 53.03, 18.96.

1-(Azidomethyl)-4-chlorobenzene (3d) ${ }^{\mathbf{S 2}}$:

Pale yellow oil (799 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 134.21, 133.84, 129.49, 129.02, 54.02.

1-(Azidomethyl)-4-chlorobenzene (3e) ${ }^{\text {S2 }}$:

Pale yellow liquid (801 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 133.77, 133.28, 130.00, 129.78, 129.64, 127.15, 52.26.

1-(Azidomethyl)-4-methoxybenzene (3f) ${ }^{\text {S2 }}$:

Pale red oil (791 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.61,129.74,127.37,114.16,55.24,54.35$.

1-(Azidomethyl)-4-trifluoromethylbenzene (3g) ${ }^{55}$:

Yellow oil (976 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.41$, $130.43\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}\right), 128.24,125.78\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 123.95\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $269 \mathrm{~Hz}), 54.04$

1-(Azidomethyl)naphthalene (3h) ${ }^{53}$:

Pale yellow oil (1.75 g); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 4 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 133.73,131.18,130.81,129.25,128.66,127.08,126.57,126.00$, 125.06, 123.33, 52.76.

1-Benzyl-1H-1,2,3-triazole (4a) ${ }^{\text {57 }}$:

1-(4-Methylbenzyl)-1H-1,2,3-triazole (4b) ${ }^{\text {S7 }}$:
White crystalline solid (101 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (s,
 $1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 4 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.15,133.72,131.46,129.35,127.68,123.12,53.29$, 20.77.

1-(2-Methylbenzyl)-1H-1,2,3-triazole (4c) ${ }^{\text {S7 }}$:

Light brown crystalline solid (100 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.69(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.13(\mathrm{~m}, 4 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.49,133.63,132.38,130.64,128.93$, 128.72, 126.30, 123.08, 51.74, 18.61 .

1-(4-Chlorobenzyl)-1H-1,2,3-triazole (4d) ${ }^{\text {S7 }}$:
Light brown crystalline solid (170 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
 $7.73(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.54$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 134.31, 134.02, 133.11, 129.08, 128.95, 123.33, 52.84.

1-(2-Chlorobenzyl)-1H-1,2,3-triazole (4e) ${ }^{57}$:

Light brown crystalline solid (162 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
 $7.73(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18$ $-7.15(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.82$, $133.14,132.31,129.97 \times 2,129.62,127.34,123.67,50.97$.

1-(4-Methoxylbenzyl)-1H-1,2,3-triazole (4f) ${ }^{\text {S7 }}$:
Light brown crystalline solid (157 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.69(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H})$, $5.50(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0,133.73$, 129.27, 126.46, 123.00, 114.08, 54.99, 53.08.

1-(4-Trifluoromethylbenzyl)-1H-1,2,3-triazole (4g):

Light brown crystalline solid (168 mg); mp 52.5-53.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.68$, $134.16,130.51\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.5 \mathrm{~Hz}\right), 127.91,125.76\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 123.65$, $123.60\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.2 \mathrm{~Hz}\right), 52.93$; IR (KBr): 2965, 2927, 2857, 2812, 2076, 1444, 1123 883, $747 \mathrm{~cm}^{-1}$; GC-MS (EI): 227 (5), 198 (47), 172 (19), 159 (100), 130 (58), 109 (62), 40 (21 \%); HRMS (EI) Calcd. For $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{~F}_{3}$: 227.0670, Found: 227.0672.

1-(1-Naphthylmethyl)-1H-1,2,3-triazole (4h) ${ }^{\text {S8 }}$:
Off-white crystalline solid (185 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$
 $-7.89(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.76,133.59,130.82,129.66$, $128.65,127.44,126.93,126.10,125.11,123.20,122.6,51.72$.

1-(1-phenylprop-2-ynyl)pyrrolidine (6a) ${ }^{\text {S9 }}$:

Reddish yellow oil (144 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54$ (d, $J=3.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4$ H), $2.48(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 138.95,128.22,128.08,127.58,80.76,74.52,58.33,50.01,23.38$.

1-(1-(4-Methoxyphenyl)prop-2-ynyl)pyrrolidine ($6 b)^{\text {s10 }}$:

Reddish yellow oil (89 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45$ ($\mathrm{d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 4.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.57$ $(\mathrm{m}, 4 \mathrm{H}), 2.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.75(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 158.93,131.14,129.11,113.45,81.03,74.23,57.64,55.14,49.91$, 23.30 .

