Supporting Information

Properties of Cationic Pnicogen-bonded Complexes $\mathrm{F}_{4-\mathrm{n}} \mathrm{H}_{\mathrm{n}} \mathrm{P}^{+}: \mathrm{N}$-base with F-P $\cdots \mathrm{N}$ linear and $\mathrm{n}=0-3$

Janet E. Del Bene,,${ }^{*, \ddagger}$ Ibon Alkorta, ${ }^{*}{ }^{\&}$ and José Elguero ${ }^{\text {§ }}$

Pgs. S2-S18 Table S1. Geometries, molecular graphs, and total energies of complexes $\mathrm{F}_{4-\mathrm{n}} \mathrm{H}_{\mathrm{n}} \mathrm{P}^{+}: \mathrm{N}$-base

Pgs. S19-S20 Table S2. Table S2. The electron density at the BCP ($\rho_{\text {BCP }}$), the Laplacian of the electron density at the $\operatorname{BCP}\left(\nabla^{2} \rho_{\text {BCP }}\right)$, and the total energy density at the BCP ($H_{\text {BCP }}$) of complexes $\mathrm{F}_{4-\mathrm{n}} \mathrm{H}_{\mathrm{n}} \mathrm{P}^{+}: \mathrm{N}$-base

Pgs. S21-S22 Fig. S1. Plots of $\rho_{\mathrm{BCP}}, \nabla^{2} \rho_{\mathrm{BCP}}$, and H_{BCP} (au) versus the P-N distance ((\AA) for complexes $\mathrm{F}_{4-\mathrm{n}} \mathrm{H}_{\mathrm{n}} \mathrm{P}^{+}: \mathrm{N}$-base

Pgs. S23-S24 Table S3. Spin-spin coupling constants ${ }^{1 p} \mathrm{~J}(\mathrm{P}-\mathrm{N})$ and their components (Hz) for complexes of $\mathrm{F}_{4} \mathrm{P}^{+}, \mathrm{F}_{3} \mathrm{HP}^{+}, \mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$, and $\mathrm{FH}_{3} \mathrm{P}^{+}$with nitrogen bases

Pgs. S25-S26 Table S4. Spin-spin coupling constants ${ }^{1}{ }^{1}\left(P-F_{a x}\right)$ and their components (Hz) for complexes of $\mathrm{F}_{4} \mathrm{P}^{+}, \mathrm{F}_{3} \mathrm{HP}^{+}, \mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$, and $\mathrm{FH}_{3} \mathrm{P}^{+}$with nitrogen bases

Pg. S27 Full references 36 and 50.

Table S1. Geometries, molecular graphs, and total energies of complexes $\mathrm{F}_{4-\mathrm{n}} \mathrm{H}_{\mathrm{n}} \mathrm{P}^{+}$: N -base

	pf4 ncl3 MP2 $=-2173.37359866$ NIMAG $=0$ P,0.,0.00000000015,0.3384113304 F,0.,0.00000000015,1.8698815219 F,1.307531887,0.7549038884,0.1459921828 F,-1.307531887,0.7549038884,0.1459921828 F,0.,-1.5098077724,0.1459921828 $\mathrm{N}, 0 ., 0.0000000015,-1.7676262218$ Cl,-1.4236670875,-0.8219545747,-2.3703143197 $\mathrm{Cl}, 1.4236670875,-0.8219545747,-2.3703143197$ Cl,0.,1.6439091539,-2.3703143197
	pf4 nfcl2 MP2 $=-1813.35739233$ NIMAG $=0$ P,0.,0.0234583154,0.3555988704 F,0.,0.0436807515,1.8813089014 F,1.2969486688,0.7753394958,0.1216115289 F,-1.2969486688,0.7753394958,0.1216115289 F,0.,-1.4834355003,0.1591969028 $\mathrm{N}, 0 .,-0.0117994461,-1.7800322443$ Cl,-1.4195244059,-0.7231315416,-2.4589655622 Cl,1.4195244059,-0.7231315416,-2.4589655622 F,0.,1.3236855081,-2.1735239661
	pf4 nhf2 MP2 $=-994.26989011$ NIMAG $=0$ P, $0 ., 0.0122683854,0.3062242552$ F, 0.,-0.0298868941,1.8293461706 F,1.2973274099,0.7797203169,0.1028779714 F,-1.2973274099,0.7797203169,0.1028779714 F, $0 .,-1.4790665639,0.0350524977$ N,0.,0.0815894863,-1.7906655237 F,-1.0864784682,-0.5685510475,-2.2768201886 F,1.0864784682,-0.5685510475,-2.2768201886 H,0.,0.992759966,-2.2748480511

