Supporting Information

A Simple Primary Amine Catalyst for Enantioselective α-Hydroxylations and $\boldsymbol{\alpha}$-Fluorinations of Branched Aldehydes

Michael R. Witten and Eric N. Jacobsen*
Department of Chemistry \& Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
Email: jacobsen@chemistry.harvard.edu

Contents

1. General Information S1
2. Synthesis and Characterization of Catalyst $\mathbf{6}$ S2
3. Synthesis and Characterization of Substrates S4
4. Procedures for α-Functionalizations and Characterization of Products S14
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of α-Functionalization Products S38
6. Chiral HPLC Traces of Enantioenriched α-Functionalization Products S67
7. Mass Spectrometry and Computational Procedures and Results S100
8. Supplementary Optimization Tables S110
9. Results with Additional Substrates. S117
10. X-Ray Crystallography Information S118

1. General Information

Unless otherwise noted, all reactions were performed in oven- or flame-dried round-bottom flasks. Vials were capped and flasks were fitted with rubber septa. Reactions were conducted under air unless noted. Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from EM Science. Commercial reagents were purchased from Sigma-Aldrich, Alfa Aesar, Oakwood Chemical, Matrix Chemical, or TCI America, and used as received with the following exceptions: dichloromethane, toluene, tetrahydrofuran, N, N-dimethylformamide, and diethyl ether were dried by passing through columns of activated alumina. Triethylamine was distilled from CaH_{2} at 760 torr. 2-phenylpropionaldehyde (1a) and 3-(4-tertbutylphenyl)isobutyraldehyde (10) were purchased from Sigma-Aldrich and TCI America respectively, and distilled from CaH_{2} at 50 torr prior to use. n-Butyllithium was titrated using N-benzylbenzamide as an indicator. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra, fluorine nuclear magnetic resonance (${ }^{19} \mathrm{~F}$ NMR) spectra, and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on Varian-Mercury-300 (300 MHz), Varian-Mercury-400 (400 MHz), or Inova-500 (500 MHz) spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}=\delta 7.27\right)$.

Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.0\right)$. Data are represented as follows: chemical shift (multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, m $=$ multiplet), coupling constants in Hertz (Hz), integration). Infrared (IR) spectra were obtained using a Bruker Alpha Platinum ATR FTIR spectrometer. Optical rotations were measured using a Jasco DIP 370 digital polarimeter. The mass spectral data were obtained on a Bruker micrOTOF-Q II time-of-flight LC/MS spectrometer (ESI-TOF). Chiral HPLC analysis was performed using an Agilent analytical chromatograph with commercial ChiralPak or ChiralCel columns.

Abbreviations: ee - enantiomeric excess, GC - gas chromatography, HPLC - high performance liquid chromatography, GC - gas chromatography, $n-\mathrm{BuLi}$ - butyllithium, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - dichloromethane, THF tetrahydrofuran, DMF - N, N-dimethylformamide, EtOAc - ethyl acetate, $\mathrm{Et}_{2} \mathrm{O}$ - diethyl ether, MeCN acetonitrile, MeOH - methanol, EtOH - ethanol,, PrOH - isopropanol, NEt_{3} - triethylamine, CHCl_{3} chloroform, $\mathrm{C}_{6} \mathrm{H}_{6}$ - benzene, AcOH - acetic acid, BzOH - benzoic acid, TFA - trifluoroacetic acid, TCA - dichloroacetic acid, DCA - dichloroacetic acid, N_{2} - nitrogen, CO_{2} - carbon dioxide, $\mathrm{H}_{2} \mathrm{O}$ water, HCl - hydrochloric acid, HBr - hydrobromic acid, $\mathrm{Na}_{2} \mathrm{SO}_{4}$ - sodium sulfate, NaHCO_{3} - sodium bicarbonate, $\mathrm{NH}_{4} \mathrm{Cl}$ - ammonium chloride, NaBH_{4} - sodium borohydride, NFSI -N-fluorobenzenesulfonimide, DIAD - diisopropyl azodicarboxylate, DEAD - diethyl azodicarboxylate, sat. - saturated, aq. - aqueous, conc. - concentrated, h - hours, min - minutes, diast. - diastereomer, N.D. - not determined.

2. Synthesis and Characterization of Catalyst 6

Scheme S1. Synthesis of catalyst 6.

1,3-dibromo-2-iodobenzene (S1):

Following a reported procedure, ${ }^{[1]} 2,6$-dibromoaniline ($5.002 \mathrm{~g}, 19.93 \mathrm{mmol}$) was dissolved in $37 \% \mathrm{HCl}$ $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(27 \mathrm{~mL})$ in a $500-\mathrm{mL}$ round-bottom flask. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath then a solution of sodium nitrite ($1.435 \mathrm{~g}, 20.79 \mathrm{mmol}, 1.04$ equiv) in $\mathrm{H}_{2} \mathrm{O}(22 \mathrm{~mL})$ was slowly added. The flask was sealed with a septum under an atmosphere of N_{2}, and the mixture was

[^0]stirred at $0{ }^{\circ} \mathrm{C}$. After 1 h of stirring, the flask was opened again, and an ice cold solution of potassium iodide (33.10 g , $199 \mathrm{mmol}, 10.0$ equiv) in $\mathrm{H}_{2} \mathrm{O}(46 \mathrm{~mL})$ was slowly and carefully added at $0{ }^{\circ} \mathrm{C}$. The yellow mixture rapidly turned red and began to bubble. If potassium iodide is added too quickly, the solution will bubble over. After addition of all potassium iodide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was also added to the reaction and the biphasic mixture was stirred under an atmosphere of N_{2} at $23{ }^{\circ} \mathrm{C}$ for 4.5 h . Then, solid sodium sulfite ($0.750 \mathrm{~g}, 5.95 \mathrm{mmol}, 0.3$ equiv) was added to quench the oxidant and the red color rapidly dissipated. This mixture was stirred at $23{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} for an additional 15 min , then the phases were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$ and the pooled organic layers were washed with brine $(30 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude orange powder was dissolved in hexanes with minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and purified by silica plug, eluting with hexanes to afford $\mathbf{S} 1$ as a white powder $(6.457 \mathrm{~g}, 90 \%)$.
Spectroscopic results agree with previously reported data. ${ }^{[1]}$

[1,1':3',1'-terphenyl]-2'-carboxylic acid (S2):

Following a reported procedure, ${ }^{[2]}$ aryl iodide $\mathbf{S} 1(5.919 \mathrm{~g}, 16.36 \mathrm{mmol})$ was dissolved in anhydrous THF (12 mL). Dropwise by syringe, under an atmosphere of N_{2}, phenylmagnesium bromide (49 mL of a 1.0 M solution in THF, $49 \mathrm{mmol}, 3.0$ equiv) was added to the stirring $\mathbf{S 1}$ solution at $23^{\circ} \mathrm{C}$. The reaction began to get cloudy. After 2.5 h , dry CO_{2} gas was bubbled from a balloon directly into the stirring reaction mixture by needle, with a gas outlet line from the flask attached to an oil bubbler to prevent moisture from entering the reaction. The solution rapidly clarified. The balloon was refilled as necessary, and after 3.5 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and 1 M aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$. Then the pooled organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50$ $\mathrm{mL})$. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) to afford $\mathbf{S} 2$ as a white powder (3.257g, 73\%).
$\mathbf{R}_{f}=0.22$ (silica gel, $2: 1$ hexanes/EtOAc);
IR (film) $v_{\max } 1695,1458,1292,1275,909,757,732,699 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{dd}, J=7.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 12 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.5,140.3,140.2,131.6,129.6,128.9,128.4,128.3,127.6 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$275.1067, found 275.1067.

[1,1':3',1'-terphenyl]-2'-carbonyl chloride (S3):

Following a reported procedure, ${ }^{[3]}$ benzoic acid $\mathbf{S} 2(3.257 \mathrm{~g}, 11.87 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL}, 0.74 \mathrm{M})$ and the resultant mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. Under an atmosphere of N_{2}, oxalyl chloride ($2.8 \mathrm{~mL}, 4.06 \mathrm{~g}, 32.0 \mathrm{mmol}, 2.7$ equiv) was then added by syringe to

[^1]the stirring solution, followed by catalytic anhydrous DMF ($0.05 \mathrm{~mL}, 0.047 \mathrm{~g}, 0.646 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction was stirred under an atmosphere of N_{2} for 90 min , and slowly allowed to warm to $23{ }^{\circ} \mathrm{C}$. The organic solution was then washed sequentially with $5 \% \mathrm{aq}$. $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10$ mL). The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford $\mathbf{S 3}$ as a fluffy, pale yellow powder which was used without further purification ($3.504 \mathrm{~g}, 100 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400, \mathrm{CDCl}_{3}\right) \delta 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 12 \mathrm{H})$.

N-((1R,2R)-2-aminocyclohexyl)-[1,1':3',1'-terphenyl]-2'-carboxamide (6):

(R, R)-1,2-trans-diaminocyclohexane ${ }^{[4]}(2.781 \mathrm{~g}, 24.36 \mathrm{mmol}, 4.0$ equiv) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}, 0.2 \mathrm{M})$ and the resultant mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. Under an atmosphere of $\mathrm{N}_{2}, \mathrm{NEt}_{3}(0.83 \mathrm{~mL}, 0.603 \mathrm{~g}, 5.95 \mathrm{~mol}, 1.0$ equiv $)$ was added by syringe, followed by benzoyl chloride $\mathbf{S 3}(1.752 \mathrm{~g}, 5.98 \mathrm{mmol})$ in minimal anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{~mL})$. Complete transfer of acyl chloride was ensured with an additional aliquot of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{~mL})$. The reaction was stirred under an atmosphere of N_{2} for 12 h , during which time it was slowly allowed to warm to $23{ }^{\circ} \mathrm{C}$. The mixture was then concentrated by rotary evaporation and the crude white residue was purified by flash chromatography (silica gel, 99:1 to 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to afford 6 as a white powder (1.7306g, 78%).
$\mathbf{R}_{\boldsymbol{f}}=0.31$ (silica gel, 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$);
IR (film) $v_{\max } 3251,2932,2855,1623,1549,1328,758,730,699 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 4 \mathrm{H})$, $7.37-7.34(\mathrm{~m}, 4 \mathrm{H}), 5.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{td}, J=10.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ $(\mathrm{d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.01(\mathrm{~m}$, $2 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.63(\mathrm{qd}, J=12.2,3.4 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 168.9,140.4,139.8,136.3,129.0,128.9,128.8,128.2,127.7,56.4,54.9$, 34.2, 31.4, 24.9, 24.8;

MS (ESI-TOF) calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right] 371.2118$, found 371.2121;
$[\alpha]_{D}{ }^{\mathbf{2 5}}=-36.0\left(c=2.0, \mathrm{CHCl}_{3}\right)$.

3. Synthesis and Characterization of Substrates

Scheme S2. Synthesis of substrate 1b.

1-(1-methoxyprop-1-en-2-yl)-4-nitrobenzene (S4):

[^2]Following a general procedure, ${ }^{[5]}$ (methoxymethyl)triphenylphosphonium chloride ($6.231 \mathrm{~g}, 18.18$ mmol, 1.5 equiv) was suspended in anhydrous THF ($144 \mathrm{~mL}, 0.084 \mathrm{M}$) and the resultant mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. Slowly by syringe, $n \mathrm{BuLi}(9.5 \mathrm{~mL}$ of a 1.92 M solution in hexanes, $18.24 \mathrm{mmol}, 1.5$ equiv) was added to the stirring phosphonium chloride solution under an atmosphere of N_{2}. The reaction was allowed to stir under N_{2} at $-78{ }^{\circ} \mathrm{C}$ for 30 min , then at $23{ }^{\circ} \mathrm{C}$ for 30 \min, at which point the solution turned deep red. Then, the mixture was recooled to $-78{ }^{\circ} \mathrm{C}$, and 4'-nitroacetophenone ($2.001 \mathrm{~g}, 12.11 \mathrm{mmol}$) in minimal anhydrous THF ($\sim 5 \mathrm{~mL}$) was added dropwise by syringe. After stirring under N_{2} for 16 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 45 \mathrm{~mL})$. The pooled organic solutions were washed with brine (60 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{3}$, filtered, and concentrated. The crude product was purified by flash chromatography (silica gel, 19:1 to $2: 1$ hexanes/EtOAc) to afford $\mathbf{S 4}$ as an orange oil ($1.850 \mathrm{~g}, 79 \%$) in a 1.35:1 ratio of E / Z-enol ether isomers.
Spectroscopic results agree with previously reported data. ${ }^{[6]}$

2-(4-nitrophenyl)propanal (1b):

Following a general procedure, ${ }^{[5]}$ enol ether $\mathbf{S} 4(0.810 \mathrm{~g}, 4.19 \mathrm{mmol})$ was dissolved in a $4: 1$ mixture of acetone and $\mathrm{H}_{2} \mathrm{O}(4.9 \mathrm{~mL}, 0.86 \mathrm{M})$ and the resultant solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. Conc. $\mathrm{HBr}(48 \%, 0.45 \mathrm{~mL})$ was added to the solution and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 46 h . The acetone was removed by rotary evaporation and the remaining aqueous residue was neutralized with sat. aq. NaHCO_{3}, as determined by pH paper. This aqueous solution was then extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 10 \mathrm{~mL}$). The pooled organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{3}$, filtered, and concentrated. The crude product was purified by flash chromatography (silica gel, 19:1 to $3: 2$ hexanes/EtOAc) to afford $\mathbf{1 b}$ as an orange oil ($0.312 \mathrm{~g}, 42 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[5,6]}$

Scheme S3. Synthesis of substrate 1c.

