Supporting Information

Supplemental Figure 1: NAD ${ }^{+}$saturation curves with SIRT1, SIRT2, SIRT3, and SIRT6 and various acylated peptides. Assays were performed at saturating acetyl-, hexanoyl-, decanoyl-, and myristoyl-lysine H3K9 peptide concentrations. Time points were selected so that steady-state initial velocities were maintained in all reactions. ($\mathrm{n} \geq 3, \pm$ standard deviation)

Supplemental Figure 2: Effect of nicotinamide inhibition on the deacylases activity of SIRT1, SIRT2, SIRT3 and SIRT6. Assays were performed at saturating concentrations of acetyl-, hexanoyl-, decanoyl-, and myristoyl-lysine H3K9 peptides and NAD ${ }^{+}$. Time points were selected so that steady-state initial velocities were maintained in all reactions. ($\mathrm{n} \geq 2, \pm$ standard deviation)

Hexanoyl

- Decanoyl

Myristoyl

Supplemental Figure 3: Single turnover kinetic analysis of SIRT2, SIRT3, and SIRT6.

Single turnover kinetic analysis of SIRT2, SIRT3, and SIRT6 monitoring nicotinamide formation and deacylated peptide formation. A, SIRT2 $(12 \mu \mathrm{M})$ was incubated with $2.5 \mu \mathrm{M}$ acetyl-, hexanoyl-, decanoyl-, and myristoyl-peptide in the presence of $400 \mu \mathrm{M} \mathrm{NAD}^{+}$. B, SIRT3 $(12 \mu \mathrm{M})$ was incubated with $2.5 \mu \mathrm{M}$ acetyl-, hexanoyl-, decanoyl-, and myristoyl-peptide in the presence $600 \mu \mathrm{M} \mathrm{NAD}^{+}$or $2 \mathrm{mM} \mathrm{NAD}^{+}$with hexanoylated peptide. C, SIRT6 $(18 \mu \mathrm{M})$ was incubated with $5 \mu \mathrm{M}$ hexanoyl-, decanoyl-, and myristoyl-peptide in the presence of $300 \mu \mathrm{M}$ $N A D^{+}$.

Supplemental Figure 4: Re-refinement of myristoyl-lysine residue in crystal structure of

 SIRT6 in complex with TNF-aK20myr peptide (PDB ID: 3ZG6). 2Fo-Fc omit electron density map (grey mesh, 1σ) of the myristoylated Lysine and water molecule (A2146). A, Substrate peptide, the water molecule and the active site His 131 of SIRT6 in PDB ID: 3ZG6 are drawn. Orange dotted lines show the close contact between the myristoylated lysine residue and the water molecule. The distances from the water molecule to $\mathrm{N} \zeta$ and $\mathrm{C} \varepsilon$ of the residue are 2.0 and $2.2 \AA$, respectively. The water molecule is $3.7 \AA$ away from the active site His 131 (yellow dotted line is drawn for reference). B, Re-refined structure of myristoylated lysine in a trans conformation is drawn.

Supplemental Figure 5: Sequence alignment of human Sirtuins SIRT1 - SIRT5. The amino acid sequences of the catalytic domains of human SIRT1 - SIRT5 were aligned using the online version of ClustalW. The conserved helix bundle region is enclosed in a black box. The amino acids located in α-helix 4 and α-helix 6 of SIRT2 that show the greatest movement in the presence of the myristoyl chain are boxed in red. The additional amino acids in the hydrophobic cavity of SIRT2 are boxed in blue. SIRT6 and SIRT7 do not contain a helix bundle region and were excluded.