	pf4_nf2cl MP2= -1453.34451633 NIMAG= 0 P,0.,0.0194800259,0.383436494 F,0.,-0.0336761026,1.8993833735 F, 1.2864839335,0.7709464491,0.1330347583 F,-1.2864839335,0.7709464491,0.1330347583 F,0.,-1.4523236268,0.050169388 $\mathrm{N}, 0 ., 0.0931890648,-1.8607609647$ F,-1.0761889968,-0.6053925902,-2.3311467212 F, 1.0761889968,-0.6053925902,-2.3311467212 Cl,0.,1.6234369845,-2.6276199283
	pf4 nf3 MP2 $=-1093.34199274$ NIMAG $=0$ P,0.,0.0000000015,0.7798777276 F,0.,0.0000000015,2.2757718819 F, 1.2304859567,0.7104213998,0.3225309107 F,-1.2304859567,0.7104213998,0.3225309107 F,0.,-1.4208427952,0.3225309107 N,0.,0.0000000015,-2.1335890492 F,-1.0646541916,-0.6146783826,-2.7108562968 F,1.0646541916,-0.6146783826,-2.7108562968 F,0.,1.2293567697,-2.7108562968
	pf4_ncnh2 MP2 $=-888.25134561$ NIMAG $=0$ P,-0.8379476027,-0.0009781895,0. F, $-2.3827023151,0.0246018667,0$. F,-0.7006782444,0.7456250821,-1.3286601787 F,-0.7006782444,0.7456250821,1.3286601787 F,-0.7277958549,-1.5252655736,0. $\mathrm{N}, 1.0478770663,0.001793807,0$. C,2.2120457639,-0.0007279634,0. $\mathrm{N}, 3.5077279297,-0.0027395917,0$. H,4.0158895328, $0.0003562736,-0.8733317672$ H,4.0158895328,0.0003562736,0.8733317672
	pf4_ncch3 MP2 $=-872.21292314$ NIMAG $=0$ P,0.,0.0000000014,0.4696771735 F,0.,0.0000000014,2.010031071 F,-0.000000004,1.5190804408,0.3210249201 F,1.315562253,-0.7595402148,0.3210249201 F,-1.3155622489,-0.7595402218,0.3210249201 N,0.,0.0000000014,-1.4539619487 C, $0 ., 0.0000000014,-2.612670101$ C, $0 ., 0.0000000014,-4.0585980585$ $\mathrm{H},-0.0000000027,1.0297237256,-4.4122802822$ H,0.8917669054,-0.5148618583,-4.4122802822 H,-0.8917669026,-0.514861863,-4.4122802822

	pf4_nccn MP2 $=-925.01640149$ NIMAG $=0$ P,0.,0.0000000014,0.8337969281 F, $0 ., 0.0000000014,2.3371894777$ F,-0.0000000038,1.4390463186,0.4335005258 F,1.2462506699,-0.7195231539,0.4335005258 F,-1.246250666,-0.7195231605,0.4335005258 $\mathrm{N}, 0.0 .0000000014,-1.803213713$ C, $0 ., 0.0000000014,-2.9741091004$ C, $0 ., 0.0000000014,-4.3501998451$ $\mathrm{N}, 0 ., 0.0000000014,-5.5278268347$
	$\begin{array}{\|l} \hline \text { pf4_n2 MP2 }=-849.03357885 \text { NIMAG }=0 \\ \text { P,0.,0.1098696292,0.0776431973 } \\ \text { F,0.,1.331146192,0.9404048488 } \\ \text { F,1.226273447,0.1353653303,--0.7710752362 } \\ \text { F,-1.226273447,0.1353653303,-0.7710752362 } \\ \text { F,0.,-1.090184164,0.9633973746 } \\ \text { N,0.,-2.3466633675,,-1.6592040548 } \\ \text { N, } 0 .,-3.2555968926,-2.3025785697 \end{array}$

	$\begin{aligned} & \text { MP2=-640.4853667 NIMAG=0 } \\ & \text { P } \\ & \mathrm{H}, 1, \mathrm{r} 0 \\ & \mathrm{~F} 1, \mathrm{r} 1,2, \mathrm{a} 1 \\ & \mathrm{~F}, 1, \mathrm{r} 1,2, \mathrm{al}, 3,120.0 \\ & \mathrm{~F}, 1, \mathrm{r} 1,2, \mathrm{al}, 3,-120 ., 0 \\ & \mathrm{r} 0=1.38272554 \\ & \mathrm{r} 1=1.50203637 \\ & \mathrm{a} 1=110.51974411 \end{aligned}$
	phf3_B_nh3 MP2 $=-697.00415879$ NIMAG $=0$ P,0.,-0.0370060333,0.1810198104 F,0.,-0.0331950827,1.7339400616 F,1.3135121137,0.7533739946,0.0380219867 F,-1.3135121137,0.7533739946,0.0380219867 H,0.,-1.4162900212,0.0658894141 N,0,--0.0126298368,-1.7926580017 H,-0.8242973716,-0.4758672274,-2.1782345715 $H, 0.8242973716,-0.4758672274,-2.1782345715$ $H, 0 ., 0.944110306,-2.1505488522$

	$\begin{aligned} & \hline \text { phf3_B_nh2cl MP2 }=-1156.06132705 \text { NIMAG }=0 \\ & \text { P,0.,-0.0768266963,0.249232616 } \\ & \text { F,0,.,-0.0919025257,1.7971965803 } \\ & \text { F,1.3080690032,0.7055515255,0.0878321087 } \\ & \text { F,-1.3080690032,0.7055515255,0.0878321087 } \\ & \text { H,0.,-1.4545710997,0.0965686056 } \\ & \text { N,0.,-0.0949209615,-1.7720062004 } \\ & H,-0.8254077896,-0.5833305983,-2.1334307479 \\ & H, 0.8254077896,-0.5833305983,-2.1334307479 \\ & \text { Cl,0.,1.473777635,-2.5216883104 } \end{aligned}$
	phf3_B_nh2f MP2 $=-796.03667802$ NIMAG $=0$ P,0.,-0.0597347311,0.2600497939 F,0.,-0.0539642938,1.8024123908 F,1.2977595769,0.7220967275,0.0592506317 F,-1.2977595769,0.7220967275,0.0592506317 H,0.,-1.4349583905,0.1018577543 N,0.,-0.0863364978,-1.8030978885 H,-0.832249736,-0.5124947736,--2.2246840564 H,0.832249736,-0.5124947736,-2.2246840564 F,0.,1.2157980604,-2.2716010442
	$\begin{array}{\|l} \hline \text { phf3_B_nhcl2 MP2=-1615.13247167 NIMAG= } 0 \\ \text { P,0.,0.0179191201,0.301343523 } \\ \text { F,0.,-0.1216348183,1.8365239014 } \\ \text { F,1.2727618051,0.8567442582,0.167117823 } \\ \text { F,-1.2727618051,0.8567442582,0.167117823 } \\ \mathrm{H}, 0 .,-1.3359560642,0.0012558877 \\ \mathrm{~N}, 0 ., 0.0893854109,-1.7813983588 \\ \mathrm{Cl},-1.4327819193,-0.6972387023,-2.3714412336 \\ \mathrm{Cl}, 1.4327819193,-0.6972387023,-2.3714412336 \\ H, 0 ., 1.0312900363,-2.1925752589 \end{array}$
	$\begin{array}{\|l} \hline \text { phf3_B_ncl3 MP2= } 2074.20147042 \text { NIMAG= } 0 \\ \text { P,0.,-0.0159756418,0.3683727483 } \\ \text { F,0.,-0.148966066,1.8990688804 } \\ \text { F,1.2700026506,0.8082805171,0.198363019 } \\ \text { F,-1.2700026506,0.8082805171,0.198363019 } \\ \mathrm{H}, 0 .,-1.3609048065,0.0359432985 \\ \mathrm{~N}, 0 ., 0.0156514516,-1.7978764031 \\ \mathrm{Cl},-1.4216745663,-0.8598015375,-2.3250889108 \\ \mathrm{Cl}, 1.4216745663,-0.8598015375,-2.3250889108 \\ \mathrm{Cl}, 0 ., 1.6132294445,-2.4853850056 \end{array}$