1-methoxy-4-(1-methoxyprop-1-en-2-yl)benzene (S5):
Reaction of 4'-methoxyacetophenone ($2.007 \mathrm{~g}, 13.36 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride $(6.851 \mathrm{~g}, 19.99 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(10.4 \mathrm{~mL}$ of a 1.92 M solution in hexanes, 19.97 mmol, 1.5 equiv) in anhydrous THF ($159 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 5}$ as a colorless oil after column chromatography (silica gel, 19:1 to $2: 1$ hexanes/EtOAc) in a 1.29:1 ratio of E / Z-enol ether isomers ($2.098 \mathrm{~g}, 88 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[6,7]}$

[^3]
2-(4-methoxyphenyl)propanal (1c):

Reaction of enol ether $\mathbf{S 5}(2.098 \mathrm{~g}, 11.77 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 1.3 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(13.7$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 c}$ as a colorless oil after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes/EtOAc) ($1.731 \mathrm{~g}, 90 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[5-8]}$

Scheme S4. Synthesis of substrate 1d.

1-(1-methoxyprop-1-en-2-yl)-4-methylbenzene (S6):
Reaction of 4'-methylacetophenone (0.70 mL , 0.704 g , 5.24 mmol$)$, (methoxymethyl)triphenylphosphonium chloride $(2.690 \mathrm{~g}, 7.85 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(4.5 \mathrm{~mL}$ of a 1.72 M solution in hexanes, $7.74 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF ($61 \mathrm{~mL}, 0.086 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 6}$ as a colorless oil after column chromatography (silica gel, 19:1 to 2:1 hexanes $/ E t O A c$) in a $1: 1$ ratio of E / Z-enol ether isomers ($0.738 \mathrm{~g}, 87 \%$).
$\mathbf{R}_{f}=0.81$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 2931,1652,1514,1454,1258,1221,1204,1131,1115,1009,812 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.47$ (diast., s, 0.5 H), 6.16 (diast., s, 0.5 H), $3.79-3.77$ (diast., m. 1.5 H), $3.74-3.72$ (diast., $\mathrm{m}, 1.5 \mathrm{H}$), 2.44 $2.41(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.08$ (diast., $\mathrm{m}, 1.5 \mathrm{H}$), $2.02-1.99$ (diast., m, 1.5 H);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.5,144.0,137.6,135.5,135.4,129.0,128.5,127.3,124.8,114.3$, $110.7,59.9,59.7,34.6,34.5,25.2,22.6,21.0,20.9,18.2,14.1,12.5$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right]$163.1117, found 163.1093.

2-(p-tolyl)propanal (1d):

Reaction of enol ether $\mathbf{S 6}(1.650 \mathrm{~g}, 10.17 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 1.1 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(11.9$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 d}$ as a pale yellow oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes/EtOAc) ($1.412 \mathrm{~g}, 94 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[5,7,9]}$

Scheme S5. Synthesis of substrate 1e.

[^4]

1-(1-methoxyprop-1-en-2-yl)-3-methylbenzene (S7):
Reaction of 3'-methylacetophenone (0.60 mL , 0.592 g , 4.41 mmol$)$, (methoxymethyl)triphenylphosphonium chloride ($2.268 \mathrm{~g}, 6.62 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}$ (3.2 mL of a 2.05 M solution in hexanes, $6.56 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF ($52 \mathrm{~mL}, 0.085 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 7}$ as a colorless oil after column chromatography (silica gel, 19:1 to 2:1 hexanes $/ E t O A c$) in a $1.5: 1$ ratio of E / Z-enol ether isomers ($0.682 \mathrm{~g}, 95 \%$).
$\mathbf{R}_{f}=0.75$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 2931,1652,1603,1489,1222,1134,782,699 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48$ (major diast., s, 0.6 H), 7.40 (minor diast., dd, $J=1.8,3.3 \mathrm{~Hz}, 0.4 \mathrm{H}$), $7.31-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (major diast., td, $J=2.9,1.4 \mathrm{~Hz}$, 0.6 H), $6.18-6.14$ (minor diast., $\mathrm{m}, 0.4 \mathrm{H}$), $3.78-3.75$ (major diast., m. 1.8 H), $3.73-3.70$ (minor diast., $\mathrm{m}, 1.2 \mathrm{H}$), $2.44-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.06$ (major diast., $\mathrm{dt}, J=4.5,1.3 \mathrm{~Hz}, 1.8 \mathrm{H}$), 1.98 (minor diast., dt, $J=4.2$, $1.2 \mathrm{~Hz}, 1.2 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.0,144.4,140.5,138.3,137.8,137.2,128.2,128.1,127.8,126.8$, $126.6,125.7,124.6,122.1,114.4,110.9,60.0,59.8,21.6,21.5,18.4,12.6$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right]$163.1117, found 163.1085.

2-(m-tolyl)propanal (1e):

Reaction of enol ether $\mathbf{S} 7(1.499 \mathrm{~g}, 9.24 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 0.99 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(10.7$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 e}$ as a pale yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) (1.206 g, 88\%).
Spectroscopic results agree with previously reported data. ${ }^{[9]}$

Scheme S6. Synthesis of substrate 1f.

1-(1-methoxyprop-1-en-2-yl)-2-methylbenzene (S8):
Reaction of 2'-methylacetophenone ($1.7 \quad \mathrm{~mL}, \quad 1.744 \quad \mathrm{~g}, \quad 13.00 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride ($6.679 \mathrm{~g}, 19.48 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(10.0 \mathrm{~mL}$ of a 1.92 M solution in hexanes, $19.20 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF ($155 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 8}$ as a colorless oil after column chromatography (silica gel, 19:1 to 2:1 hexanes $/ E t O A c$) in a $4.5: 1$ ratio of E / Z-enol ether isomers ($1.661 \mathrm{~g}, 79 \%$).
$\mathbf{R}_{\boldsymbol{f}}=0.80$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);

IR (film) $v_{\max } 2930,1664,1486,1455,1220,1130,1069,758,727 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76$ (minor diast., $\mathrm{d}, J=2.3 \mathrm{~Hz}, 0.18 \mathrm{H}$), $7.44-7.38$ (major diast., m, 0.82 H), $7.28-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.10-6.05$ (minor diast., m. 0.18 H), $6.04-5.98$ (major diast., m, 0.82 H), $3.76-3.71$ (major diast., $\mathrm{m}, 2.46 \mathrm{H}$), $3.63-3.58$ (minor diast., $\mathrm{m}, 0.54 \mathrm{H}$), $2.67-2.60$ (minor diast., m, 0.54 H), $2.42-2.33$ (major diast., m, 2.46H), $2.03-1.97$ (major diast., m, 2.46H), $1.95-1.89$ (minor diast., m, 0.54 H$)$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.2,142.3,140.9,136.3,133.7,133.5,131.9,131.4,130.0,129.4$, $128.7,126.6,125.4,115.0,113.1,59.4,59.3,29.4,21.5,20.0,19.5,14.9$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$185.0937, found 185.0535.

2-(o-tolyl)propanal (1f):

Reaction of enol ether $\mathbf{S 8}(1.661 \mathrm{~g}, 10.24 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 1.1 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(11.9$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 f}$ as a pale yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) ($1.365 \mathrm{~g}, 90 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[5,8]}$

Scheme S7. Synthesis of substrate $\mathbf{1 g}$.

4-(1-methoxyprop-1-en-2-yl)-1,1'-biphenyl (S9):

Reaction of 4-acetylbiphenyl ($2.299 \mathrm{~g}, 11.71 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride $(6.030 \mathrm{~g}, 17.59 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(9.0 \mathrm{~mL}$ of a 1.92 M solution in hexanes, $17.28 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF ($140 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S} \mathbf{9}$ as a white powder after column chromatography (silica gel, $19: 1$ to $2: 1$ hexanes/EtOAc) in a $1.2: 1$ ratio of E / Z-enol ether isomers ($1.910 \mathrm{~g}, 73 \%$).
$\mathbf{R}_{f}=0.73$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 2931,1648,1486,1223,1133,1078,1007,907,848,831,764,728,696 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54-$ $7.45(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 6.58$ (major diast., d, $J=1.2 \mathrm{~Hz}, 0.55 \mathrm{H}), 6.23$ (minor diast., d, $J=1.6$ $\mathrm{Hz}, 0.45 \mathrm{H}$), 3.80 (major diast., s, 1.65 H) 3.77 (minor diast., s, 1.35 H), 2.13 (major diast., $\mathrm{d}, J=1.2 \mathrm{~Hz}$, 1.65 H), 2.04 (minor diast., d, $J=1.6 \mathrm{~Hz}, 1.35 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3,144.9,141.1,140.8,139.6,138.6,137.4,128.7,128.6,127.8$, $127.0,126.9,126.8,126.5,125.2,113.9,110.2,60.1,59.9,31.6,22.6,18.2,14.1,12.4$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right] 225.1274$, found 225.1325 .

2-([1,1'-biphenyl]-4-yl)propanal (1g):

Reaction of enol ether $\mathbf{S 9}(1.910 \mathrm{~g}, 8.52 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 0.92 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(9.9$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 g}$ as a white powder after column chromatography (silica
gel, 19:1 to $3: 2$ hexanes/EtOAc) ($1.405 \mathrm{~g}, 78 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[9]}$

Scheme S8. Synthesis of substrate $\mathbf{1 h}$.

1-isobutyl-4-(1-methoxyprop-1-en-2-yl)benzene (S10):

Reaction of 4^{\prime}-isobutylacetophenone ($2.2 \mathrm{~mL}, 2.094 \mathrm{~g}, 11.88 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride ($6.112 \mathrm{~g}, 17.83 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(10.0 \mathrm{~mL}$ of a 1.78 M solution in hexanes, $17.80 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF ($141 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 1 0}$ as a colorless oil after column chromatography (silica gel, 19:1 to 2:1 hexanes/EtOAc) in a $2: 1$ ratio of E / Z-enol ether isomers ($1.874 \mathrm{~g}, 77 \%$).
$\mathbf{R}_{f}=0.60,0.72$ (both diast., silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\text {max }} 2952,1652,1513,1465,1223,1133,1074,838,798 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55$ (minor diast., $\mathrm{d}, J=8.2 \mathrm{~Hz}, 0.67 \mathrm{H}$), 7.24 (major diast., $\mathrm{d}, J=8.2 \mathrm{~Hz}$, 1.33 H), 7.13 (minor diast., $J=8.2 \mathrm{~Hz}, 0.67 \mathrm{H}$), 7.09 (major diast., $\mathrm{d}, J=7.8 \mathrm{~Hz}, 1.33 \mathrm{H}$), 6.42 (major diast., $\mathrm{s}, 0.67 \mathrm{H}$), 6.11 (minor disat., $\mathrm{s}, 0.33 \mathrm{H}$), 3.73 (major diast., $\mathrm{s}, 2 \mathrm{H}$), 3.69 (minor diast., $\mathrm{s}, 1 \mathrm{H}$), 2.47 $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.01$ (major diast., $\mathrm{s}, 2 \mathrm{H}), 1.93$ (minor diast., $\mathrm{s}, 1 \mathrm{H}), 1.87(\mathrm{dt}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.6,144.2,139.4,139.3,137.9,135.6,129.1,128.7,127.1,124.6$, $114.3,110.7,60.0,59.8,45.2,45.0,30.2,22.4,18.3,15.5$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right]$205.1587, found 205.1607.

2-(4-isobutylphenyl)propanal (1h):

Reaction of enol ether $\mathbf{S 1 0}(1.874 \mathrm{~g}, 9.17 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 1.0 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(10.6$ $\mathrm{mL}, 0.86 \mathrm{M})$ according to $\mathbf{1 b}$ above afforded $\mathbf{1 h}$ as a pale yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) ($1.427 \mathrm{~g}, 82 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[10]}$

Scheme S9. Synthesis of substrate 1i.

[^5]

2-(1-methoxyprop-1-en-2-yl)naphthalene (S11):
Reaction of 2-acetonaphthone ($2.006 \mathrm{~g}, 11.78 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride $(6.041 \mathrm{~g}, 17.62 \mathrm{mmol}, 1.5$ equiv $)$, and $n \operatorname{BuLi}(11.0 \mathrm{~mL}$ of a 1.60 M solution in hexanes, $17.60 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF ($140 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 1 1}$ as a white solid after column chromatography (silica gel, $19: 1$ to $2: 1$ hexanes/EtOAc) in a $1.3: 1$ ratio of E / Z-enol ether isomers ($1.860 \mathrm{~g}, 80 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[6]}$

2-(naphthalen-2-yl)propanal (1i):

Reaction of enol ether $\mathbf{S 1 1}(1.860 \mathrm{~g}, 9.38 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 1.0 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(10.9$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 i}$ as a white powder after column chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) ($1.106 \mathrm{~g}, 64 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[5,6,8]}$

Scheme S10. Synthesis of substrate $\mathbf{1 j}$.

1-bromo-4-(1-methoxyprop-1-en-2-yl)benzene (S12):

Reaction of 4'-bromoacetophenone ($2.002 \mathrm{~g}, 10.06 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride ($5.173 \mathrm{~g}, 15.09 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(7.7 \mathrm{~mL}$ of a 1.96 M solution in hexanes, 15.09 mmol, 1.5 equiv) in anhydrous THF ($120 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S} 4$ above afforded $\mathbf{S 1 2}$ as a colorless oil after column chromatography (silica gel, 19:1 to $2: 1$ hexanes/EtOAc) in a 1.3:1 ratio of E / Z-enol ether isomers ($1.732 \mathrm{~g}, 76 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[6]}$

2-(4-bromophenyl)propanal (1j):

Reaction of enol ether $\mathbf{S 1 2}(1.732 \mathrm{~g}, 7.63 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 0.83 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(8.9$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1} \mathbf{j}$ as a pale yellow oil after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes/EtOAc) ($1.295 \mathrm{~g}, 80 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[5-9]}$

Scheme S11. Synthesis of substrate 1k.

