Supporting Information # Direct C-N Coupling in an in Situ Ligand Transformation and the Self-Assembly of a Tetrametallic $[Ni^{II}_{\ 4}]$ Staircase Aloke Kumar Ghosh, [†] Tufan Singha Mahapatra, [†] Rodolphe Clérac, ^{‡,} Corine Mathonière, ^{§,} Valerio Bertolasi, [‡] and Debashis Ray ^{†,} * ### **Experimental Section** **Syntheses. H**₃**L2.** To a MeOH solution (20 mL) of 2,6-diformyl-4-methylphenol (1.0 g, 6.1 mmol), 3-amino-1-propanol (0.91 g, 12.2 mmol) was added in air at room temperature (28 °C) and stirred for 2 hours and solvent was evaporated in air to get an orange colored semi-solid product after 12 hours. The obtained gummy product 2,6-*bis*-[(3-hydroxy-propylimino)-methyl]-4-methylphenol was washed copiously with water and hexane, and used for complex synthesis without further purification. Yield: 1.32g (78%). [Ni₄(μ -HL3)₂(μ -HL4)₂]·2MeOH·2H₂O (1·2MeOH·2H₂O). A MeOH solution (20 mL) of H₃L2 (0.278 g, 1.00 mmol) and 3,5-dimethylpyrazole (Me₂pzH) (0.96 g, 1.0 mmol) was stirred for ca. 40-45 minutes in air. Another MeOH solution of Ni(NO₃)₂·6H₂O (0.581 g, 2.0 mmol) was next added drop wise to previous one with stirring at room temperature. The resulting green solution [†] Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India Fax: (+91) 3222-82252; Tel: (+91) 3222-283324; E-mail: dray@chem.iitkgp.ernet.in [‡]CNRS, CRPP, UPR 8641, F-33600Pessac, France. ¹Univ. Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France. [§]CNRS, ICMCB, UPR 9048, F-33600 Pessac, France. [⊗] Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France. [¥] Dipartimento di Scienze Chimiche e Farmaceutiche and Centro di Strutturistica Diffrattometrica, Università di Ferrara, via L. Borsari, 46, 144121 Ferrara, Italy. was stirred for *ca*. 10 min and a solution of NEt₃ (0.278 mL, 0.202 g, 2.0 mmol) was added drop wise to the reaction mixture and finally the whole mixture was stirred for another 2 hours. Finally the solvent of the reaction mixture was evaporated in air to give a green solid, which was isolated, washed with cold methanol and dried under *vacuo* over P₄O₁₀. Green crystals suitable for single crystal X-ray analysis were obtained from a saturated methanol solution after two weeks. Yield: 0.1163 g, 68%. Anal. Calcd. for $C_{76}H_{110}Ni_4N_{14}O_{16}$ (1710.62 g mol⁻¹): C, 53.36; H, 6.48; N,11.46. Found: C, 53.22; H, 6.32; N, 11.38. Selected FT-IR bands: (KBr, cm⁻¹; s = strong, vs = very strong, m = medium, br = broad) 3396(br), 2921(s), 1635(s), 1559(s), 1465(vs), 1384(s), 1325(s) 1237(s), 1097(vs), 1051(s), 863(m), 816(m), 778(m), 603(m). Molar conductance, Λ_M : (MeOH solution) 6 Ω^{-1} cm²mol⁻¹. UV-vis spectra [λ_{max} , nm (ϵ , L mol⁻¹ cm⁻¹)]: (MeOH solution) 665 (235), 371 (5122), 211 (17600). $$4\text{Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O} + 4\text{H}_3\text{L}2 + 4\text{Me}_2\text{pzH} + 8\text{NEt}_3 + 2\text{MeOH} \longrightarrow$$ $[\text{Ni}_4(\mu\text{-HL}3)_2(\mu_3\text{-HL}4)_2] \cdot 2\text{MeOH} \cdot 2\text{H}_2\text{O} + 8(\text{NHEt}_3)(\text{NO}_3) + 2\text{NH}_2(\text{CH}_2)_3\text{OH} + 22\text{H}_2\text{O} \dots \text{Eq.S1}$ Materials and Physical Methods. The chemicals used were obtained from the following sources: nickel nitrate hexahydrate from S.D. Fine Chem (India); 3-amino-1-propanol from Aldrich Chemical Co. Inc. 3,5-dimethylpyrazole and 2,6-diformyl-4-methylphenol (2-hydroxy-5-methyl-benzene-1,3-dicarbaldehyde) was prepared following a literature procedure. All other chemicals and solvents were reagent grade materials and were used as received without further purification. The elemental analyses (C, H, N) were performed with a Perkin-Elmer model 240 C elemental analyzer. Fourier transform infrared (FT-IR) spectra were recorded on a Perkin-Elmer RX1 