	phf3_B_nhf2 MP2 $=-895.09614651$ NIMAG $=0$ P,0.,0.00796474051,0.3985113355 F,0.,.0.1734502413,1.9132892303 F, $, 12625604206,0.8258858952,0.2000421047$ F,-1.2625604206,0.8258858952,0.2000421047 H,0.,-1.300380267,-0.0429114207 N,0.,0.1085916367,-1.8688710164 F,-1.0881282825,-0.6129160012,-2.2777691135 F,1.088122825,-0.6129160012,-2.2777691135 H,0.,,0.9313322142,-2.4879871239

	$\begin{array}{\|l} \hline \text { phf3_B_ncnh2 MP2 }=-789.07195798 \text { NIMAG= } 0 \\ \text { P,-0.9074562443,-0.0328207044,0. } \\ \text { F,-2.4576214879,0.0059004841,0. } \\ \text { F,-0.7143967094,0.7518126888,-1.2974757657 } \\ \text { F,-0.7143967094,0.7518126888,1.2974757657 } \\ \text { H,-0.7804534158,-1.4035694917,0. } \\ \text { N,1.0936008071,-0.0978364986,0. } \\ \text { C,2.2600098433,--0.0550987135,0. } \\ \text { N,3.5610274091,-0.0461727962,0. } \\ H, 4.062103987,0.0573319839,-0.8703800213 \\ H, 4.062103987,0.0573319839,0.8703800213 \\ \hline \end{array}$
	phf3_B_ncch3 MP2 $=-773.03446909$ NIMAG $=0$ P,-0.0000000028,0.0279676889,0.5628989684 F,-0.0000000007,0.0579278212,2.106662368 H,-0.0000000057,1.3876985625,0.3502018688 F,1.2844945953,-0.769130086,0.373017749 F,-1.2844945959,-0.7691300925,0.3730177422 N,0.0000000026,0.0366452503,-1.5024772919 C, $0.0000000057,0.0243536214,-2.6644054607$ C,0.0000000095,0.005014355,-4.112570918 H,0.0000000079,1.0279487747,-4.4841821982 Н, $0.8907430218,-0.5146479369,-4.4607253907$ Н,-0.8907429983,-0.5146479414,-4.4607253954
	$\begin{array}{\|l} \text { phf3_B_np MP2 }=-1036.06791940 \text { NIMAG }=0 \\ \text { P,0.,-0.2357317988,-0.1275895161 } \\ \text { F,0.,1.0159965037,0.7830845528 } \\ \text { F,1.2925685504,0.0841063346,-0.8788490082 } \\ \text { F,-1.2925685504,0.0841063346,-0.8788490082 } \\ \text { H,0.,-1.1727499085,0.8850883695 } \\ \text { N,0.,-1.8932777766,-1.2974808355 } \\ \text { P,0.,-3.1128164776,-2.183360849 } \\ \hline \end{array}$
	$\begin{aligned} & \hline \text { phf3_B_ncoh MP2 }=-808.91277322 \text { NIMAG }=0 \\ & \text { P,0.9483421439, } 0.0177298902,0 . \\ & \text { F,2.4866872592,0.08115342266,0. } \\ & \mathrm{H}, 0.6802607036,1.3665426302,0 . \\ & \mathrm{F}, 0.7510743545,-0.7854651856,-1.2751790153 \\ & \mathrm{~F}, 0.7510743545,-0.7854651856,1.2751790153 \\ & \mathrm{~N},-1.1715987182,0.0162671884,0 . \\ & \mathrm{C},-2.3369105509,0.0162270755,0 . \\ & \mathrm{O},-3.5985775176,0.1394716263,0 . \\ & \mathrm{H},-4.069834036,-0.7147447572,0 . \end{aligned}$
	phf3_B_nccl MP2 $=-1192.89553520$ NIMAG $=0$ P,-0.0000000041,0.0225507816,0.6190057569 F,- $0.0000000083,0.0647072462,2.1502953658$ H,-0.0000000068,1.3629928656,0.3171353488 F, 1.2654261712,-0.7708362467,0.3672477809 F,-1.2654261741,-0.7708362532,0.3672477742 $\mathrm{N}, 0.0000000017,0.0635894751,-1.610877057$ C, $0.0000000049,0.0332088755,-2.7796458687$ $\mathrm{Cl}, 0.0000000093,-0.0064022556,-4.3842995187$