1-bromo-3-(1-methoxyprop-1-en-2-yl)benzene (S13):
Reaction of 3'-bromoacetophenone (1.5 mL, 2.258 g, 11.34 mmol$)$, (methoxymethyl)triphenylphosphonium chloride ($5.831 \mathrm{~g}, 17.01 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(8.7 \mathrm{~mL}$ of a 1.96 M solution in hexanes, $17.05 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF ($135 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 1 3}$ as a colorless oil after column chromatography (silica gel, 19:1 to 2:1 hexanes/EtOAc) in a $1.5: 1$ ratio of E / Z-enol ether isomers ($1.997 \mathrm{~g}, 78 \%$).
$\mathbf{R}_{\boldsymbol{f}}=0.72$ (silica gel, $4: 1$ hexanes $/ E \mathrm{t}_{2} \mathrm{O}$);
IR (film) $v_{\max } 2931,1651,1590,1555,1476,1261,1224,1136,1068,993,779,689 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80$ (minor diast., dt, $J=3.7,2 \mathrm{~Hz}, 0.4 \mathrm{H}$), 7.55 (minor diast., ddd, $J=$ 4.7, 3.1, $1.2 \mathrm{~Hz}, 0.4 \mathrm{H}$), $7.49-7.44$ (major diast., $\mathrm{m}, 0.6 \mathrm{H}$), $7.37-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22$ (major diast., $\mathrm{m}, 0.6 \mathrm{H}$), $7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.45$ (major diast., $\mathrm{d}, ~ J=1.6 \mathrm{~Hz}, 0.6 \mathrm{H}$), 6.17 (minor diast., d, $J=1.2 \mathrm{~Hz}$, 0.4 H), $3.77-3.74$ (major diast., $\mathrm{m}, 1.8 \mathrm{H}$), $3.73-3.70$ (minor diast., m, 1.2H), 1.98 (major diast., dd, $J=$ $3.1,1.6 \mathrm{~Hz}, 1.8 \mathrm{H}$), 1.91 (minor diast., d, $J=1.2 \mathrm{~Hz}, 1.2 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.0,145.7,142.9,140.4,130.4,129.8,129.3,128.8,128.6,127.8$, $125.9,123.4,122.6,122.2,113.2,109.3,60.3,60.0,18.1,12.4$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}\left[\mathrm{M}+\mathrm{H}^{+}\right] 227.0066$ and 229.0046, found 227.0064 and 229.0033.

2-(3-bromophenyl)propanal (1k):

Reaction of enol ether $\mathbf{S 1 3}(1.997 \mathrm{~g}, 8.79 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 0.96 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}$ $(10.2 \mathrm{~mL}, 0.86 \mathrm{M})$ according to $\mathbf{1 b}$ above afforded $\mathbf{1 k}$ as a yellow oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes/EtOAc) (1.252 g, 67\%).
Spectroscopic results agree with previously reported data. ${ }^{[8]}$

Scheme S12. Synthesis of substrate 11.

1-chloro-4-(1-methoxyprop-1-en-2-yl)benzene (S14):

Reaction of 4^{\prime} 'chloroacetophenone (1.6 mL, $\left.1.907 \quad \mathrm{~g}, \quad 12.34 \mathrm{mmol}\right)$, (methoxymethyl)triphenylphosphonium chloride ($6.344 \mathrm{~g}, 18.51 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(10.4 \mathrm{~mL}$ of a 1.78 M solution in hexanes, $18.51 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF ($147 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 1 4}$ as a colorless oil after column chromatography (silica gel, 19:1 to $2: 1$ hexanes/EtOAc) in a $1.1: 1$ ratio of E / Z-enol ether isomers ($1.580 \mathrm{~g}, 70 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[6]}$

2-(4-chlorophenyl)propanal (11):

Reaction of enol ether $\mathbf{S 1 4}(1.580 \mathrm{~g}, 8.65 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 0.97 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}$ $(10.0 \mathrm{~mL}, 0.87 \mathrm{M})$ according to $\mathbf{1 b}$ above afforded 11 as a yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) (1.072 g, 74\%).
Spectroscopic results agree with previously reported data. ${ }^{[6,8,9]}$

Scheme S13. Synthesis of substrate 1m.

2-(1-methoxyprop-1-en-2-yl)thiophene (S15):

Reaction of 2-acetylthiophene ($0.50 \mathrm{~mL}, 0.584 \mathrm{~g}, 4.63 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride ($2.381 \mathrm{~g}, 6.95 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(3.0 \mathrm{~mL}$ of a 2.30 M solution in hexanes, 6.90 mmol, 1.5 equiv) in anhydrous THF ($55 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S 4}$ above afforded $\mathbf{S 1 5}$ as a colorless oil after column chromatography (silica gel, 19:1 to $2: 1$ hexanes/EtOAc) in a 1.1:1 ratio of E / Z-enol ether isomers ($0.5803 \mathrm{~g}, 81 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[6,7]}$

2-(thiophen-2-yl)propanal (1m):

Reaction of enol ether $\mathbf{S 1 5}(1.126 \mathrm{~g}, 7.30 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 0.82 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(8.5$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 m}$ as a volatile, pale yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) ($0.215 \mathrm{~g}, 21 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[6,7]}$

Scheme S14. Synthesis of substrate 1n.

(1-methoxybut-1-en-2-yl)benzene (S16):

Reaction of propriophenone ($1.6 \mathrm{~mL}, 1.614 \mathrm{~g}, 12.03 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride $(6.189 \mathrm{~g}, 18.05 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(10.1 \mathrm{~mL}$ of a 1.78 M solution in hexanes, 17.98 mmol, 1.5 equiv) in anhydrous THF ($143 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S} 4$ above afforded $\mathbf{S 1 6}$ as a pale yellow oil after column chromatography (silica gel, 19:1 to $2: 1$ hexanes/EtOAc) in a 1.3:1 ratio of E / Z-enol ether isomers ($1.480 \mathrm{~g}, 76 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[6]}$
2-phenylbutanal (1n):

Reaction of enol ether $\mathbf{S 1 6}(1.480 \mathrm{~g}, 9.12 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 1.0 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(10.6$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 n}$ as a pale yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) ($1.030 \mathrm{~g}, 76 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[6-8]}$

Scheme S15. Synthesis of substrate $\mathbf{1 p}$.

1-(1-methoxyprop-1-en-2-yl)naphthalene (S17):

Reaction of 1-acetonaphthone ($1.8 \mathrm{~mL}, 2.016 \mathrm{~g}, 11.84 \mathrm{mmol}$), (methoxymethyl)triphenylphosphonium chloride ($6.091 \mathrm{~g}, 17.77 \mathrm{mmol}, 1.5$ equiv), and $n \mathrm{BuLi}(11.1 \mathrm{~mL}$ of a 1.60 M solution in hexanes, 17.76 mmol, 1.5 equiv) in anhydrous THF ($141 \mathrm{~mL}, 0.084 \mathrm{M}$) according to $\mathbf{S} 4$ above afforded $\mathbf{S 1 7}$ as a colorless oil after column chromatography (silica gel, 19:1 to $2: 1$ hexanes/EtOAc) in a $1: 1$ ratio of E / Z-enol ether isomers ($1.812 \mathrm{~g}, 77 \%$).
$\mathbf{R}_{f}=0.63$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\text {max }} 2931,1666,1220,1126,801,777 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16-8.10$ (diast., $\mathrm{m}, 0.5 \mathrm{H}$), $8.05-7.98$ (diast., m, 0.5 H), $7.95-7.88$ (m, $1 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.32-6.27$ (diast., $\mathrm{m}, 0.5 \mathrm{H}), 6.21-$ 6.17 (diast., $\mathrm{m}, 0.5 \mathrm{H}, 3.79-3.76$ (diast., m, 1.5 H), $3.58-3.55$ (diast., m, 1.5H), $2.20-2.15$ (diast., m, 1.5 H), $2.09-2.03$ (diast., m, 1.5H);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.1,143.4,139.5,138.0,133.8,133.6,132.4,130.9,128.7,128.5$, $128.4,128.3,127.03,126.96,126.3,125.93,125.86,125.7,125.62,125.55,125.4,113.9,112.3,59.7$, 59.6, 20.4, 16.1;

MS (ESI-TOF) calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right]$199.1117, found 199.1161 .

2-(naphthalen-1-yl)propanal (1p):

Reaction of enol ether $\mathbf{S} 17(1.812 \mathrm{~g}, 9.14 \mathrm{mmol})$ and conc. $\mathrm{HBr}(48 \%, 1.0 \mathrm{~mL})$ in $4: 1$ acetone $/ \mathrm{H}_{2} \mathrm{O}(10.6$ $\mathrm{mL}, 0.86 \mathrm{M}$) according to $\mathbf{1 b}$ above afforded $\mathbf{1 p}$ as a colorless oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes/EtOAc) ($1.409 \mathrm{~g}, 84 \%$).
Spectroscopic results agree with previously reported data. ${ }^{[7]}$

4. Procedures for $\boldsymbol{\alpha}$-Functionalizations and Characterization of Products

General Procedure for Primary Amine-Catalyzed α-Hydroxylations (Optimization Studies, Table

 1):A 1.0-dram vial was charged with primary amine catalyst ($\mathbf{3}-\mathbf{6}, 20 \mathrm{~mol} \%$ as indicated). No precautions were taken to ensure dryness of vial or to exclude air or moisture. THF ($1.0 \mathrm{~mL}, 0.15 \mathrm{M}$ in aldehyde substrate as indicated) was added to the catalyst. Next, dodecane ($3.4 \mu \mathrm{~L}, 2.55 \mathrm{mg}, 0.015 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) was added by syringe as an internal standard for GC conversion analysis. Then, aldehyde 1 a (20 $\mu \mathrm{L}, 20.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added by syringe, followed by the indicated additives (e.g. TFA, $2.4 \mu \mathrm{~L}$, $3.5 \mathrm{mg}, 0.031 \mathrm{mmol}, 20 \mathrm{~mol} \% ; \mathrm{NaHCO}_{3}, 18.8 \mathrm{mg}, 0.224 \mathrm{mmol}, 1.5$ equiv). Last, oxaziridine 2 was added as a solid ($46.3 \mathrm{mg}, 0.179 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ and conversion was monitored by GC of small aliquots every 30 min for the first 4 h , then every 2 h for the next 6 h , then every 16 h .

General Procedure for Reduction of α-Hydroxyaldehydes to Diols (Optimization Studies, Table 1):

Scheme S16. Reduction of 7a to diol 7ad.

α-Hydroxyaldehydes 7a were directly reduced to diols 7ad for HPLC analysis of $e e$. The crude reaction mixture was transferred to a $20-\mathrm{mL}$ vial with $\mathrm{MeOH}\left(2 \mathrm{~mL}, 0.075 \mathrm{M}\right.$ in aldehyde), then $\mathrm{NaBH}_{4}(56 \mathrm{mg}$, 1.49 mmol , 10 equiv) was added. The reaction mixture was stirred, open to air, for 90 min at $23{ }^{\circ} \mathrm{C}$, then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and $\mathrm{EtOAc}(4 \mathrm{~mL})$. After an additional 30 min of stirring open to air at $23^{\circ} \mathrm{C}$, the layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 6 \mathrm{~mL}$). The pooled organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. Enantiomeric excess was determined by chiral HPLC after chromatographic purification on silica gel.

General Procedure for Primary Amine-Catalyzed α-Fluorinations (Optimization Studies, Table 2):

A 1.0-dram vial was charged with primary amine catalyst (3-6, $20 \mathrm{~mol} \%$ as indicated). No precautions were taken to ensure dryness of vial or to exclude air or moisture. THF ($1.0 \mathrm{~mL}, 0.15 \mathrm{M}$ in aldehyde substrate as indicated) was added to the catalyst. Next, dodecane ($3.4 \mu \mathrm{~L}, 2.55 \mathrm{mg}, 0.015 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) was added by syringe as an internal standard for GC conversion analysis. Then, aldehyde $\mathbf{1 a}$ (20 $\mu \mathrm{L}, 20.0 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added by syringe, followed by the indicated additives (e.g. TFA, $2.4 \mu \mathrm{~L}$, $3.5 \mathrm{mg}, 0.031 \mathrm{mmol}, 20 \mathrm{~mol} \%$; $\mathrm{NaHCO}_{3}, 18.8 \mathrm{mg}, 0.224 \mathrm{mmol}, 1.5$ equiv). Last, NFSI 8 was added as a solid ($56.5 \mathrm{mg}, 0.179 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ and conversion was monitored by GC of small aliquots every 30 min for the first 4 h , then every 2 h for the next 6 h , then every 16 h .

General Procedure for Reduction of α-Fluoroaldehydes to Fluorohydrins (Optimization Studies,

Table 2):

α-Fluoroaldehydes 9 a were directly reduced to fluorohydrins $\mathbf{1 0 a}$ for HPLC analysis of $e e$. The crude reaction mixture was transferred to a $20-\mathrm{mL}$ vial with $\mathrm{MeOH}\left(2 \mathrm{~mL}, 0.075 \mathrm{M}\right.$ in aldehyde), then NaBH_{4} ($56 \mathrm{mg}, 1.49 \mathrm{mmol}, 10$ equiv) was added. The reaction mixture was stirred, open to air, for 90 min at 23 ${ }^{\circ} \mathrm{C}$, then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and $\mathrm{EtOAc}(4 \mathrm{~mL})$. After an additional 30 min of stirring open to air at $23^{\circ} \mathrm{C}$, the layers were separated and the aqueous phase was extracted with EtOAc (3×6 mL). The pooled organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. Enantiomeric excess was determined by chiral HPLC after chromatographic purification on silica gel (19:1 to 3:2 hexanes/EtOAc).