1-(1-(4-Methylphenyl)prop-2-ynyl)pyrrolidine (6d):

Reddish yellow oil (93 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42$ ($\mathrm{d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 2.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.75(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 137.20,136.01,128.88,127.96,81.03,74.24,58.07$, $50.02,23.35,21.07$; IR (neat): $3297,2966,2875,2813,1511,1267 \mathrm{~cm}^{-1}$; GC-MS (EI): 199 (29), 129 (100), 108 (79), 70 (40 \%); HRMS (EI) Calcd. For $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}: 199.1361$, Found: 199.1357.

1-(1-(2,5-Dimethylphenyl)prop-2-ynyl)pyrrolidine (6e):

Reddish yellow oil (95 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20$ (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.79(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H} \times 2), 2.67(\mathrm{~s}, 4 \mathrm{H}), 2.37(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.77(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.32,150.77,128.32,115.32,113.31,112.06$, 81.80, 72.96, 56.37, 55.63, 51.09, 50.32, 23.26; IR (neat): 3286, 2962, 2833, 1499, 1464, 1279, 1246, $1216 \mathrm{~cm}^{-1}$; GC-MS (EI): 245 (23), 216 (21), 175 (100), 161 (49), 132 (44), 108 (99), 91 (43), 70 (94 \%); HRMS (EI) Calcd. For $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$: 245.1416 , Found: 245.1412 .

1-(1-ethynyl-cyclohexyl)-pyrrolidine (6f):

Light brown crystalline solid (55 mg); mp 62.5-63.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 2.73-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.78$ (quint, $J=3.6 \mathrm{~Hz}, 4 \mathrm{H}$), $1.67-1.46(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 84.48, $72.98,58.63,46.78,37.71,25.55,23.35,22.74$; IR (KBr): 3127, 2420, 1623, 1424, 1325, 1217, 1167, 1136, 1107, 1065, 830, $798 \mathrm{~cm}^{-1}$; GC-MS (EI): 177 (11), 162 (18), 148 (21), 134 (100), 120 (21), 79 (10), 70 (26), 65 (10), 41 (10%); HRMS (EI) Calcd. For $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}: 177.1517$, Found: 177.1520.

VIII. References

S1 Maisonial, A.; Serafin, P.; Traïkia, M.; Debiton, E.; Théry, V.; Aitken, D. J.; Lemoine, P; Viossat, B; Gautier, A. Eur. J. Inorg. Chem. 2008, 2, 298.

S2 Hédou, D.; Deau, E.; Dubouilh-Benard, C.; Sanselme, M.; Martinet, M.; Chosson, E.; Levacher, V.; Besson, T. Eur. J. Org. Chem. 2013, 33, 7533.

S3 Suzuki, T.; Ota, Y.; Ri, M.; Bando, M.; Gotoh, A.; Itoh, Y.; Tsumoto, H.; Tatum, P. R.; Mizukami, T.; Nakagawa, H.; Iida, S.; Ueda, R.; Shirahige, K.; Miyata, N. J. Med. Chem. 2012, 55, 9562.

S4 Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. Org. Lett. 2002, 4, 3199.
S5 Stefely, J. A.; Palchaudhuri, R.; Miller, P. A.; Peterson, R. J.; Moraski, G. C.; Hergenrother, P. J.; Miller, M. J. J. Med. Chem. 2010, 53, 3389.

S6 Liu, M.; Reiser, O. Org. Lett. 2011, 13, 1102.
S7 Wu, L. Y.; Xie, Y. X.; Chen, Z. S.; Niu, Y. N.; Liang, Y. M. Synlett 2009, 1453.
S8 Ikemoto, T.; Ito, T.; Tomimatsu, K.; Sawai, Y.; Nishiyama, H.; Isogami, Y. PCT Int. Appl. WO 2002006, 2002.

S9 Lin, Z.; Yu, D.; Sum, Y. N.; Zhang, Y. ChemSusChem 2012, 5, 625.
S10 Lee, A. S.-Y.; Chen, G.-A.; Chang, Y.-T.; Chu, S.-F. Synlett 2009, 441.
IX. NMR Spectra

3a
$000 \cdot 0$

3b
000.0

$062^{\circ} \%$

$$
-\frac{00 \cdot z}{}
$$

LZC. ${ }^{\circ}$ bs
G89.91
STE•LL

$20.62 T$
$680.62 I \longrightarrow$
208.

$j d f$

ロヒ6＂とら \qquad
$929 \cdot 92$
$000 \cdot \frac{2 L}{2}$
$G \cdot \varepsilon \cdot L L$
a

$=$
צ．

4d
$000 \cdot 0 \longrightarrow$
200.0
6LG.T
85_{5}^{5}

000.0
065:
$66 \mathrm{~F}^{\circ} \cdot 9$
と)

```
M,
4 Covz
```


\qquad