	ph2f2_nfcl2 MP2 $=-1615.00573337$ NIMAG $=0$ P,0.,0.0421826196,0.4017656362 F,0.,0.1830025072,1.9388782931 H,1.2092321891,0.6377805077,0.0799824898 H,-1.2092321891,0.6377805077,0.0799824898 F,0.,-1.4837234722,0.2577585267 N,0.,-0.0181319694,-1.8153731338 Cl,-1.4238122101,-0.6759301054,-2.52558966553 Cl,1.4238122101,-0.6759301054,--2.5255896653 F,0.,1.3529022518,-2.1249022421
	ph2f2_nhf2 MP2=-795.91382829 NIMAG= 0 P, $0 ., 0.0410525557,0.4937532916$ F,0.,-0.0041890196,2.0262264373 H,1.1969501467,0.6595315232,0.1846401175 H,-1.1969501467,0.6595315232,0.1846401175 F,0.,-1.4270329144,0.0937267767 $\mathrm{N}, 0.0 .0 .183558735,-1.9387778829$ F,-1.0928547931,-0.5430798628,-2.3453495691 F, 1.0928547931,-0.5430798628,-2.3453495691 H,0.,0.9736949418,-2.5969373136
	ph2f2_nf2cl MP2 $=-1254.99206919$ NIMAG $=0$ P,0.,0.0385748784,0.457918531 F,0.,0.0873910435,1.9910111658 H,1.1958433905,0.6464791699,0.1164409973 H,-1.1958433905,0.6464791699,0.1164409973 F,0.,-1.4570034594,0.1621991311 $\mathrm{N}, 0 ., 0.0992103751,-1.9163339479$ F,-1.0765476829,-0.5742998591,-2.4286449076 F, 1.0765476829,-0.5742998591,-2.4286449076 Cl,0.,1.6686630914,-2.6227018954
	ph2f2_nf3 MP2 $=-894.98753838$ NIMAG $=0$ P,0.,0.018850921,0.6474857864 F,0.,0.1269482443,2.1666943769 H,1.1812814495,0.5975257999,0.2146685844 H,-1.1812814495,0.5975257999,0.2146685844 F,0.,-1.4676930036,0.3340624825 N,..,0.0254363297,-2.0282762126 F,-1.0644012322,-0.5815000951,-2.6032340484 F,1.0644012322,-0.5815000951,-2.6032340484 F,0.,1.2647611397,-2.5859054303
	ph2f2_ncnh2 MP2 $=-689.89144710$ NIMAG $=0$ P,-0.9668754415,0.0301979687,0. F,-2.5254813873,0.0355613125,0. H,-0.7570152939,0.6566892308,--1.2108232197 H,-0.7570152939,0.6566892308,1.2108232197 F,-0.752785093,-1.4894752777,0. N,1.1220777888,0.1161257061,0. C,2.290188972,0.0679087909,0. N,3.5950553845,0.0624517287,0. H,4.0912503963,-0.0744226396,-0.8680747459 H,4.0912503963,-0.0744226396,0.8680747459

	$\begin{aligned} & \text { MP2=-442.0587919 NIMAG=0 } \\ & \text { P } \\ & \mathrm{X}, 1,1.1 . \\ & \mathrm{F}, 1, \mathrm{r} 1,2,90 . \\ & \mathrm{H}, 1,2,2, \mathrm{a} 2,3, \mathrm{~d} 2,0 \\ & \mathrm{H}, 1, \mathrm{r} 2,2, \mathrm{a} 2,3,-\mathrm{d} 2,0 \\ & \mathrm{H}, 3, \mathrm{r} 3,1, \mathrm{a}, 2,2,0.0 \\ & \mathrm{r}=1.93459344 \\ & \mathrm{r} 2=1.40974625 \\ & \mathrm{r} 3=0.94630091 \\ & \mathrm{a} 2=132.98873028 \\ & \mathrm{a} 3=118.0345022 \\ & \mathrm{~d} 2=86.84070803 \\ & \hline \end{aligned}$
	ph3f_nh3 MP2 $=-498.64287768$ NIMAG $=0$ P, $0 ., 0.0000000015,0.2596251954$ F, $0 ., 0.0000000015,1.8417799426$ H,1.188302307,0.6860666583,0.0725681274 H,-1.188302307,0.6860666583,0.0725681274 H,0.,-1.3721333122,0.0725681274 $\mathrm{N}, 0 ., 0.0000000015,-1.8483352863$ H,-0.8158941765,-0.4710567209,-2.2378966927 H,0.8158941765,-0.4710567209,-2.2378966927 H,0.,0.9421134463,-2.2378966927

	ph3f_nh2cl MP2 $=-957.70612825$ NIMAG $=0$ P,0.,-0.0573667893,0.3094557711 F,0.,0.017739937,1.8823610994 H,1.1800032603,0.6235273045,0.054112648 H,-1.1800032603,0.6235273045,0.054112648 H,0.,-1.438036965,0.1671663574 N,0.,-0.1246162737,-1.8240047487 H,-0.8209573272,-0.5765948045,-2.23395611 $\mathrm{H}, 0.8209573272,-0.5765948045,-2.23395611$ Cl,0.,1.5084203469,-2.4171394214
	ph3f_nh2f MP2 $=-597.68260426$ NIMAG $=0$ P,0.,-0.0317118346,0.3264102922 F,0.,0.0777937782,1.8908536647 H,1.1760987183,0.6371274162,0.0298134965 H,-1.1760987183,0.6371274162,0.0298134965 H,0.,-1.4109799596,0.1845047595 N,0.,-0.1212230539,-1.8499756405 H,-0.8248194525,-0.5066363465,-2.3177224452 H, $0.8248194525,-0.5066363465,-2.3177224452$ F,0.,1.2251354942,-2.2189670327
	ph3f_nhcl2 MP2 $=-1416.77606370$ NIMAG $=0$ P, $0 ., 0.0449307529,0.3533651607$ F, $0 .,-0.0411297093,1.9203900018$ H, 1.1868827938,0.7358968794,0.1517424174 Н,-1.1868827938,0.7358968794,0.1517424174 H, $, .,-1.3037607388,0.027647802$ $\mathrm{N}, 0 ., 0.1143711357,-1.8091711223$ Cl,-1.4405236057,-0.6637279199,-2.3940799129 $\mathrm{Cl}, 1.4405236057,-0.6637279199,-2.3940799129$ H, $0 ., 1.0412556537,-2.25023818$
	ph3f_ncl3 MP2 $=-1875.84816920$ NIMAG $=0$ P,0.,0.00000000015,0.3865046824 F,0.,0.00000000015,1.9528036209 H,1.1811963602,0.681964038,0.1246551716 H,-1.1811963602,0.681964038,0.1246551716 H,0.,-1.3639280715,0.1246551716 N,0.,0.00000000015,-1.8022317255 Cl,-1.427222438,,-0.8240072573,-2.38111402999 Cl, ,1.427222438,-0.8240072573,-2.3811140299 Cl,0.,1.6480145191,-2.3811140299