General Procedure for Primary Amine-Catalyzed α-Hydroxylations (Substrate Scope, Table 3):

A 2.0-dram vial was charged with aldehyde substrate $\mathbf{1 a - 0}(1.00 \mathrm{mmol}$ as indicated). No precautions were taken to ensure dryness of vial or to exclude air or moisture. The aldehyde was then dissolved in THF (0.3 M in aldehyde as indicated). Solid catalyst $6(20 \mathrm{~mol} \%$ as indicated) was added, followed by TFA ($20 \mathrm{~mol} \%$ as indicated) by syringe. Last, dry reagents NaHCO_{3} (1.0 equiv as indicated) and oxaziridine 2 (1.0 equiv as indicated) were added to the vial sequentially. The vial was sealed and the mixture was allowed to stir for the designated amount of time (4 or 20 h) at $23^{\circ} \mathrm{C}$. The reaction starts out heterogeneous, but eventually becomes homogeneous. The mixture was concentrated by rotary evaporation, and the resultant residue was purified directly by silica gel flash chromatography. Racemic standards were synthesized as described, with racemic catalyst (\pm)-6.

General Procedure for Reduction of $\boldsymbol{\alpha}$-Hydroxyaldehydes to Diols (Substrate Scope, Table 3):
A $20-\mathrm{mL}$ vial was charged with α-hydroxyaldehyde $7 \mathbf{a}-\mathbf{o}(\sim 0.1 \mathrm{mmol}$ as indicated), then dissolved in $\mathrm{MeOH}\left(0.075 \mathrm{M}\right.$ as indicated). Solid NaBH_{4} (10 equiv as indicated) was added and the reaction mixture was stirred, open to air, for 90 min at $23^{\circ} \mathrm{C}$, then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and $\mathrm{EtOAc}(4$ mL). After an additional 30 min of stirring open to air at $23^{\circ} \mathrm{C}$, the layers were separated and the aqueous phase was extracted with $\mathrm{EtOAc}(3 \times 6 \mathrm{~mL})$. The pooled organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. The crude product was purified by silica gel flash chromatography.

(R)-2-hydroxy-2-phenylpropanal (7a):

According to the general procedure, 1a $(134 \mu \mathrm{~L}, 134 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00$ $\mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution ($3.3 \mathrm{~mL}, 0.3 \mathrm{M}$) for 4 h to afford $7 \mathrm{a}(142 \mathrm{mg}, 95 \%)$ as a colorless oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{\boldsymbol{f}}=0.59$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3448$ (br), 1732, 1492, 1448, 1336, 1071, 859, 758, $699 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{td}, J=7.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$
$-7.33(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.8,139.2,128.9,128.2,125.8,79.1,23.6 ;$

MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$ 149.0597, found 149.0561;
$[\alpha]_{D}{ }^{23}=-257.6^{\circ}\left(c=1.3, \mathrm{CHCl}_{3}\right) .{ }^{[11]}$

(R)-2-phenylpropane-1,2-diol (7ad):

According to the general procedure, $7 \mathbf{a}(22 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(55 \mathrm{mg}, 1.47 \mathrm{mmol}$, 10 equiv) were allowed to react in a MeOH solution $(2.0 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford
7ad ($14 \mathrm{mg}, 66 \%$) as a colorless oil after column chromatography (silica gel, 9:1 to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 90% ee by chiral HPLC analysis (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{\boldsymbol{f}}=0.21$ (silica gel, 2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3385$ (br), 1446, 1044, 1027, 763, $700 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dt}, J=7.3,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.9,128.4,127.2,125.1,74.8,71.7,26.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$175.0730, found 175.0686;
$[\alpha]_{D}{ }^{24}=-8.1\left(c=1.1, \mathrm{CHCl}_{3}\right) .{ }^{[12]}$

(R)-2-hydroxy-2-(4-nitrophenyl)propanal (7b):

According to the general procedure, $\mathbf{1 b}(179 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M})$ for 4 h to afford $\mathbf{7 b}(114 \mathrm{mg}, 58 \%)$ as a yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.24$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3485$ (br), 1733, 1606, 1521, 1348, 855, $702 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}$, 1H), 1.76 (s, 3H);
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.5,146.4,126.8,124.0,79.2,24.3$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$ 178.0499, found 178.0512;
$[\alpha]_{D}{ }^{23}=-146.0\left(c=0.8, \mathrm{CHCl}_{3}\right)$.

(R)-2-(4-nitrophenyl)propane-1,2-diol (7bd):

According to the general procedure, $7 \mathbf{b}(12.8 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(25 \mathrm{mg}, 0.66$ mmol, 10 equiv) were allowed to react in a MeOH solution $(0.87 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford 7bd ($8.3 \mathrm{mg}, 64 \%$) as a yellow oil after column chromatography (silica gel, 9:1 to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 84% ee by chiral HPLC analysis (ChiralPak AS-H, $10 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).

[^6]$\mathbf{R}_{f}=0.07$ (silica gel, 2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\text {max }} 3373$ (br), 1604, 1514, 1347, 1042, 854, $701 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=11.0,4.6$
$\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,126.2,123.6,74.8,70.6,26.1$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$220.0580, found 220.0593;
$[\alpha]_{D}{ }^{24}=-14.6\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

(R)-2-hydroxy-2-(4-methoxyphenyl)propanal (7c):

According to the general procedure, $\mathbf{1 c}(164 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{2}(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}$ ($74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M})$ for 4 h to afford $7 \mathrm{c}(140 \mathrm{mg}, 78 \%)$ as a white solid after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.22$ (silica gel, 4:1 hexanes/Et 2);
IR (film) $v_{\max } 3444$ (br), 1729, 1609, 1511, 1302, 1252, 1030, 864, $832 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=9.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, 3 H), 3.81 ($\mathrm{s}, 1 \mathrm{H}$), 1.96 ($\mathrm{s}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.6,159.5,131.0,127.2,114.3,78.7,55.3,23.3 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$ 163.0754, found 163.0749;
$[\alpha]_{D}{ }^{24}=-62.8\left(c=0.9, \mathrm{CHCl}_{3}\right)$.

(R)-2-(4-methoxyphenyl)propane-1,2-diol (7cd):

According to the general procedure, $7 \mathrm{c}(10.8 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(23 \mathrm{mg}, 0.60$ $\mathrm{mmol}, 10$ equiv) were allowed to react in a MeOH solution $(0.80 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $7 \mathbf{c d}(2.8 \mathrm{mg}, 26 \%)$ as a white solid after column chromatography (silica gel, 9:1 to 2:3 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 92% ee by chiral HPLC analysis (ChiralCel OD-H, $5 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 224 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.14$ (silica gel, 2:1 hexanes/Et 2);
IR (film) $v_{\text {max }} 3388$ (br), 2929, 1612, 1513, 1463, 1301, 1248, 1180, 1032, $869 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}$, $J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=11.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}$, 3H);
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.0,126.3,113.8,74.5,71.2,55.3,26.1$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 205.0835$, found 205.0835;
$[\alpha]_{D}{ }^{23}=-4.0\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

(R)-2-hydroxy-2-(p-tolyl)propanal (7d):

According to the general procedure, $\mathbf{1 d}(148 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3
$\mathrm{mL}, 0.3 \mathrm{M}$) for 4 h to afford $7 \mathrm{~d}(113 \mathrm{mg}, 69 \%)$ as a white solid after column chromatography (silica gel, 19:1 to 3:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.63$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\text {max }} 3442$ (br), 2929, 1730, 1511, 1350, 1093, 863, 816, $537 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,138.0,136.1,129.6,125.7,78.9,23.4,21.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$187.0730, found 187.0726;
$[\alpha]_{D}{ }^{24}=-150.5\left(c=1.7, \mathrm{CHCl}_{3}\right)$.

(R)-2-(p-tolyl)propane-1,2-diol (7dd):

According to the general procedure, $7 \mathbf{d}(10.6 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(24 \mathrm{mg}, 0.65$ mmol, 10 equiv) were allowed to react in a MeOH solution ($0.86 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 min to afford $7 \mathbf{d d}(9.1 \mathrm{mg}, 85 \%)$ as a white solid after column chromatography (silica gel, $9: 1$ to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 90% ee by chiral HPLC analysis (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 212 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.23$ (silica gel, 2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\text {max }} 3377$ (br), 2925, 1514, 1041, 866, $527 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.9,136.9,129.2,125.0,74.7,71.2,26.0,21.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$189.0886, found 189.0883;
$[\alpha]_{D}{ }^{24}=-8.1\left(c=0.4, \mathrm{CHCl}_{3}\right) .{ }^{[13]}$

(R)-2-hydroxy-2-(m-tolyl)propanal (7e):

According to the general procedure, $\mathbf{1 e}(148 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), 6 ($74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M}$) for 4 h to afford $7 \mathrm{e}(157 \mathrm{mg}, 95 \%)$ as a pale yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{\boldsymbol{f}}=0.72$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\text {max }} 3451$ (br), 2980, 2928, 1732, 1077, 830, 787, $703 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.8,139.0,138.7,128.9,128.8,126.4,122.8,79.0,23.5,21.6$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$187.0730, found 187.0730;
$[\alpha]_{D}{ }^{24}=-53.5\left(c=0.3, \mathrm{CHCl}_{3}\right)$.

According to the general procedure, $7 \mathbf{7}(11.4 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(26 \mathrm{mg}, 0.69 \mathrm{mmol}, 10$ equiv $)$ were allowed to react in a MeOH solution $(0.93 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $7 \mathrm{ed}(5.8 \mathrm{mg}, 50 \%)$ as a pale yellow oil after column chromatography (silica gel, $9: 1$ to $2: 3$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 89% ee by chiral HPLC analysis (ChiralPak AD-H, $5 \% \mathrm{iPrOH}$ in hexanes, 1 $\mathrm{mL} / \mathrm{min}, 220 \mathrm{~nm}$).
$\mathbf{R}_{\boldsymbol{f}}=0.19$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3383$ (br), 2976, 2928, 1459, 1375, 1167, 1042, 786, $705 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.1,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{dd}, J=8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}$, 3 H);
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 144.9,138.1,128.4,128.0,125.8,122.1,74.8,71.2,26.1,21.6 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$189.0886, found 189.0885;
$[\alpha]_{D}{ }^{24}=-7.1\left(c=0.3, \mathrm{CHCl}_{3}\right)$.

(R)-2-hydroxy-2-(o-tolyl)propanal (7f):

According to the general procedure, $\mathbf{1 f}(148 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), 6 ($74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and NaHCO_{3} ($84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M}$) for 20 h to afford $7 \mathrm{f}(132 \mathrm{mg}, 80 \%)$ as a yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{\boldsymbol{f}}=0.71$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3440$ (br), 2979, 1731, 1487, 1459, 1092, 1050, 805, 758, $726 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}$, $1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.4,137.8,136.0,132.4,128.9,126.9,126.2,79.9,23.2,21.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$187.0730, found 187.0706;
$[\alpha]_{D}{ }^{23}=-100.5\left(c=0.4, \mathrm{CHCl}_{3}\right)$.

(R)-2-(o-tolyl)propane-1,2-diol (7fd):

According to the general procedure, $7 \mathbf{f}(11.3 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(26 \mathrm{mg}, 0.69$ mmol, 10 equiv) were allowed to react in a MeOH solution ($0.92 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 min to afford $\mathbf{7 f d}(8.9 \mathrm{mg}, 78 \%)$ as a yellow oil after column chromatography (silica gel, 9:1 to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 55% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.21$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\text {max }} 3380$ (br), 2974, 2934, 1459, 1165, 1035, 759, $727 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{dd}, J=11.1,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{dd}, J=11.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dd}, J=7.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 141.9,136.0,132.9,127.5,126.2,125.9,75.9,69.5,25.4,22.3$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$189.0886, found 189.0880;
$[\alpha]_{D}{ }^{24}=-0.3\left(c=0.6, \mathrm{CHCl}_{3}\right)$.

(R)-2-([1,1'-biphenyl]-4-yl)-2-hydroxypropanal (7g):

According to the general procedure, $\mathbf{1 g}(210 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M})$ for 4 h to afford $7 \mathrm{~g}(222 \mathrm{mg}, 98 \%)$ as a white solid after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.54$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3493$ (br), 2917, 2849, 1723, 1486, 1318, 1094, 865, 767, 736, $695 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.6,141.2,140.4,138.1,128.8,127.61,127.57,127.1,126.3,79.0$, 23.6;

MS (ESI-TOF) calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$249.0886, found 249.0871;
$[\alpha]_{D}{ }^{24}=-223.3\left(c=0.2, \mathrm{CHCl}_{3}\right)$.