spectrometer. Solution electrical conductivity measurements and electronic spectra were carried out using a Unitech type U131C digital conductivity meter with a solute concentration of about 10^{-3} M and a Shimadzu UV 3100 UV-vis-NIR spectrophotometer, respectively. The magnetic susceptibility measurements were obtained with the use of a Quantum Design MPMS-XL magnetometer. This magnetometer works between 1.8 and 350 K for dc applied field of 1000 Oe. Measurements were performed on a 16.63 mg polycrystalline sample of 1-placed in small polyethylene bags ($3 \times 0.5 \times 0.02$ cm). Experimental data were corrected for sample holder and diamagnetic contributions of the samples using experimentally determined values. Crystal Data Collection and Refinement for $1\cdot2\text{MeOH}\cdot2\text{H}_2\text{O}$. The single crystal diffraction data of the complex $1\cdot2\text{MeOH}\cdot2\text{H}_2\text{O}$ were collected on a Bruker APEX-II CCD X-ray diffractometer using a graphite-monochromated Mo- K_α radiation ($\lambda=0.71073$ Å) and ω -scan method at 293 K. Information concerning X-ray data collection and structure refinement of the compound are summarized in **Table S1**. For complex $1\cdot2\text{MeOH}\cdot2\text{H}_2\text{O}$, a total of 7029 reflections were recorded with Miller indices $h_{\text{min}}=-14$, $h_{\text{max}}=14$; $k_{\text{min}}=-16$, $k_{\text{max}}=16$; and $l_{\text{min}}=-29$, $l_{\text{max}}=29$. In the final cycles of full-matrix least squares on F^2 , all non-hydrogen atoms were assigned anisotropically except some C and O atoms, belonging to alcohol arms and CH₃OH solvent molecules, which were found disordered and refined isotropically over two positions. The structure was solved using the SIR97^{S2} program system and refined using SHELX-97 program^{S3}. CCDC 869971 contain the supplementary crystallographic data for $1\cdot2\text{MeOH}\cdot2\text{H}_2\text{O}$. These data can be obtained free of charge www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, U.K.; fax, +44-1223/336-033; e-mail, deposit@ccdc.cam.ac.uk]. **Table S1.** Crystallographic data for $1.2 \text{MeOH} \cdot 2 \text{H}_2 \text{O}$ | compound | $1 \cdot 2 \text{MeOH} \cdot 2 \text{H}_2 \text{O}$ | | |--|---|--| | formula | $C_{74}H_{98}Ni_4N_{14}O_{12} \cdot 2(CH_4O) \cdot 2(H_2O)$ | | | FW (g.mol ⁻¹) | 1710.62 | | | space group | $P2\sqrt{c}$ | | | crystal system | Monoclinic | | | a/Å | 12.342(3) | | | b/Å | 13.667(3) | | | c/Å | 24.784(5) | | | α/° | 90.0 | | | β/° | 90.776(6) | | | $\gamma/^{\circ}$ | 90.0 | | | V/\mathring{A}^3 | 4180.1(15) | | | T/K | 293 | | | Z | 2 | | | $D_c/g \text{ cm}^{-3}$ | 1.359 | | | F(000) | 1808 | | | crystal size/mm | 0.27 x 0.22x 0.19 | | | $\mu(Mo-K\alpha)/cm^{-1}$ | 9.58 | | | measured Refl.ns | 33554 | | | unique ref.ns | 7029 | | | R_{int} | 0.2014 | | | obs. Reflns.[$I \ge 2\sigma(I)$] | 3686 | | | θ_{min} - θ_{max} /° | 1.70 -25.00 | | | hkl ranges | -14, 14;-16, 16; -29,29 | | | R(F ²) (Obs.Reflns.) | 0.0870 | | | wR(F ²) (All Reflns.) | 0.2929 | | | no. variables | 500 | | | goodness of fit | 0.985 | | | $\Delta \rho_{max}$; $\Delta \rho_{min}$ (e Å ⁻³) | 0.816; -0.677 | | | | | | **Table S2.** Selected inter-atomic distances (Å) and angles (°) for $1 \cdot 2 \text{MeOH} \cdot 2 \text{H}_2 \text{O}$ | Distances | | | | | |-----------------|----------|------------------|----------|--| | Ni(1)-O(1) | 2.040(5) | Ni(2)-N(3) | 2.042(7) | | | Ni(1)-N(5) | 2.054(7) | Ni(2)-O(4) | 2.047(5) | | | Ni(1)-N(1) | 2.068(7) | Ni(2)-N(4) | 2.048(6) | | | Ni(1)-O(6) | 2.075(6) | Ni(2)-O(3) | 2.076(5) | | | Ni(1)-O(4) | 2.094(5) | Ni(2)-O(1) | 2.117(5) | | | Ni(1)-N(7) | 2.136(6) | Ni(2)-O(3)* | 2.153(5) | | | Angles | | | | | | O(1)-Ni(1)-N(5) | 105.8(2) | N(3)-Ni(2)-O(4) | 