	ph3f_nfcl2 MP2 $=-1515.83104806$ NIMAG $=0$ P,0.,0.0208523173,0.4148353154 F,0.,0.0600511931,1.9749560674 H,1.1772109514,0.6909302316,0.1117714615 H,-1.1772109514,0.6909302316,0.1117714615 H,0.,-1.3441091841,0.1632038959 $\mathrm{N}, 0 .,-0.0137724707,-1.8148054509$ Cl,-1.4234169446,-0.7171566078,-2.4942566914 $\mathrm{Cl}, 1.4234169446,-0.7171566078,-2.4942566914$ F, $0 ., 1.329433887,-2.2054414521$
	ph3f_nhf2 MP2 $=-696.74152187$ NIMAG $=0$ $\mathrm{P}, 0 ., \overline{0} .0311575214,0.4325577505$ F, $0 .,-0.1179176826,1.9796653825$ H,1.1700315618,0.7317413647,0.1850399219 H,-1.1700315618,0.7317413647,0.1850399219 H, $0 .,-1.281000916,-0.0156383394$ $\mathrm{N}, 0 ., 0.1392138126,-1.8874932801$ F,-1.0909646571,-0.5871571712,-2.2936853966 F,1.0909646571,-0.5871571712,-2.2936853966 H, $0 ., 0.9393843325,-2.5344131401$
	ph3f nf2cl MP2 $=-1155.81853705$ NIMAG $=0$ $\mathrm{P}, 0 ., 0.0200492886,0.4384127818$ F,0.,-0.055045956,1.9892195624 H,1.167204443,0.7103437611,0.145887411 H,-1.167204443, $0.7103437611,0.145887411$ H,0.,-1.3109957705,0.0463495364 $\mathrm{N}, 0 ., 0.1015163856,-1.8927001241$ F,-1.0773097884,-0.6069402759,-2.3655326776 F,1.0773097884,-0.6069402759,-2.3655326776 $\mathrm{Cl}, 0 ., 1.6188823181,-2.6935599845$
	ph3f_nf3 MP2 $=-795.81305537$ NIMAG $=0$ P, $0 ., \overline{0} .0000000015,0.5816299898$ F, $0 ., 0.0000000015,2.1246049228$ H,1.1562599702,0.6675670066,0.2023301956 H,-1.1562599702,0.6675670066,0.2023301956 H, $0 .,-1.3351340086,0.2023301956$ $\mathrm{N}, 0 ., 0.0000000015,-1.9654495971$ F,-1.0652802176,-0.6150398189,-2.5303962626 F,1.0652802176,-0.6150398189,-2.5303962626 F, 0.,1.2300796423,-2.5303962626

$\left\lvert\, \begin{aligned} & \text { ph3f_ncnh2 MP2 }=-590.71685869 \text { NIMAG }=0 \\ & \text { P,1.3086107002,-0.008146257,0. } \\ & \text { F,2.8813025039,-0.0208554966,0. } \\ & \text { H,1.0624904769,0.6733986379,-1.1766664425 } \\ & \mathrm{H}, 1.0465629022,-1.3648421219,0 . \\ & \text { H,1.0624904769,0.6733986379,1.1766664425 } \\ & \mathrm{N},-0.8465071044,0.0212953155 .0 . \\ & \mathrm{C},-2.0158112610 .0154808033,0 . \\ & \mathrm{N},-3.3242264405,-0.0392774479,0 . \\ & \mathrm{H},-3.8198435238,0.1188501147,-0.8645526029\end{aligned}\right.$

	H,-3.8198435238,0.1188501147,0.8645526029
	ph3f_ncch3 MP2 $=-574.68078852$ NIMAG $=0$ P,0.,0.0000000014,0.655386858 F,0.,0.0000000014,2.223381736 Н,-0.0000000036,1.3554238258,0.3844543269 Н, 1.1738314666,-0.6777119077,0.3844543269 H,-1.173831463,-0.6777119139,0.3844543269 N,0.,0.0000000014,-1.5419430258 C,0.,0.00000000014,-2.706112659 C, $0 ., 0.0000000014,-4.1568552662$ Н,-0.0000000027,1.0271931572,-4.5155024626 $\mathrm{H}, 0.8895753689,-0.5135965742,-4.5155024626$ Н, $-0.8895753662,-0.5135965788,-4.5155024626$
	ph3f_np MP2 $=-837.71327399$ NIMAG $=0$ P,0.,-0.1589921934,-0.1128508232 F,0.,1.1240912158,0.7943990932 H,1.1779383201,0.0274342318,-0.8139472543 $\mathrm{H},-1.1779383201,0.0274342318,-0.8139472543$ $\mathrm{H}, 0 .,-1.1502561117,0.8524044659$ $\mathrm{N}, 0 .,-1.93227015,-1.3655729651$ P,0.,-3.1676480507,-2.2383984953
	ph3f ncoh MP2 $=-610.55958240$ NIMAG $=0$ P, 1.3237766235,-0.0043864573,0. F,2.8878264081,0.0322570194,0. H,1.0036057853,1.3404538471,0. H,1.0516512229,-0.6868633408,-1.1705692276 H,1.0516512229,-0.6868633408,1.1705692276 $\mathrm{N},-0.9107639057,-0.0429984144,0$. C,-2.0778417509,-0.0115013762,0. O,-3.340926572,0.1432780881,0. Н,-3.8269466639,-0.7011536149,0.
	ph3f nccl MP2 $=-994.54312966$ NIMAG $=0$ P, $0 ., 0.0000000014,0.6439788884$ F, $0 ., 0.0000000014,2.2051075788$ H,-0.0000000036,1.349218933,0.34108106 H,1.1684578718,-0.6746094612,0.34108106 H,-1.1684578682,-0.6746094675,0.34108106 $\mathrm{N}, 0 ., 0.0000000014,-1.6255469521$ C, $0 ., 0.0000000014,-2.7957387755$ $\mathrm{Cl}, 0.0 .0000000014,-4.403179356$
	ph3f_nch MP2 $=-535.43013225$ NIMAG $=0$ P,0.,0.0000000014,0.600294238 F,0.,0.0000000014,2.1573567154 H,-0.00000000036,1.345477476,0.2794261362 H,1.165217675,--0.6727387328,0.2794261362 H,-1.1652176715,--0.672738739,0.2794261362 N,0.,0.0000000014,-1.7207690096 C,0.,0.0000000014,-2.8813259219 H,0.,0.0000000014,-3.9535423012