(R)-2-([1,1'-biphenyl]-4-yl)propane-1,2-diol (7gd):

According to the general procedure, $7 \mathbf{g}(11.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(20 \mathrm{mg}, 0.52$ mmol, 10 equiv) were allowed to react in a MeOH solution ($0.69 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 min to afford $7 \mathbf{g d}(6.1 \mathrm{mg}, 52 \%)$ as a white solid after column chromatography (silica gel, $9: 1$ to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 90% ee by chiral HPLC analysis (ChiralPak AS-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{\boldsymbol{f}}=0.19$ (silica gel, 2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3383$ (br), 1487, 1401, 1021, 839, 766, 733, $697 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{td}, J=6.6,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=11.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H})$, 1.81 (dd, $J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.0,140.7,140.2,128.8,127.3,127.2,127.1,125.6,74.8,74.1,26.1$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$251.1043, found 251.1026;
$[\alpha]_{D}{ }^{\mathbf{2 4}}=-8.2\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

(R)-2-hydroxy-2-(4-isobutylphenyl)propanal (7h):

According to the general procedure, $\mathbf{1 h}(190 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M})$ for 4 h to afford $7 \mathrm{~h}(202 \mathrm{mg}, 98 \%)$ as a colorless oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.58$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $\nu_{\max } 3485$ (br), 2955, 2926, 2869, 1733, 1536, 1466, 1383, 1170, 1097, 865, 796, 740, $672 \mathrm{~cm}^{-}$ ${ }^{1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}$,
$1 \mathrm{H}), 2.48(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{dt}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.8,141.8,136.3,129.6,125.6,79.0,45.0,30.2,23.4,22.3$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$229.1199, found 229.1209;
$[\alpha]_{D}{ }^{24}=-141.9\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

(R)-2-(4-isobutylphenyl)propane-1,2-diol (7hd):

According to the general procedure, $7 \mathrm{~h}(15.8 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(29 \mathrm{mg}, 0.77$ mmol, 10 equiv) were allowed to react in a MeOH solution ($1.0 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 min to afford 7hd ($16.0 \mathrm{mg}, 99 \%$) as a colorless oil after column chromatography (silica gel, 9:1 to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 86% ee by chiral HPLC analysis (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$).
$\mathbf{R}_{\boldsymbol{f}}=0.24$ (silica gel, 2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3363$ (br), 2954, 2925, 2868, 1531, 1465, 1348, 1167, 1042, 797, 616, $560 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=11.0,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=11.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{dt}, J=13.7,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.77$ (br s, 1H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,140.7,129.2,124.8,74.7,71.2,45.0,30.2,26.0,22.4$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$231.1356, found 231.1352;
$[\alpha]_{D}{ }^{25}=-1.8\left(c=0.6, \mathrm{CHCl}_{3}\right) .{ }^{[14]}$

(R)-2-hydroxy-2-(naphthalen-2-yl)propanal (7i):

According to the general procedure, $\mathbf{1 i}(184 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M})$ for 4 h to afford $7 \mathbf{i}(194 \mathrm{mg}, 97 \%)$ as a white solid after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.56$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3461$ (br), 1730, 1130, 826, 751, $478 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.95(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.7,136.5,133.3,132.9,128.7,128.2,127.6,126.6,126.5,125.2$, 123.3, 79.3, 23.6;

MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{K}^{+}\right]$239.0469, found 239.1281;
$[\alpha]_{D}{ }^{\mathbf{2 4}}=-249.2\left(c=0.4, \mathrm{CHCl}_{3}\right)$.

(R)-2-(naphthalen-2-yl)propane-1,2-diol (7id):

According to the general procedure, $7 \mathbf{i}(22 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(41 \mathrm{mg}, 1.07 \mathrm{mmol}$, 10 equiv) were allowed to react in a MeOH solution $(1.4 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford

[^7]$7 \mathrm{id}(10.5 \mathrm{mg}, 48 \%)$ as a white solid after column chromatography (silica gel, 9:1 to $2: 3$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 91% ee by chiral HPLC analysis (ChiralPak AD-H,5\% $i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.16$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3371$ (br), 2974, 1128, 858, 820, 747, $480 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{td}, J=8.3,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.54(\mathrm{dt}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{dt}, J=11.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{td}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}), 1.79(\mathrm{dd}$, $J=7.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3,133.2,132.5,128.2,128.1,127.5,126.3,126.0,124.0,123.3$, 75.0, 71.0, 26.1;

MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$225.0886, found 225.0910;
$[\alpha]_{D}{ }^{24}=-6.2\left(c=0.7, \mathrm{CHCl}_{3}\right)$.

(R)-2-(4-bromophenyl)-2-hydroxypropanal (7j):

According to the general procedure, $\mathbf{1 j}(213 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{2}(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M})$ for 4 h to afford $7 \mathbf{j}(209 \mathrm{mg}, 91 \%)$ as a white solid after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.56$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3459$ (br), 1731, 1488, 1397, 1081, 1009, 863, 821, 788, 545, $493 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, 1H), 1.70 (s, 3H);
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.2,138.3,132.0,127.6,122.5,78.9,23.7$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right] 210.9753$ and 212.9733, found 210.9782 and 212.9763;
$[\alpha]_{D}{ }^{\mathbf{2 3}}=-184.8\left(c=0.3, \mathrm{CHCl}_{3}\right)$.

(R)-2-(4-bromophenyl)propane-1,2-diol (7jd):

According to the general procedure, $7 \mathbf{j}(13.6 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(22 \mathrm{mg}, 0.59$ mmol, 10 equiv) were allowed to react in a MeOH solution $(0.79 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $7 \mathbf{j d}(3.3 \mathrm{mg}, 24 \%)$ as a colorless oil after column chromatography (silica gel, 9:1 to $2: 3$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 88% ee by chiral HPLC analysis (ChiralPak AS-H, 5% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.10$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3369$ (br), 1489, 1396, 1040, 1009, 867, 822, $526 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=10.9,4.7$
$\mathrm{Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=7.2,5.3,1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.5,127.0,74.6,70.9,26.0 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 252.9835$ and 254.9814, found 252.9880 and 954.9854;
$[\alpha]_{D}{ }^{25}=-40.0\left(c=0.1, \mathrm{CHCl}_{3}\right) .{ }^{[15]}$

(R)-2-(3-bromophenyl)-2-hydroxypropanal (7k):

According to the general procedure, $\mathbf{1 k}(213 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{2}(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M}$) for 4 h to afford $7 \mathbf{k}(188 \mathrm{mg}, 82 \%)$ as a pale yellow oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.52$ (silica gel, 2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3461$ (br), 1734, 1568, 1475, 1418, 1069, 902, 785, 719, $650 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.1,141.6,131.3,130.4,129.0,124.4,123.2,78.8,23.8$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right] 210.9753$ and 212.9733, found 210.9781 and 212.9764;
$[\alpha]_{D}{ }^{24}=-118.5\left(c=0.4, \mathrm{CHCl}_{3}\right)$.

(R)-2-(3-bromophenyl)propane-1,2-diol (7kd):

According to the general procedure, $7 \mathbf{k}(14.6 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(24 \mathrm{mg}, 0.64$ $\mathrm{mmol}, 10$ equiv) were allowed to react in a MeOH solution $(0.85 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $7 \mathbf{k d}$ ($3.6 \mathrm{mg}, 56 \%$) as a pale yellow oil after column chromatography (silica gel, 9:1 to $2: 3$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 87% ee by chiral HPLC analysis (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.20$ (silica gel, 2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\text {max }} 3356$ (br), 2977, 2931, 1594, 1566, 1474, 1417, 1041, 878, 784, 762, $697 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddd}, J=7.8,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J$ $=7.8,1.8,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.9,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.4,130.3,130.0,128.5,123.7,122.8,74.5,70.9,26.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 252.9835$ and 254.9814, found 252.9880 and 954.9854; $[\alpha]_{D}{ }^{25}=-10.0\left(c=0.4, \mathrm{CHCl}_{3}\right)$.

(\boldsymbol{R})-2-(4-chlorophenyl)-2-hydroxypropanal (71):

According to the general procedure, $\mathbf{1 1}(169 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{2}(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}$ ($74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M})$ for 4 h to afford $7 \mathbf{1}(177 \mathrm{mg}, 96 \%)$ as a white solid after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.63$ (silica gel, 2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);

[^8]IR (film) $v_{\max } 3445$ (br), 2982, 1733, 1491, 1401, 1094, 1013, 863, 826, 788, $753 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.2,137.7,134.3,129.0,127.2,78.8,23.7$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$ 167.0258, found 167.0244;
$[\alpha]_{D}{ }^{23}=-196.2\left(c=0.4, \mathrm{CHCl}_{3}\right)$.

(R)-2-(4-chlorophenyl)propane-1,2-diol (7ld):

According to the general procedure, $71(19.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(39 \mathrm{mg}, 1.03$ mmol, 10 equiv) were allowed to react in a MeOH solution ($1.4 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 min to afford $7 \mathbf{l d}(8.6 \mathrm{mg}, 45 \%)$ as a colorless oil after column chromatography (silica gel, 9:1 to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 90% ee by chiral HPLC analysis (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{\boldsymbol{f}}=0.18$ (silica gel, 2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3374$ (br), 2977, 2932, 1492, 1400, 1375, 1096, 1041, 1013, 828, $545 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,133.1,128.5,126.6,74.5,70.9,26.0 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$209.0340, found 209.0324;
$[\alpha]_{D}{ }^{25}=-10.4\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

(S)-2-hydroxy-2-(thiophen-2-yl)propanal (7m):

According to the general procedure, $\mathbf{1 m}(100 \mathrm{mg}, 0.71 \mathrm{mmol}), 2(184 \mathrm{mg}, 0.71 \mathrm{mmol}, 1.0$ equiv), $6(53 \mathrm{mg}, 0.14 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($11.0 \mu \mathrm{~L}, 16 \mathrm{mg}, 0.14 \mathrm{mmol} 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(60 \mathrm{mg}, 0.71 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 mL , 0.3 M) for 4 h to afford $\mathbf{7 m}(80 \mathrm{mg}, 72 \%)$ as a yellow oil after column chromatography (silica gel, 19:1 to 3:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{\boldsymbol{f}}=0.71$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3435$ (br), 2980, 1731, 1450, 1350, 1240, 1097, 858, $704 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=$ $2.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 197.4,143.7,127.7,126.4,124.7,78.0,24.1$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$ 139.0212, found 139.0185;
$[\alpha]_{D}{ }^{23}=-158.8\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

(S)-2-(thiophen-2-yl)propane-1,2-diol (7md):

According to the general procedure, $7 \mathrm{~m}(12.3 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79$ mmol, 10 equiv) were allowed to react in a MeOH solution $(1.1 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $7 \mathrm{md}(7.5 \mathrm{mg}, 60 \%)$ as a yellow oil after column chromatography (silica gel, 9:1 to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 77% ee by chiral HPLC analysis (ChiralPak AD-H, $5 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 234 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.16$ (silica gel, 2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);

IR (film) $v_{\max } 3371$ (br), 2977, 2929, 2875, 1458, 1374, 1237, 1123, 1043, $702 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{dd}, J=5.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,127.0,124.6,123.1,74.0,71.5,26.6$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$181.0294, found 181.0292;
$[\alpha]_{D}{ }^{25}=-1.4\left(c=0.7, \mathrm{CHCl}_{3}\right)$.

(R)-2-hydroxy-2-phenylbutanal (7n):

According to the general procedure, $\mathbf{1 n}(148 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M}$) for 4 h to afford $\mathbf{7 n}(161 \mathrm{mg}, 98 \%)$ as a white solid after column chromatography (silica gel, 19:1 to 3:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.68$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3494$ (br), 2974, 2938, 1725, 1448, 1351, 1315, 1203, 1171, 1023, 987, 740, $700 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{tt}, J=7.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.5,138.3,128.8,127.9,125.8,82.1,29.7,7.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$ 147.0804, found 147.0759;
$[\alpha]_{D}{ }^{24}=-123.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

(R)-2-phenylbutane-1,2-diol (7nd):

According to the general procedure, $7 \mathrm{n}(13.8 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(32 \mathrm{mg}, 0.84$ mmol, 10 equiv) were allowed to react in a MeOH solution ($1.1 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 min to afford $7 \mathrm{nd}(5.6 \mathrm{mg}, 40 \%$) as a white solid after column chromatography (silica gel, $9: 1$ to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 68% ee by chiral HPLC analysis (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 208 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.26$ (silica gel, 2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$);
IR (film) $\nu_{\max } 3388$ (br), 2969, 2936, 28801531, 1447, 1348, 1166, 1050, 760, $701 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{dt}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.2,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{dd}, J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 143.1,128.4,127.0,125.6,70.5,31.1,17.4 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$189.0886, found 189.0885;
$[\alpha]_{D}{ }^{25}=+2.2\left(c=0.4, \mathrm{CHCl}_{3}\right) .{ }^{[16]}$

(R)-3-(4-(tert-butyl)phenyl)-2-hydroxy-2-methylpropanal (7o):

According to the general procedure, $10(216 \mu \mathrm{~L}, 204 \mathrm{mg}, 1.00 \mathrm{mmol}), 2(258 \mathrm{mg}$, $1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA $(15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20$

[^9]mmol, $20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution $(3.3 \mathrm{~mL}, 0.3 \mathrm{M})$ for 20 h to afford $7 \mathrm{o}(214 \mathrm{mg}, 97 \%)$ as a pale yellow oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$).
$\mathbf{R}_{f}=0.63$ (silica gel, 2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $\nu_{\max } 3457$ (br), 2965, 2868, 1734, 1364, 1269, 1126, 1109, 838, $816 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-$ $2.98(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;$
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 203.7$, 150.0, 131.7, 129.9, 125.4, 78.1, 43.2, 34.4, 31.3, 22.4;
MS (ESI-TOF) calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$ 203.1340, found 203.1421;
$[\alpha]_{D}{ }^{23}=-10.6\left(c=0.3, \mathrm{CHCl}_{3}\right)$.

(R)-3-(4-(tert-butyl)phenyl)-2-methylpropane-1,2-diol (7od):

According to the general procedure, $7 \mathbf{7}(36 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(62 \mathrm{mg}, 1.63$ mmol, 10 equiv) were allowed to react in a MeOH solution ($2.2 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 \min to afford $7 \mathbf{7 d}(11.2 \mathrm{mg}, 31 \%)$ as a pale yellow oil after column chromatography (silica gel, $9: 1$ to $2: 3$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 60% ee by chiral HPLC analysis (ChiralCel OD-H, 4% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.20$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3385$ (br), 2963, 2869, 1514, 1462, 1364, 1269, 1124, 1049, $838 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48$ (ddd, $J=31.2$, $10.7,5.9,2 \mathrm{H}), 2.80(\mathrm{dd}, J=40.5,13.2,2 \mathrm{H}), 1.92(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}$, 3 H);
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.5,133.7,130.1,125.3,72.9,69.4,44.1,34.4,31.4,23.7$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$245.1512, found 245.1521;
$[\alpha]_{D}{ }^{\mathbf{2 5}}=+0.6\left(c=1.1, \mathrm{CHCl}_{3}\right)$.