SIRT1	TIEDAVKLLQ--ECKKIIVLTGAGVSVSCGIPDFRS-RDGIYARLAVDFPDLPD 292
SIRT2	RLLDELTLEGVARYMQSERCRRVICLVGAGISTSAGIPDFRSPSTGLYDNLEK--YHLPY 114
SIRT3	--GKLSLQDVAELIRARACQRVVVMVGAGISTPSGIPDPRSPGSGLYSNLQQ--YDLPY 175
SIRT4	-PEKVKELQRFIT--LSKRLLVMTGAGISTESGIPDYRSEKVGLYARTDR----RPI 90
SIRT5	------SMADFRKFFA--KAKHIVIISGAGVSAESGVPTFRG-AGGYWRKWQA--QDLAT 87
	: . : . : : : : ***:** .*:* $\mathbf{*}^{*}$ * * : .
SIRT1	PQAMPDIEYFRKDPREFFKFAKEIYPGQRQPSLCHKFIALSDK=-=-EGKLLRNYTQNID 348
SIRT2	PEAIFEISYFKKHPEFFFALAKEIYPGQPKPTICHYFMRLLKD----KGLLLRCYTQNID 170
SIRT3	PEAIFELPFFFHNPKFFFTLAKEIYPGNYKPNVTHYFLRLLHD----KGLLLRLYTQNID 231
SIRT4	QHGDFVRSAPIRQRYWARNFVGWFQ FSSHQPNPAHWALSTWEK----LGKLYWLVTQNVD 146
SIRT5	
SIRT1	TLEQVAGIQR--IIQCHGSFATASCL--ICKYKVDCEAVRGDIPNQVVP-----------393
SIRT2	TLERIAGLEQEDLVEAHGTPYTSHCVSASCRHEYPLSWMKEKIFSEVTP-----------219
SIRT3	GLERVSGIPASKLVEAHGTFASATCT--VCQRPFPGEDIRADVMADRVP----------- 278
SIRT4	ALHTKAGSRR--LTELHGCMDRVLCLDCGEQTPRGVLQERFQVLNPTWSAEAHGLAPDGD 204
SIRT5	
SIRT1	-RCPRCPADEPLAIMKPEIVPFGENLPEQFHRAMKYDKDEVDLLIVIGSS 442
SIRT2	---KCEDCQS-----LVKPDIVFFGESLPARFFSCMQSDFLKVDLLLVMGTS 263
SIRT3	--RCPVCTG-----VVKPD \(
) VFFGEPLPQRFLLHVV-DFPMADLLLILGTS 321	
SIRT4	VFLSEEQVRSFQVPTCVQCG--GHLKPDVVFFGDTVNPDKVDFVHKRVKEADSLLVVGSS 262
SIRT5	---QDASIPVEKLPRCEEAGCGGLLRPHVVWFGENLDPAILEEVDRELAHCDLCLVVGTS 251
	$\text { : * : : *. : *: **: : } \quad: \quad \text { * : : : *: }$
SIRT1	LKVRPVALIPSSIPHE-VPQILINREPLPH--=------------------LHFDVELLG 480
SIRT2	LQVQPFASLISKAPLS-TPRLLINKEKAGQSDPFLGMIMGLGGGMDFDSKKAYRDVAWLG 322
SIRT3	LEVEPFASLTEAVRSS-VPRLLINRDLVGP-------------LAWHPR--SRDVAQLG 364
SIRT4	LQVYSGYRFILTAWEKKLPIAILNIGPTRSDD-=-=-=-=-=-=-=-=-=-=-LACLKLNS 302
SIRT5	
	* * * **

Supplemental Table 1: Rate constant comparisons.

SIRT2 and SIRT3 $k_{c a t} / \mathrm{K}_{\mathrm{m}, \mathrm{NAD}}, k_{5}, k_{\text {cat }}$ and k_{9} rates as well as K_{m} were analyzed relative to the acetylated substrate (acetyl/acyl) to determine the effect of acyl chain on the rate. SIRT6 $k_{\text {cat }} / \mathrm{K}_{\mathrm{m}}$, nad, $k_{5}, k_{\text {cat }}$ and k_{9} rates as well as K_{m} were analyzed relative to the myristoylated substrate (myristoyl/acyl). SIRT1 $k_{c a t} / \mathrm{K}_{\mathrm{m}}$, NAD, $k_{\text {cat }}$ and K_{m} were analyzed relative to the acetylated substrate.

SIRT2 - Relative decrease compared to Acetyl (acetyl/acyl)

	$\boldsymbol{k}_{\text {cat }} / \mathbf{K}_{\mathbf{m}}$	$\boldsymbol{k}_{\mathbf{5}}$	$\boldsymbol{k}_{\text {cat }}$	$\boldsymbol{k}_{\mathbf{9}}$	$\mathbf{K}_{\mathbf{m}}$
Acetyl	1.0	1.0	1.0	1.0	1.0
Hexanoyl	14.7	5.5	6.6	4.8	0.5
Decanoyl	4.5	3.7	9.3	5.9	2.1
Myristoyl	3.7	1.8	5.7	10.0	1.6

SIRT3 - Relative decrease compared to Acetyl (acetyl/acyl)

	$\boldsymbol{k}_{\text {cat }} / \mathbf{K}_{\mathbf{m}}$	$\boldsymbol{k}_{\mathbf{5}}$	$\boldsymbol{k}_{\text {cat }}$	$\boldsymbol{k}_{\mathbf{9}}$	$\mathbf{K}_{\mathbf{m}}$
Acetyl	1.0	1.0	1.0	1.0	1.0
Hexanoyl	43.0	13.6	4.6	8.1	0.1
Decanoyl	3.5	9.5	2.8	6.5	0.8
Myristoyl	1.0	5.0	2.8	10.0	2.7

SIRT6 - Relative decrease to Myristoyl (myristoyl/acyl)

	$\boldsymbol{k}_{\text {cat }} / \mathbf{K}_{\mathbf{m}}$	$\boldsymbol{k}_{\mathbf{5}}$	$\boldsymbol{k}_{\text {cat }}$	$\boldsymbol{k}_{\mathbf{9}}$	$\mathbf{K}_{\mathbf{m}}$
Hexanoyl	22.2	31.8	4.4	18.3	0.2
Decanoyl	2.1	1.9	1.6	1.3	0.7
Myristoyl	1.0	1.0	1.0	1.0	1.0

SIRT1 - Relative decrease compared to Acetyl

(acetyl/acyl)					
	$\boldsymbol{k}_{\text {cat }} / \mathbf{K}_{\mathbf{m}}$	$\boldsymbol{k}_{\text {cat }}$	$\mathbf{K}_{\mathbf{m}}$		
Acetyl	1.0	1.0	1.0		
Hexanoyl	2.5	7.2	3.0		
Decanoyl	1.3	14.4	9.7		
Myristoyl	0.7	9.2	13.2		