102.7(2) | | | O(1)-Ni(1)-N(1) | 89.9(2) | N(3)-Ni(2)-N(4) | 91.1(3) | | | N(5)-Ni(1)-N(1) | 96.8(3) | O(4)-Ni(2)-N(4) | 91.7(2) | | | O(1)-Ni(1)-O(6) | 83.6(2) | N(3)-Ni(2)-O(3) | 80.2(2) | | | N(5)-Ni(1)-O(6) | 167.4(2) | O(4)-Cu(2)-O(3) | 164.2(2) | | | N(1)-Ni(1)-O(6) | 91.5(3) | N(4)-Ni(2)-O(3) | 103.8(2) | | | O(1)-Ni(1)-O(4) | 77.4(2) | N(3)-Ni(2)-O(1) | 84.8(2) | | | N(5)-Ni(1)-O(4) | 86.1(2) | O(4)-Ni(2)-O(1) | 76.7(2) | | | N(1)-Ni(1)-O(4) | 167.3(2) | N(4)-Ni(2)-O(1) | 166.6(2) | | | O(6)-Ni(1)-O(4) | 87.9(2) | O(3)-Ni(2)-O(1) | 88.2(2) | | | O(1)-Ni(1)-N(7) | 168.4(2) | N(3)-Ni(2)-O(3)* | 159.3(2) | | | N(5)-Ni(1)-N(7) | 77.4(3) | O(4)-Ni(2)-O(3)* | 94.2(2) | | | N(1)-Ni(1)-N(7) | 100.9(3) | N(4)-Ni(2)-O(3)* | 100.3(2) | | | O(6)-Ni(1)-N(7) | 91.8(2) | O(3)-Ni(2)-O(3)* | 80.3(2) | | | O(4)-Ni(1)-N(7) | 91.8(2) | O(1)-Ni(2)-O(3)* | 87.6(2) | | | *:-x, -y, -z; | • | | • | | ## **Scheme S1.** Synthesis of H₃L2 **Scheme S2.** In situ Generated Ligands HL3²⁻ (a) and HL4²⁻(b) and their Coordination Modes. **Scheme S3.** Rationalization of the formation of nickel(II) bound ligand anions HL3²⁻ and HL4²⁻ through C–N coupling in complex **1** In methanolic NEt_3 medium the nickel(II) bound pro-ligand $HL2^{2^-}$ initiates a nucleophilic attack of 3,5-dimethylpyrazolate anion on one imine carbon of one ligand arm to generate an intermediate for $HL3^{2^-}$ and $HL4^{2^-}$. This results in formation of a new $C_{imine}-N_{pz}$ bond between imine C of ligand and imidazolate N favoring new coordination of second pyrazole N to Ni(II) in $HL3^{2^-}$. In the second step, the Ni^{II} bound $H_2L3^{2^-}$ species with loosely bound propanolate arm undergoes hydrolysis in dilute NEt_3 medium leading to the transformation of Ni^{II} bound $H_2L3^{2^-}$ fragment to Ni^{II} bound $H_2L4^{2^-}$ species. Scheme S4. Self-aggregation of dimetallic precursors via ligand modification Scheme S5. Hitherto unknown in Situ generated ligandsfor the $\{Ni_4\}$ assembly **Figure S1.** Ball-stick view along crystallographic c axis showing ligand skeletons in yellow and pink; red, O; blue, N; green, Ni. **Figure S2.** Space-fill representation along the crystallographic c axis. Carbon skeletons $HL3^{2-}$ and $HL4^{2-}$ are presented in yellow and pink; blue, N; red, O; green, Ni. **Figure S3.** (a) Staircase like core structure of **1** with coordination sphere bond lengths and angles. (b) Different donor atoms around Ni1 and Ni2. (c) Staircase arrangements of three Ni2O2 planes. **Figure S4.** Ball-stick representations of $\mathbf{1}$ showing hydrogen-bonds (along a axis). **Figure S5.** Packing along crystallographic a (left) and b (right) axes. **Figure S6.** Thermal dependence of the χT product (χ being the molar magnetic susceptibility defined by M/H) measured at 1000 Oe for 1. Dots: experimental points; Lines: Simulations using the MAGPACK^{S4} program following Hamiltonian: $\hat{H} = -2J_1(S_{\text{Ni1}} \cdot S_{\text{Ni2}} + S_{\text{Ni1}*} \cdot S_{\text{Ni2}*}) - 2J_2S_{\text{Ni2}} \cdot S_{\text{Ni2}*}$. The g factor has been fixed as 2.09. #### References - S1. (a) Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. *Vogel's Textbook of Practical Organic Chemistry*; 4th ed., Longman: London and New York, **1978**; Ch VI, p 881. (b) Gagne, R. R.; Spiro, C. L.; Smith, T. J.; Hamann, C. A.; Thies, W. R.; Shiemke, A. K. *J. Am. Chem. Soc.* **1981**, *103*, 4073-4081. - S2. Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.; Polidori, G.; Spagna, R. *J. Appl. Crystallogr.*, **1999**, *32*, 115-119. - S3. Sheldrick, G. M. SHELX-97, *Program for Crystal Structure and Refinement*, University of Göttingen, Germany, **1997**. - S4. Borras-Almenar, J. J., Clemente-Juan J. M., Coronado, E., Tsukerblat, *J. Comput. Chem.*, **2001**, 22, 985-991.