General Procedure for Primary Amine-Catalyzed α-Fluorinations (Substrate Scope, Table 4):

A 2.0-dram vial was charged with aldehyde substrate $\mathbf{1 a - p}(1.00 \mathrm{mmol}$ as indicated). No precautions were taken to ensure dryness of vial or to exclude air or moisture. The aldehyde was then dissolved in THF (0.3 M in aldehyde as indicated). Solid catalyst 6 ($20 \mathrm{~mol} \%$ as indicated) was added, followed by TFA ($20 \mathrm{~mol} \%$ as indicated) by syringe. Last, dry reagents NaHCO_{3} (1.0 equiv as indicated) and NFSI 8 (1.0 equiv as indicated) were added to the vial sequentially. The vial was sealed and the mixture was allowed to stir for the designated amount of time $(4$ or 20 h$)$ at $23{ }^{\circ} \mathrm{C}$. A white precipitate forms as the reaction proceeds. Racemic standards were synthesized as described, with racemic catalyst (\pm)-6.
General Procedure for Reduction of α-Fluoroaldehydes to Fluorohydrins (Substrate Scope, Table 4):
α-Fluoroaldehydes $\mathbf{9 a - p}$ were directly reduced to fluorohydrins $\mathbf{1 0 a}-\mathbf{p}$ as follows. The crude reaction mixture was transferred to a $200-\mathrm{mL}$ round-bottom flask with $\mathrm{MeOH}(7 \mathrm{~mL})$, and the vial was rinsed with 2 additional aliquots of $\mathrm{MeOH}(2 \times 3 \mathrm{~mL}, 13 \mathrm{~mL}$ total, 0.075 M overall $)$ to ensure complete transfer. Solid NaBH_{4} (10 equiv as indicated) was added in 3 portions over the course of 10 min , then the reaction mixture was stirred, open to air, at $23{ }^{\circ} \mathrm{C}$. After 90 min , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$
$(30 \mathrm{~mL})$ and EtOAc (30 mL). After an additional 30 min of stirring open to air at $23{ }^{\circ} \mathrm{C}$, the layers were separated and the aqueous phase was extracted with EtOAc ($4 \times 25 \mathrm{~mL}$). The pooled organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. The crude product was purified by silica gel flash chromatography. Several fluorohydrins could be recrystallized to increased ee. Recrystallization procedures are described below where appropriate.

(R)-2-fluoro-2-phenylpropan-1-ol (10a):

According to the general procedures, 1a $(134 \mu \mathrm{~L}, 134 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(316 \mathrm{mg}, 1.00$ mmol, 1.0 equiv), 6 ($74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution ($3.3 \mathrm{~mL}, 0.3 \mathrm{M}$) for 4 h to afford crude $\mathbf{9 a}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(380 \mathrm{mg}$, $10.0 \mathrm{mmol}, 10$ equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 a}(153 \mathrm{mg}, 99 \%)$ as a colorless oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 80% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$). $\mathbf{R}_{f}=0.46$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$); IR (film) $v_{\max } 3359$ (br), 2986, 2931, 1496, 1447, 1381, 1053, 1029, 856, 762, 669, $546 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.23-$ $2.13(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=22.5,3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.5(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 127.1,(\mathrm{~d}, J=75.3), 124.4,(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 97.8$, $(\mathrm{d}, J=172.6 \mathrm{~Hz}), 69.4(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 23.1(\mathrm{~d}, J=24.8 \mathrm{~Hz})$;
${ }^{19}$ F NMR (282 MHz, CDCl_{3}) $\delta-157.0$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$177.0686, found 177.0662;
$[\alpha]_{D}{ }^{23}=-9.4\left(c=1.1, \mathrm{CHCl}_{3}\right) .{ }^{[17]}$

(R)-2-fluoro-2-(4-nitrophenyl)propan-1-ol (10b):

According to the general procedures, $\mathbf{1 b}(179 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), 6 ($74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and NaHCO_{3} ($84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution $(3.3 \mathrm{~mL}$, 0.3 M) for 4 h to afford crude $\mathbf{9 b}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0$ $\mathrm{mmol}, 10$ equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 b}(179 \mathrm{mg}, 90 \%)$ as a pale green oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 74% ee by chiral HPLC analysis (ChiralCel OD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.14$ (silica gel, $4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$); IR (film) $v_{\max } 3372$ (br), 1606, 1519, 1348, 1053, 854, $700 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 2 \mathrm{H})$, $1.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=22.9 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.7(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 123.5(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 97.5$ $(\mathrm{d}, J=174.5 \mathrm{~Hz}), 69.1(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 23.3(\mathrm{~d}, J=24.0 \mathrm{~Hz})$;

[^10]${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-157.7$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FNO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$222.1706, found 222.0562;
$[\alpha]_{D}{ }^{\mathbf{2 3}}=-9.9\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

(R)-2-fluoro-2-(p-tolyl)propan-1-ol (10d):

According to the general procedures, $\mathbf{1 d}(148 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and NaHCO_{3} ($84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution $(3.3 \mathrm{~mL}$, 0.3 M) for 4 h to afford crude 9 d . The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0$ mmol, 10 equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 d}(142 \mathrm{mg}, 85 \%)$ as a colorless oil after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 79% ee by chiral HPLC analysis (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 212 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.46$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3390$ (br), 2987, 2925, 1516, 1450, 1379, 1189, 1050, 859, 816, $546 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.70(\mathrm{~m}, 2 \mathrm{H})$, $2.37(\mathrm{~s}, 1 \mathrm{H}), 1.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.5(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 137.6,129.1,124.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 97.8(\mathrm{~d}, J=$ $171.7 \mathrm{~Hz}), 69.6(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 23.2(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 21.0$;
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-156.7$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$191.0843, found 191.0844;
$[\alpha]_{D}{ }^{23}=-11.7\left(c=0.8, \mathrm{CHCl}_{3}\right)$.

(R)-2-fluoro-2-(m-tolyl)propan-1-ol (10e):

According to the general procedures, $\mathbf{1 e}(148 \mathrm{mg}, 1.00 \mathrm{mmol}), 8(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, and NaHCO_{3} ($84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution $(3.3$ $\mathrm{mL}, 0.3 \mathrm{M}$) for 4 h to afford crude 9 e . The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0 \mathrm{mmol}$, 10 equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 e}(147 \mathrm{mg}, 88 \%)$ as a colorless oil after column chromatography (silica gel, 19:1 to 3:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 78% ee by chiral HPLC analysis (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.68$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3382$ (br), 2989, 2923, 1449 1378, 1189, 1051, 889, 787, $704 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $1 \mathrm{H}), 1.81(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.4(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 138.1,133.8,128.5(\mathrm{~d}, J=29.7 \mathrm{~Hz}), 125.1(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 97.9(\mathrm{~d}, J=171.7 \mathrm{~Hz}), 69.6(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 23.2(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 21.6$;
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-157.1$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$191.0843, found 191.0842;
$[\alpha]_{D}{ }^{24}=-7.7\left(c=1.1, \mathrm{CHCl}_{3}\right)$.

(R)-2-fluoro-2-(o-tolyl)propan-1-ol (10f):

According to the general procedures, $\mathbf{1 f}(148 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}$ (74 $\mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00$ $\mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution ($3.3 \mathrm{~mL}, 0.3 \mathrm{M}$) for 20 h to afford crude $\mathbf{9 f}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0 \mathrm{mmol}, 10$ equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 f}(138 \mathrm{mg}, 82 \%)$ as a colorless oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 73% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$). Purified fluorohydrin $10 f(104 \mathrm{mg})$ was dissolved in $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and gently heated in a $40{ }^{\circ} \mathrm{C}$ water bath for 2 min to ensure complete dissolution. The solution was cooled to $23{ }^{\circ} \mathrm{C}$ on the benchtop for 1 h , during which time white needles crystallized. The crystals were isolated by filtration and washed with cold hexanes to afford 10 f ($33 \mathrm{mg}, 32 \%$ recovery), which was determined to be of 99% ee by chiral HPLC analysis as above.
$\mathbf{R}_{f}=0.55$ (silica gel, $2: 1$ hexanes $/ E t_{2} \mathrm{O}$);
IR (film) $v_{\max } 3338$ (br), 2981, 2938, 1457, 1382, 1061, 1042, 857, 759, $726 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.90-$ $3.81(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=22.9 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.8(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 135.2,132.6,128.0,125.9(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 125.7$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}), 99.3(\mathrm{~d}, J=171.7 \mathrm{~Hz}), 68.3(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 23.0(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 21.7(\mathrm{~d}, J=7.7 \mathrm{~Hz}) ;$
${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-150.7$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$191.0843, found 191.0852;
$[\alpha]_{D}{ }^{\mathbf{2 3}}=-1.1\left(c=0.9, \mathrm{CHCl}_{3}\right)$.

(R)-2-([1,1'-biphenyl]-4-yl)-2-fluoropropan-1-ol (10g):

According to the general procedures, $\mathbf{1 g}(210 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and NaHCO_{3} ($84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution $(3.3 \mathrm{~mL}$, 0.3 M) for 4 h to afford crude $9 \mathbf{g}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0$ mmol, 10 equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 g}(204 \mathrm{mg}, 89 \%)$ as a colorless oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 81% ee by chiral HPLC analysis (ChiralPak AD-H, $5 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$). Purified fluorohydrin $\mathbf{1 0 g}(204 \mathrm{mg})$ was dissolved in $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}(7.0 \mathrm{~mL})$ and gently heated in a $50{ }^{\circ} \mathrm{C}$ water bath for 5 min to ensure complete dissolution. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ in a freezer for 1 h , during which time white crystals formed. The crystals were isolated by filtration and washed with cold hexanes to afford $\mathbf{1 0 g}$ ($105 \mathrm{mg}, 52 \%$ recovery), which was determined to be of 93% $e e$ by chiral HPLC analysis as above.
$\mathbf{R}_{f}=0.46$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3370$ (br), 1488, 1449, 1404, 1051, 763, 727, $692 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 3.96-$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.8,140.53,140.49(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 128.8,127.5,127.2,127.1,124.9$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}), 97.8(\mathrm{~d}, J=172.6), 69.6(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 23.2(\mathrm{~d}, J=24.9 \mathrm{~Hz})$;
${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-156.9 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$253.0999, found 253.1021;
$[\alpha]_{D}{ }^{23}=-17.1\left(c=0.8, \mathrm{CHCl}_{3}\right)$.

(R)-2-fluoro-2-(4-isobutylphenyl)propan-1-ol (10h):

According to the general procedures, $\mathbf{1 h}(190 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and NaHCO_{3} ($84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution $(3.3 \mathrm{~mL}$, 0.3 M) for 4 h to afford crude $\mathbf{9 h}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0$ $\mathrm{mmol}, 10$ equiv $)$ in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 h}(176 \mathrm{mg}, 84 \%)$ as a colorless oil after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 76% ee by chiral HPLC analysis (ChiralPak AS-H, $3 \% i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$). Purified fluorohydrin $\mathbf{1 0 h}(151 \mathrm{mg})$ was dissolved in $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{~mL})$. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ in a freezer for 2 h , during which time white crystals formed. The crystals were isolated by filtration and washed with cold hexanes to afford $\mathbf{1 0 h}(115 \mathrm{mg}, 75 \%$ recovery), which was determined to be of 97% ee by chiral HPLC analysis as above.
$\mathbf{R}_{f}=0.66$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3370$ (br), 2954, 2925, 2969, 1466, 1367, 1189, 1051, 846, 796, 588, $561 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.50-$ $2.47(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.4,138.7(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 129.1,124.2(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 97.9(\mathrm{~d}, J=$ $170.7 \mathrm{~Hz}), 69.6(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 45.0,30.2,23.1(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 22.4$;
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-156.3$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$233.1312, found 233.1337;
$[\alpha]_{D}{ }^{24}=-7.0\left(c=1.4, \mathrm{CHCl}_{3}\right) .{ }^{[18]}$

(R)-2-fluoro-2-(naphthalen-2-yl)propan-1-ol (10i):

According to the general procedures, $\mathbf{1 i}(184 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M}$) for 4 h to afford crude $\mathbf{9 i}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}$, $10.0 \mathrm{mmol}, 10$ equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 i}(179 \mathrm{mg}, 88 \%)$ as a white solid after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes $/ E t_{2} \mathrm{O}$). This material was determined to be of 82% ee by chiral HPLC analysis (ChiralCel OD-H, $5 \% i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$). Purified fluorohydrin $\mathbf{1 0 i}(142 \mathrm{mg})$ was dissolved in $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ and gently heated in a $50{ }^{\circ} \mathrm{C}$ water bath for 3 min to ensure complete dissolution. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ in a freezer for 1 h , during which time white needles crystallized. The crystals were isolated by filtration and washed with cold hexanes to afford $\mathbf{1 0 i}(74 \mathrm{mg}, 52 \%$ recovery), which was determined to be of 91% ee by chiral HPLC analysis as above.