	ph3f_ncf MP2= -634.53773402 NIMAG $=0$ P,0.,0.0000000014,0.6404816168 F,0.,0.0000000014,2.1953018422 H,-0.0000000036,1.3426560965,0.3068156279 H,1.1627742887,-0.6713280431,0.3068156279 H,-1.1627742851,-0.6713280492,0.3068156279 N,0.,0.00000000014,-1.7131316609 C,0.,0.0000000014,-2.8779338052 F,0.,0.0000000014,-4.1223897859
	ph3f_nccn MP2 $=-627.49134879$ NIMAG $=0$ P,0.,.00000000014,0.7040865525 F,0.,0.00000000014,2.2555229169 H.,-0.0000000035,1.3400438332,0.3566987831 H,1.1605120023,-0.6700219114,0.3566987831 H,-1.1605119987,-0.6700219175,0.3566987831 N,0.,0.0000000014,-1.6934563043 C,0.,0.00000000014,-2.863765568 C,0.,.00000000014,-4.2377631835 N,0.,0.00000000014,--5.4170486919
	ph3f_n2 MP2 $=-551.50391259$ NIMAG $=0$ P,0.,0.0105647817,0.0073352352 F,0.,1.2674690996,0.8957973791 H,1.1493838619,0.0611731415,-0.7695176211 Н,-1.1493838619,0.0611731415,-0.7695176211 H,0.,-1.087945328,0.856124878 $\mathrm{N}, 0 .,-2.1920095076,-1.5497376158$ $\mathrm{N}, 0 .,-3.1012946024,-2.1930556229$

Table S 2 . The electron density at the $\mathrm{BCP}\left(\rho_{\mathrm{BCP}}\right)$, the Laplacian of the electron density at the BCP $\left(\nabla^{2} \rho_{\mathrm{BCP}}\right)$, and the total energy density at the BCP $\left(H_{\mathrm{BCP}}\right)$ of complexes $\mathrm{F}_{4-\mathrm{n}} \mathrm{H}_{\mathrm{n}} \mathrm{P}^{+}: \mathrm{N}$-base
ρ_{BCP}

Base	$\mathrm{F}_{4} \mathrm{P}^{+}$	$\mathrm{F}_{3} \mathrm{HP}^{+}$	$\mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$	$\mathrm{FH}_{3} \mathrm{P}^{+}$
NH 3	0.122	0.106	0.091	0.077
NClH 2	0.115	0.098	0.087	0.073
NFH 2	0.110	0.090	0.080	0.067
NCl 2 H	0.103	0.088	0.075	0.070
NCl 3	0.088	0.076	0.072	0.066
NFCl 2	0.082	0.065	0.065	0.060
$\mathrm{NF2H}$	0.086	0.059	0.040	0.049
$\mathrm{NF2Cl}$	0.063	0.042	0.046	0.048
NF 3	0.015	0.018	0.024	0.030
NCNH 2	0.108	0.085	0.070	0.059
NCCH 3	0.101	0.076	0.061	0.055
NP	0.108	0.086	0.070	0.061
NCOH	0.097	0.068	0.054	0.050
NCCl	0.092	0.055	0.048	0.047
NCH	0.080	0.039	0.041	0.043
NCF	0.069	0.033	0.037	0.039
NCCN	0.023	0.027	0.032	0.036
N 2	0.010	0.013	0.015	0.019

$\nabla^{2} \rho_{\mathrm{BCP}}$

Base	$\mathrm{F}_{4} \mathrm{P}^{+}$	$\mathrm{F}_{3} \mathrm{HP}^{+}$	$\mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$	$\mathrm{FH}_{3} \mathrm{P}^{+}$
NH 3	0.025	-0.015	-0.025	-0.001
NClH 2	-0.030	-0.066	-0.037	0.005
NFH 2	-0.013	-0.055	-0.019	0.026
NCl 2 H	-0.096	-0.070	-0.018	0.015
NCl 3	-0.097	-0.026	-0.002	0.023
NFCl 2	-0.068	0.008	0.020	0.041
NF 2 H	-0.059	0.030	0.061	0.064
NF 2 Cl	-0.001	0.059	0.059	0.065
NF 3	0.048	0.052	0.062	0.072

$\nabla^{2} \rho_{\mathrm{BCP}}$

NCNH2	0.152	0.030	0.034	0.064
NCCH3	0.107	0.008	0.044	0.068
NP	0.074	-0.013	0.016	0.050
NCOH	0.094	0.022	0.059	0.076
NCCl	0.068	0.051	0.069	0.079
NCH	0.016	0.072	0.075	0.082
NCF	0.012	0.076	0.078	0.084
NCCN	0.065	0.072	0.077	0.084
N2	0.041	0.046	0.054	0.064

H_{BCP}

Base	$\mathrm{F}_{4} \mathrm{P}^{+}$	$\mathrm{F}_{3} \mathrm{HP}^{+}$	$\mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$	$\mathrm{FH}_{3} \mathrm{P}^{+}$
NH 3	-0.112	-0.091	-0.070	-0.049
NCIH 2	-0.106	-0.081	-0.062	-0.043
NFH 2	-0.098	-0.069	-0.053	-0.034
NCl 2 H	-0.091	-0.062	-0.043	-0.036
NCl 3	-0.064	-0.041	-0.037	-0.032
NFCl 2	-0.055	-0.030	-0.029	-0.025
$\mathrm{NF2H}$	-0.065	-0.024	-0.009	-0.015
$\mathrm{NF2Cl}$	-0.031	-0.009	-0.012	-0.014
NF 3	0.001	0.001	-0.001	-0.003
NCNH 2	-0.087	-0.061	-0.039	-0.026
NCCH 3	-0.08	-0.049	-0.028	-0.021
NP	-0.091	-0.063	-0.039	-0.027
NCOH	-0.075	-0.036	-0.020	-0.016
NCCl	-0.071	-0.020	-0.014	-0.014
NCH	-0.057	-0.007	-0.009	-0.010
NCF	-0.043	-0.004	-0.006	-0.008
NCCN	-0.001	-0.001	-0.004	-0.006
N 2	0.002	0.002	0.001	0.001

Figure S1. Plots of $\rho_{\mathrm{BCP}}, \nabla^{2} \rho_{\mathrm{BCP}}$, and $H_{\mathrm{BCP}}(\mathrm{au})$ versus the P-N distance (\AA) for complexes $\mathrm{F}_{4-\mathrm{n}} \mathrm{H}_{\mathrm{n}} \mathrm{P}^{+}$:N-base
$■ \mathrm{sp}^{3}$ bases; $\square \mathrm{sp}$ N-bases

ρ_{BCP}

$\nabla^{2} \rho_{\mathrm{BCP}}$

Table S3. Spin-spin coupling constants ${ }^{1 \mathrm{p}} \mathrm{J}(\mathrm{P}-\mathrm{N})$ and their components (Hz) for complexes of $\mathrm{F}_{4} \mathrm{P}^{+}, \mathrm{F}_{3} \mathrm{HP}^{+}, \mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$, and $\mathrm{FH}_{3} \mathrm{P}^{+}$with nitrogen bases

F4P+:N-base

	PSO	DSO	FC	SD	${ }^{1 p} \mathrm{~J}(\mathrm{P}-\mathrm{N})$
NH3	0.8	-0.2	-25.8	-1.7	-26.9
NFH2	0.5	-0.2	-19.0	-1.7	-20.3
NP	1.1	-0.2	-15.2	-0.8	-15.1
NCH	0.5	-0.2	0.9	-0.5	0.7
NCF	0.4	-0.2	8.6	-0.3	8.4
N2	0.1	-0.1	1.5	0.0	1.5

F3HP+:N-base

NH3	0.2	-0.1	26.7	-1.7	25.1
NCIH2	0.3	-0.2	31.0	-1.3	29.9
NFH2	0.5	-0.1	34.2	-1.2	33.4
NF2H	0.2	-0.1	26.9	-0.4	26.6
NCNH2	0.2	-0.2	57.5	-0.6	56.9
NP	0.5	-0.2	50.5	-0.6	50.3
NCOH	0.2	-0.1	55.2	-0.3	54.9
NCH	0.0	-0.1	19.8	-0.1	19.6
NCF	0.0	-0.1	11.8	-0.1	11.6
N2	0.0	-0.1	-4.7	0.0	-4.8

$\mathrm{F} 2 \mathrm{H} 2 \mathrm{P}+$: N -base

NH3	-0.8	-0.1	33.4	-1.6	30.9
NH2CI	-0.6	-0.1	30.9	-1.4	28.8
NH2F	-0.5	-0.1	32.3	-1.1	30.6
NHF2	0.1	-0.1	-2.5	-0.2	-2.8
NF3	0.1	-0.1	-14.0	0.0	-14.0
NHNH2	0.0	-0.1	52.8	-0.4	52.2
NCCH3	-0.4	-0.1	38.3	-0.4	37.4
NP	0.0	-0.1	40.2	-0.5	39.7
NCOH	-0.4	-0.1	29.4	-0.3	28.5
NCCl	-0.3	-0.1	17.0	-0.2	16.4
NCH	-0.3	-0.1	4.5	-0.2	3.9
NCF	-0.3	-0.1	-3.1	-0.1	-3.6
NCCN	-0.2	-0.1	-9.6	-0.1	-10.0
N2	0.0	-0.1	-15.9	0.0	-16.0

	PSO	DSO	FC	SD	${ }^{1 p} \mathrm{~J}(\mathrm{P}-\mathrm{N})$
FH3P+:N-base					
NH3	-2.1	-0.1	14.6	-1.6	10.8
NCIH2	-1.2	-0.1	9.7	-1.3	7.2
NFH2	-0.5	-0.1	7.1	-0.9	5.6
NF2H	0.1	-0.1	-9.8	-0.3	-10.1
NF3	0.0	-0.1	-30.8	0.0	-30.9
NCNH2	-1.1	-0.1	15.4	-0.4	13.8
NCCH3	-1.0	-0.1	5.3	-0.4	3.8
NP	-0.4	-0.1	7.6	-0.3	6.8
NCOH	-1.0	-0.1	-3.9	-0.3	-5.3
NCCl	-0.8	-0.1	-11.1	-0.3	-12.3
NCH	-0.7	-0.1	-18.5	-0.2	-19.5
NCF	-0.7	-0.1	-26.3	-0.2	-27.3
NCCN	-0.6	-0.1	-29.4	-0.1	-30.1
N2	-0.2	-0.1	-30.9	0.0	-31.2