[^11]$\mathbf{R}_{f}=0.46$ (silica gel, 2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3368$ (br), 1382, 1195, 1113, 1050, 858, 819, $748,478 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01-3.80(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=22.9 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 132.9(\mathrm{~d}, J=28.8 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=15.3 \mathrm{~Hz})$, $127.6,126.4,126.3,123.6(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 122.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 98.0(\mathrm{~d}, J=172.6 \mathrm{~Hz}), 69.5(\mathrm{~d}, J=24.9$ Hz), 23.3 (d, $J=24.9 \mathrm{~Hz}$);
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-156.7$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$227.0843, found 227.0872;
$[\alpha]_{D}{ }^{24}=-13.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

(R)-2-(4-bromophenyl)-2-fluoropropan-1-ol (10j):

According to the general procedures, $\mathbf{1 j}$ ($213 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathbf{8}(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and NaHCO_{3} ($84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 mL , 0.3 M) for 4 h to afford crude $\mathbf{9 j}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0$ mmol, 10 equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 min to afford $\mathbf{1 0 j}(186 \mathrm{mg}, 79 \%)$ as a white solid after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 82% ee by chiral HPLC analysis (ChiralPak AD-H, 5% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$). Purified fluorohydrin $\mathbf{1 0 j}(158 \mathrm{mg})$ was dissolved in $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}(3.5 \mathrm{~mL})$ and gently heated in a $50{ }^{\circ} \mathrm{C}$ water bath for 3 min to ensure complete dissolution. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ in a freezer for 1 h , during which time white needles crystallized. The crystals were isolated by filtration and washed with cold hexanes to afford $\mathbf{1 0 j}(64 \mathrm{mg}, 40 \%$ recovery), which was determined to be of 99% ee by chiral HPLC analysis as above.
$\mathbf{R}_{f}=0.49$ (silica gel, 2:1 hexanes/Et 2);
IR (film) $v_{\text {max }} 3390$ (br), 2998, 2926, 1399, 1052, 851, 820, $745,539 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.72(\mathrm{~m}, 2 \mathrm{H})$, $1.86(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6(\mathrm{~d}, J=22.1 \mathrm{~Hz}$), $131.6,126.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 122.0,97.5(\mathrm{~d}, J=$ $173.6 \mathrm{~Hz}), 69.3$ (d, $J=24.9 \mathrm{~Hz}$), 23.1 (d, $J=24.9 \mathrm{~Hz}$);
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-157.2$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrFO}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 254.9791$ and 256.9771, found 254.9849 and 256.9831;
$[\alpha]_{D}{ }^{24}=-13.8\left(c=0.7, \mathrm{CHCl}_{3}\right)$.

(R)-2-(3-bromophenyl)-2-fluoropropan-1-ol (10k):

According to the general procedures, $\mathbf{1 k}(213 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}$ ($74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 $\mathrm{mL}, 0.3 \mathrm{M}$) for 4 h to afford crude $\mathbf{9 k}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0 \mathrm{mmol}$, 10 equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 k}(205 \mathrm{mg}, 88 \%)$ as a colorless oil after
column chromatography (silica gel, 19:1 to 3:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 80% ee by chiral HPLC analysis (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.51$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3353$ (br), 2986, 2937, 1568, 1477, 1418, 1247, 1053, 865, 786, 759, $695 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{dt}, J=7.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H})$, $3.90-3.74(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=23.2 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.9(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 131.0,130.0,127.8(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 123.1(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}), 122.7(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 97.3(\mathrm{~d}, J=174.5 \mathrm{~Hz}), 69.3(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 23.2(\mathrm{~d}, J=24.9 \mathrm{~Hz})$;
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-157.2$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrFO}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 254.9791$ and 256.9771 , found 254.9854 and 256.9834;
$[\alpha]_{D}{ }^{24}=-9.7\left(c=1.2, \mathrm{CHCl}_{3}\right)$.

(R)-2-(4-chlorophenyl)-2-fluoropropan-1-ol (101):

According to the general procedures, $11(169 \mathrm{mg}, 1.00 \mathrm{mmol}), 8(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution $(3.3 \mathrm{~mL}$, 0.3 M) for 4 h to afford crude 91. The mixture was then reacted with NaBH_{4} ($378 \mathrm{mg}, 10.0$ mmol, 10 equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 1}(139 \mathrm{mg}, 74 \%)$ as a white solid after column chromatography (silica gel, 19:1 to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 86% ee by chiral HPLC analysis (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$). Purified fluorohydrin $\mathbf{1 0 1}(122 \mathrm{mg})$ was dissolved in $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ and gently heated in a $50{ }^{\circ} \mathrm{C}$ water bath for 3 min to ensure complete dissolution. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ in a freezer for 1 h , during which time white needles crystallized. The crystals were isolated by filtration and washed with cold hexanes to afford $\mathbf{1 0 1}(40 \mathrm{mg}, 33 \%$ recovery), which was determined to be of 99% ee by chiral HPLC analysis as above.
$\mathbf{R}_{f}=0.67$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $\nu_{\text {max }} 3410$ (br), 2924, 1404, 1079, 1056, 1013, 853, 824, $543 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.71(\mathrm{~m}, 2 \mathrm{H})$, 1.82 (ddd, $J=7.7,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=22.9 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.1(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 133.8,128.6,126.0(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 97.5(\mathrm{~d}, J=$ $172.6 \mathrm{~Hz}), 69.4(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 23.2(\mathrm{~d}, J=24.9 \mathrm{~Hz})$;
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-158.9$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClFO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$211.0296, found 211.0281;
$[\alpha]_{D}{ }^{25}=-14.1\left(c=1.1, \mathrm{CHCl}_{3}\right)$.

(R)-2-fluoro-2-phenylbutan-1-ol (10n):

According to the general procedures, $\mathbf{1 n}(166 \mathrm{mg}, 1.00 \mathrm{mmol}), 8(315 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution (3.3 mL , 0.3 M) for 4 h to afford crude $\mathbf{9 n}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0 \mathrm{mmol}, 10$
equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $10 \mathrm{n}(149 \mathrm{mg}, 88 \%)$ as a colorless oil after column chromatography (silica gel, 19:1 to 3:2 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 48% ee by chiral HPLC analysis (ChiralPak AD-H, $2 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.53$ (silica gel, 2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3359$ (br), 2974, 2937, 1448, 1058, 913, 876, 759, $700 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.23-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.8(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 128.40(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 128.38(\mathrm{~d}, J=67.2 \mathrm{~Hz})$, $127.6,124.8(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 100.3(\mathrm{~d}, J=175.5 \mathrm{~Hz}), 68.8(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 28.9(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 7.2(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}$);
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-170.5$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$191.0843, found 191.0860;
$[\alpha]_{D}{ }^{24}=-2.0\left(c=0.7, \mathrm{CHCl}_{3}\right) .{ }^{[19]}$

(R)-3-(4-(tert-butyl)phenyl)-2-fluoro-2-methylpropan-1-ol (100):

According to the general procedures, $\mathbf{1 0}(216 \mu \mathrm{~L}, 204 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{8}(315 \mathrm{mg}$, $1.00 \mathrm{mmol}, 1.0$ equiv), $\mathbf{6}(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA $(15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20$ mmol, $20 \mathrm{~mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution ($3.3 \mathrm{~mL}, 0.3 \mathrm{M}$) for 20 h to afford crude 9 o . The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10.0 \mathrm{mmol}, 10$ equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 0}(214 \mathrm{mg}$, 95%) as a colorless oil after column chromatography (silica gel, $19: 1$ to $3: 2$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 69% ee by chiral HPLC analysis (ChiralPak AS-H, $3 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$).
$\mathbf{R}_{f}=0.75$ (silica gel, $2: 1$ hexanes $/ E t_{2} \mathrm{O}$);
IR (film) $v_{\max } 3342$ (br), 2960, 2869, 1510, 1460, 1363, 1269, 1034, 841, $572 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=10.5,6.1$
$\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=13.5,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.7,137.5,128.8,125.1,67.8,39.2,37.8,34.3,31.4,16.6$;
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-154.3$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{FO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$247.1469, found 247.1474;
$[\alpha]_{D}{ }^{\mathbf{2 4}}=-1.7\left(c=0.7, \mathrm{CHCl}_{3}\right)$.

(R)-2-fluoro-2-(naphthalen-1-yl)propan-1-ol (10p):

According to the general procedures, $\mathbf{1 p}(184 \mathrm{mg}, 1.00 \mathrm{mmol}), 8(315 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1.0 equiv), $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) were allowed to react in a THF solution ($3.3 \mathrm{~mL}, 0.3 \mathrm{M}$) for 20 h to afford crude $\mathbf{9 p}$. The mixture was then reacted with $\mathrm{NaBH}_{4}(378 \mathrm{mg}$, $10.0 \mathrm{mmol}, 10$ equiv) in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $\mathbf{1 0 p}(191 \mathrm{mg}, 94 \%)$ as a colorless

[^12]oil after column chromatography (silica gel, 19:1 to 3:2 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 69% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$). Purified fluorohydrin $\mathbf{1 0 p}(158 \mathrm{mg})$ was dissolved in $3: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and gently heated in a $40{ }^{\circ} \mathrm{C}$ water bath for 3 min to ensure complete dissolution. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ in a freezer for 24 h , during which time white crystals formed. The crystals were isolated by filtration and washed with cold hexanes to afford $\mathbf{1 0 p}$ ($61 \mathrm{mg}, 39 \%$ recovery), which was determined to be of 90% ee by chiral HPLC analysis as above.
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (silica gel, $2: 1$ hexanes $/ E t_{2} \mathrm{O}$);
IR (film) $v_{\max } 3354$ (br), 1511, 1242, 1111, 865, 804, $776 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{ddd}, J=18.4,13.1,4.6,1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 1 \mathrm{H})$, $2.02(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=1.79 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 134.6,129.5,129.3,126.1,125.5,125.4,124.9$, $123.9(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 99.5(\mathrm{~d}, J=171.7 \mathrm{~Hz}), 68.7(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 23.7(\mathrm{~d}, J=25.9 \mathrm{~Hz})$;
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-146.5$;
MS (ESI-TOF) calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$227.0843, found 227.0911;
$[\alpha]_{D}{ }^{\mathbf{2 4}}=+0.9\left(c=1.4, \mathrm{CHCl}_{3}\right)$.

Gram-Scale Reactions (Scheme 2a,b):

(R)-2-hydroxy-2-phenylpropanal (7a):

A $200-\mathrm{mL}$ round-bottom flask was charged with aldehyde substrate $\mathbf{1 a}(1.50 \mathrm{~mL}, 1.50 \mathrm{~g}$, $11.2 \mathrm{mmol})$. No precautions were taken to ensure dryness of flask or to exclude air or moisture. The aldehyde was then dissolved in THF ($37 \mathrm{~mL}, 0.3 \mathrm{M}$). Solid catalyst 6 (0.831 $\mathrm{g}, 2.24 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added, followed by TFA ($170 \mu \mathrm{~L}, 0.252 \mathrm{~g}, 2.21 \mathrm{mmol}, 20 \mathrm{~mol} \%$) by syringe. Last, dry reagents $\mathrm{NaHCO}_{3}(0.941 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.0$ equiv) and oxaziridine $2(2.892 \mathrm{~g}, 11.2$ mmol, 1.0 equiv) were added to the flask sequentially. The flask was capped and the mixture was allowed to stir for 4 h at $23{ }^{\circ} \mathrm{C}$. The reaction started out heterogeneous, but eventually became homogeneous. The mixture was concentrated by rotary evaporation, and the resultant residue was purified directly by flash chromatography (silica gel, 19:1 to $3: 2$ hexanes/EtOAc) to afford $7 \mathbf{a}$ as a colorless oil which solidifies when stored at $-78{ }^{\circ} \mathrm{C}(1.102 \mathrm{~g}, 66 \%)$.
Spectroscopic results agree with those reported above.

(R)-2-phenylpropane-1,2-diol (7ad):

According to the general procedure, $7 \mathbf{a}(27.3 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(69 \mathrm{mg}, 1.81$ $\mathrm{mmol}, 10$ equiv) were allowed to react in a MeOH solution $(2.4 \mathrm{~mL}, 0.075 \mathrm{M})$ for 90 min to afford $7 \mathbf{a d}(20.5 \mathrm{mg}, 74 \%)$ as a colorless oil after column chromatography (silica gel, 9:1 to 2:3 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 89% ee by chiral HPLC analysis (ChiralPak AS-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
Spectroscopic results agree with those reported above.

(R)-2-fluoro-2-phenylpropan-1-ol (10a):

A $200-\mathrm{mL}$ round-bottom flask was charged with aldehyde substrate $\mathbf{1 a}(1.00 \mathrm{~mL}, 1.00 \mathrm{~g}, 7.5$ mmol). No precautions were taken to ensure dryness of flask or to exclude air or moisture. The aldehyde was then dissolved in THF ($25 \mathrm{~mL}, 0.3 \mathrm{M}$). Solid catalyst 6 ($0.138 \mathrm{~g}, 0.37$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$) was added, followed by TFA ($115 \mu \mathrm{~L}, 0.170 \mathrm{~g}, 1.49 \mathrm{mmol}, 20 \mathrm{~mol} \%$) by syringe. Last, dry reagents $\mathrm{NaHCO}_{3}(0.628 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.0$ equiv) and NFSI 8 ($2.356 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.0$ equiv) were added to the flask sequentially. The flask was capped and the mixture was allowed to stir for 4 h at $23^{\circ} \mathrm{C}$. A white precipitate formed as the reaction proceeded. After 4 h , the crude reaction mixture was transferred to a 1-L round-bottom flask with $\mathrm{MeOH}(70 \mathrm{~mL})$, and the $200-\mathrm{mL}$ flask was rinsed with 2 additional aliquots of $\mathrm{MeOH}(2 \times 15 \mathrm{~mL}, 100 \mathrm{~mL}$ total, 0.075 M overall) to ensure complete transfer. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, then solid $\mathrm{NaBH}_{4}(2.830 \mathrm{~g}, 74.8 \mathrm{mmol}, 10$ equiv) was added in 3 portions over the course of 10 min . The reaction mixture was stirred, open to air, at $23{ }^{\circ} \mathrm{C}$. After 90 min, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and $\mathrm{EtOAc}(200 \mathrm{~mL})$. After an additional 30 min of stirring open to air at $23^{\circ} \mathrm{C}$, the layers were separated and the aqueous phase was extracted with EtOAc ($4 \times 150 \mathrm{~mL}$). The pooled organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. The crude product was purified by flash chromatography (silica gel, 19:1 to $3: 2$ hexanes/EtOAc) to afford $10 a$ as a colorless oil which solidifies when stored at $-10{ }^{\circ} \mathrm{C}$ ($1.152 \mathrm{~g}, 100 \%$). This material was determined to be of 80% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm})$. Purified fluorohydrin $\mathbf{1 0 a}(1.151 \mathrm{~g})$ was dissolved in hexanes $(1.0 \mathrm{~mL})$ and gently heated in a $40^{\circ} \mathrm{C}$ water bath for 5 min to ensure complete dissolution. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ in a freezer for 1 h , during which time white crystals formed. The crystals were isolated by filtration and washed with cold hexanes to afford $\mathbf{1 0 a}(0.706 \mathrm{~g}, 61 \%$ recovery $)$, which was determined to be of 89% ee by chiral HPLC analysis as above.
Spectroscopic results agree with those reported above.