Table S4. Spin-spin coupling constants ${ }^{1} \mathrm{~J}\left(\mathrm{P}-\mathrm{F}_{\mathrm{ax}}\right)$ and their components (Hz) for complexes of $\mathrm{F}_{4} \mathrm{P}^{+}, \mathrm{F}_{3} \mathrm{HP}^{+}, \mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$, and $\mathrm{FH}_{3} \mathrm{P}^{+}$with nitrogen bases

$\mathrm{F}_{4} \mathrm{HP}^{+}: \mathrm{N}$-base	PSO	DSO	FC	SD	${ }^{1} \mathrm{~J}\left(\mathrm{P}-\mathrm{F}_{\mathrm{ax}}\right)$
NH_{3}	-191.6	1.6	-869.6	16.2	-1043.4
NFH_{2}	-200.1	1.6	-885.4	15.6	-1068.3
NP	-189.8	1.6	-854.1	16.5	-1025.8
NCH	-202.9	1.6	-872.7	16	-1058.1
NCF	-207.3	1.6	-878.8	15.8	-1068.8
$\mathrm{~N}_{2}$	-250.5	1.5	-1041.7	13.1	-1277.6
$\mathrm{~F}_{4} \mathrm{P}^{+}$	-257.4	1.4	-1075.7	12.8	-1318.9

$\mathrm{F}_{3} \mathrm{HP}^{+}: \mathrm{N}$-base					
NH_{3}	-187.8	1.2	-873.8	19.3	-1041.2
NCIH_{2}	-193.4	1.2	-877.8	19.2	-1050.8
NFH_{2}	-201.6	1.2	-888.8	18.9	-1070.3
$\mathrm{NF}_{2} \mathrm{H}$	-230.9	1.2	-933.2	18.9	-1144.0
NCNH_{2}	-91.5	0.4	-735.6	41.7	-785.0
NCCH_{3}	-97.9	0.4	-751.5	41.6	-807.4
NP	-94.5	0.4	-749.0	40.7	-802.5
NCOH	-101.0	0.3	-762.3	42.2	-820.7
NCCl	-105.7	0.3	-775.4	42.1	-838.5
NCH	-110.8	0.3	-790.2	42.1	-858.6
NCF	-112.8	0.3	-799.5	42.6	-869.4
NCCN	-118.2	0.3	-814.2	42.1	-889.9
$\mathrm{~N}_{2}$	-130.6	0.3	-873.2	42.1	-961.4
$\mathrm{~F}_{3} \mathrm{HP}^{+}$	-269.8	1.0	-1065.7	16.1	-1318.4

$\mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$: N -base					
NH_{3}	-159.7	0.7	-812.3	24.8	-946.4
$\mathrm{NH}_{2} \mathrm{Cl}$	-170.9	0.8	-823.8	25.2	-968.7
$\mathrm{NH}_{2} \mathrm{~F}$	-178.7	0.8	-832.8	25.2	-985.6
NHF_{2}	-212.9	0.7	-897.4	25.0	-1084.5
NF_{3}	-230.5	0.7	-942.9	24.2	-1148.4
NCNH_{2}	-173.0	0.7	-810.7	26.4	-956.5
NCCH_{3}	-181.8	0.7	-825.1	26.6	-979.7
NP	-174.7	0.7	-820.8	26.1	-968.7
NCOH	-188.5	0.7	-836.2	26.8	-997.1
NCCI	-195.9	0.7	-851.9	26.5	-1020.5
NCH	-203.8	0.7	-869.6	26.3	-1046.4
NCF	-208.4	0.7	-880.3	26.2	-1061.9
NCCN	-214.7	0.7	-896.6	25.7	-1084.9
N_{2}	-232.9	0.6	-951.3	24.2	-1159.4
$\mathrm{F}_{2} \mathrm{H}_{2} \mathrm{P}^{+}$	-241.6	0.6	-982.6	22.7	-1200.9
$\mathrm{FH}_{3} \mathrm{P}^{+}: \mathrm{N}$-base					
NH_{3}	-187.8	1.2	-873.8	19.3	-1041.2
NCIH_{2}	-193.4	1.2	-877.8	19.2	-1050.8
NFH_{2}	-201.6	1.2	-888.8	18.9	-1070.3
$\mathrm{NF}_{2} \mathrm{H}$	-230.9	1.2	-933.2	18.9	-1144.0
NCNH_{2}	-91.5	0.4	-735.6	41.7	-785.0
NCCH_{3}	-97.9	0.4	-751.5	41.6	-807.4
NP	-94.5	0.4	-749.0	40.7	-802.5
NCOH	-101.0	0.3	-762.3	42.2	-820.7
NCCI	-105.7	0.3	-775.4	42.1	-838.5
NCH	-110.8	0.3	-790.2	42.1	-858.6
NCF	-112.8	0.3	-799.5	42.6	-869.4
NCCN	-118.2	0.3	-814.2	42.1	-889.9
N_{2}	-130.6	0.3	-873.2	42.1	-961.4
$\mathrm{FH}_{3} \mathrm{P}^{+}$	-269.8	1.0	-1065.7	16.1	-1318.4

(36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;

Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.
E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;
Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc., 2009.
(50) Stanton, J. F.; Gauss, J.; Watts, J. D.; Nooijen, M.; Oliphant, N.; Perera, S. A.; Szalay, P. G.; Lauderdale, W. J.; Gwaltney, S. R.; Beck, S.; Balkova, A.; Bernholdt, D. E.; Baeck, K.-K.; Tozyczko, P.; Sekino, H.; Huber, C.; Bartlett, R. J. ACES II is a program product of the Quantum Theorey Project, University of Florida. Integral packages included are VMOL (J. Almlöf and Taylor PR); VPROPS (P. R. Taylor); ABACUS (T Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, and P. R. Taylor). Brillouin-Wigner perturbation theory was implement by J. Pittner.