Low Temperature α-Hydroxylation (Scheme 2c):

(R)-2-hydroxy-2-phenylpropanal (7a):

A 2-dram vial was charged with aldehyde substrate $1 \mathbf{1 a}(134 \mu \mathrm{~L}, 134 \mathrm{mg}, 1.00 \mathrm{mmol})$. No precautions were taken to ensure dryness of vial or to exclude air or moisture. The aldehyde was then dissolved in THF ($3.3 \mathrm{~mL}, 0.3 \mathrm{M}$). Solid catalyst $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) was added, followed by TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$) by syringe. NaHCO_{3} ($84 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) was added to the vial, which was then sealed and placed in a $-78^{\circ} \mathrm{C}$ dry ice/acetone bath. After 30 minutes, oxaziridine $2(258 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) was added to the vial, which was then resealed and placed in a bath at $-25^{\circ} \mathrm{C}$. After stirring for 24 h at $-25^{\circ} \mathrm{C}$, the mixture was concentrated by rotary evaporation at $23{ }^{\circ} \mathrm{C}$, and the resultant residue was purified directly by flash chromatography (silica gel, 19:1 to 3:2 hexanes/EtOAc) to afford 7a as a colorless oil ($98 \mathrm{mg}, 65 \%$). Spectroscopic results agree with those reported above.

(R)-2-phenylpropane-1,2-diol (7ad):

According to the general procedure, $7 \mathbf{a}(15.3 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(39 \mathrm{mg}, 1.02$
$\mathrm{mmol}, 10$ equiv) were allowed to react in a MeOH solution ($1.36 \mathrm{~mL}, 0.075 \mathrm{M}$) for 90 min to afford 7 ad ($10.2 \mathrm{mg}, 66 \%$) as a colorless oil after column chromatography (silica gel, 9:1 to $2: 3$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$). This material was determined to be of 93% ee by chiral HPLC analysis (ChiralPak AS-H, $5 \% i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$).
Spectroscopic results agree with those reported above.

Reactions with Alternative Electrophiles (Scheme 3):

(ill|

Diisopropyl (R)-1-(1-oxo-2-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (13):

 A 2-dram vial was charged with aldehyde substrate $\mathbf{1 a}(134 \mu \mathrm{~L}, 134 \mathrm{mg}, 1.00 \mathrm{mmol})$. No precautions were taken to ensure dryness of vial or to exclude air or moisture. The aldehyde was then dissolved in THF ($3.3 \mathrm{~mL}, 0.3 \mathrm{M}$). Solid catalyst $6(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added, followed by TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$) by syringe. Last, DIAD 12 (195 $\mu \mathrm{L}, 202 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) was added to the vial, which was then sealed. The mixture was allowed to stir for 4 h at $23^{\circ} \mathrm{C}$, after which the solution was concentrated by rotary evaporation. The resultant residue was purified directly by flash chromatography (silica gel, 9:1 to $2: 3$ hexanes/EtOAc) to afford 13 as a thick, colorless oil ($319 \mathrm{mg}, 95 \%$). This material was determined to be of 85% ee by chiral HPLC analysis (ChiralPak AD-H, $5 \% i \mathrm{PrOH}$ in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$). A racemic standard was synthesized as described, with racemic catalyst (\pm)-6.$\mathbf{R}_{f}=0.60$ (silica gel, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$);
IR (film) $v_{\max } 3304$ (br), 2982, 1733, 1703, 1376, 1321, 1245, $1107 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77$ (minor rotamor, $\mathrm{s}, 0.24 \mathrm{H}$), 9.61 (major rotamer, $\mathrm{s}, 0.76 \mathrm{H}$), 7.61 $7.30(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.04-4.82(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.11(\mathrm{~m}, 12 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.2,192.8,156.0,155.6,137.1,128.9,128.1,127.3,73.0,71.4,21.7$, 18.1;

MS (ESI-TOF) calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$337.1758, found 337.1769;
$[\alpha]_{D}{ }^{24}=+42.3\left(c=1.1, \mathrm{CHCl}_{3}\right) .{ }^{[20]}$

(R)-2-chloro-2-phenylpropanal (15):

A 2-dram vial was charged with aldehyde substrate $\mathbf{1 a}(134 \mu \mathrm{~L}, 134 \mathrm{mg}, 1.00 \mathrm{mmol})$. No precautions were taken to ensure dryness of vial or to exclude air or moisture. The aldehyde was then dissolved in THF ($3.3 \mathrm{~mL}, 0.3 \mathrm{M}$). Solid catalyst 6 ($74 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added, followed by TFA ($15.4 \mu \mathrm{~L}, 22.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$) by syringe. Last, $\mathrm{NaHCO}_{3}(84$ $\mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) and 2,3,4,5,6,6-hexachlorocyclohexa-2,4-dienone $14(301 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1.0 equiv) were sequentially added to the vial, which was then sealed. The mixture was allowed to stir for 4 h at $23^{\circ} \mathrm{C}$, after which the solution was concentrated by rotary evaporation. The resultant residue was purified directly by flash chromatography (silica gel, 19:1 to $3: 2$ hexanes/EtOAc) to afford $\mathbf{1 5}$ as a yellow oil ($120 \mathrm{mg}, 71 \%$). This material was determined to be of 66% ee by chiral HPLC analysis (ChiralPak AD-H, $2 \% i \operatorname{PrOH}$ in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$). A racemic standard was synthesized as

[^13]described, with racemic catalyst ($\mathbf{\pm}$)-6.
$\mathbf{R}_{f}=0.80$ (silica gel, 2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$);
IR (film) $\nu_{\max } 1729,1492,1445,1383,1165,1112,1055,890,759,695,531 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.47(\mathrm{~s}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.7,137.1,128.9,128.8,126.7,73.6,25.5 ;$
MS (ESI-TOF) calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}\left[\mathrm{M}+\mathrm{H}^{+}-\mathrm{H}_{2} \mathrm{O}\right]$ 151.0309, found 151.0288;
$[\alpha]_{D}{ }^{\mathbf{2 4}}=+33.7\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{[21]}$

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of α-Functionalization Products

[^14]

$$
\text { (500 MHz, } \left.\mathrm{CDCl}_{3}\right)
$$

6. Chiral HPLC Traces of Enantioenriched α-Functionalization Products

Product 7ad:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Gram-Scale (Scheme 2a): HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Low Temperature (Scheme 2c): HPLC (ChiralPak AS-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 7bd:

Racemic Sample: HPLC (ChiralPak AS-H, $10 \% \mathrm{iPrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, $10 \% i$ PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 7cd:

Racemic Sample: HPLC (ChiralCel OD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 224 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralCel OD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 224 \mathrm{~nm}$)

Product 7dd:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 212 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 212 \mathrm{~nm}$)

Product 7ed:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Product 7fd:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 7gd:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 7hd:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Product 7id:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 7jd:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Product 7kd:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 7ld:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 7md:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 234 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 234 \mathrm{~nm}$)

Product 7nd:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 208 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 208 \mathrm{~nm}$)

Product 7od:

Racemic Sample: HPLC (ChiralCel OD-H, 4\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralCel OD-H, $4 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 10a:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Gram-Scale (Scheme 2b): HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Recrystallized (Scheme 2b): HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 10b:

Racemic Sample: HPLC (ChiralCel OD-H, 5\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralCel OD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 10d:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 212 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 212 \mathrm{~nm}$)

Product 10e:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 10f:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Recrystallized Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 10g:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Recrystallized Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 10h:

Racemic Sample: HPLC (ChiralPak AS-H, 3\% i PrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 3\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Recrystallized Sample: HPLC (ChiralPak AS-H, 3\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 10i:

Racemic Sample: HPLC (ChiralCel OD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralCel OD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Recrystallized Sample: HPLC (ChiralCel OD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 10j:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Recrystallized Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Product 10k:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 101:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Recrystallized Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Product 10n:

Racemic Sample: HPLC (ChiralPak AD-H, $2 \% i \operatorname{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, $2 \% i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 100:

Racemic Sample: HPLC (ChiralPak AS-H, 3\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 3\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 218 \mathrm{~nm}$)

Product 10p:

Racemic Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AS-H, 5\% $i \mathrm{PrOH}$ in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Recrystallized Sample: HPLC (ChiralPak AS-H, 5\% iPrOH in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 13:

Racemic Sample: HPLC (ChiralPak AD-H, 5\% iPrOH in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Product 15:

Racemic Sample: HPLC (ChiralPak AD-H, 2\% i PrOH in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

Enantioenriched Sample: HPLC (ChiralPak AD-H, 5\% $i \mathrm{PrOH}$ in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

7. Mass Spectrometry and Computational Procedures and Results

A 1-dram vial was charged with aldehyde substrate $1 \mathbf{a}(20 \mu \mathrm{~L}, 20 \mathrm{mg}, 0.15 \mathrm{mmol})$. No precautions were taken to ensure dryness of vial or to exclude air or moisture. The aldehyde was then dissolved in THF $(0.5 \mathrm{~mL}, 0.3 \mathrm{M})$. Solid catalyst $6(11.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ was added, followed by TFA $(2.3 \mu \mathrm{~L}$, $3.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 20 \mathrm{~mol} \%$) by syringe. $\mathrm{NaHCO}_{3}(12.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) was added to the vial, which was then sealed. The mixture was allowed to stir for 10 min , then an aliquot of this mixture was submitted to mass spectrometry (ESI-TOF).

Scheme S17.

Calculations were performed at Harvard University using Gaussian $09^{[22]}$ at the B3LYP ${ }^{[23]}$ level of density functional theory with the $6-31 \mathrm{G}(\mathrm{d})^{[24]}$ basis set. Relative energies are for uncorrected electronic energy differences. Figures were generated using CYLview. ${ }^{[25]}$

[^15]

Figure S1. Lowest energy structures for various geometries of putative enamine 11a.

The lowest energy structure for proposed enamine intermediate 11a was located computationally (Figure S1), revealing a key intramolecular hydrogen bond between the benzamide carbonyl and the enamine NH. This stabilizing interaction appears to rigidify the catalyst backbone and cause the terphenyl moiety to project one of its aryl rings directly behind one face of the reactive nucleophile. Although the origin of stereoselectivity in these α-functionalization reactions is not fully understood, we speculate that it is primarily determined by the E / Z ratio of intermediate $\mathbf{1 1 a}$, with the electrophilic component of the reaction approaching the enamine almost exclusively from the exposed front face. The lowest energy calculated structures for $\boldsymbol{E} \mathbf{- 1 1 a}$ (Figure S1a) and $\boldsymbol{Z} \mathbf{- 1 1 a}$ (Figure S1b) are separated by a difference of $1.28 \mathrm{kcal} \mathrm{mol}^{-1}$, owing to a steric clash between substrate and catalyst phenyl rings in $\boldsymbol{Z} \mathbf{- 1 1 a}$. At room temperature, this would correspond to an 8.8:1 ratio of $\boldsymbol{E} \mathbf{- 1 1 a}$ to $\boldsymbol{Z - 1 1 a}$, or approximately $90 \% \mathrm{ee}$, which is precisely what we observe in the α-hydroxylation of substrate 1 la to product $7 \mathbf{a}$.

However, it should be considered that these calculations represent enamine ground states. Although the steric destabilization of $\boldsymbol{Z - 1 1 a}$ almost certainly still exists in the subsequent transition state for nucleophilic attack, the identity of the electrophile must also play a role in the location of this saddle point along a reaction coordinate. Different electrophiles, much like different acids, bases, and solvents, may also influence the partitioning of enamine 11a between E and Z isomers. Therefore, enantioselectivities do not remain constant with different classes of electrophiles, although they are generally high.
J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
${ }^{[23]}$ B3LYP = Becke-3-Lee-Yang-Parr density functional theory: (a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
${ }^{[24]}$ (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta. 1973, 28, 213-223.
${ }^{[25]}$ Legault, C. Y., CYLview, version 1.0b; Université de Sherbrooke, 2009; http://www.cylview.org.

Finally, we have located a third enamine 11a structure by rotating the $\mathrm{C}-\mathrm{N}$ bond between catalyst 6 and substrate 1a in $\boldsymbol{E}-\mathbf{1 1 a}$ (Figure S1c). This intermediate ($\boldsymbol{Z E} \mathbf{- 1 1 a}$), which would also provide the minor enantiomers of products $\mathbf{7 a}$ and $\mathbf{9 a}$, maintains an E-geometry on the enamine bond, but has Z-geometry on the $\mathrm{C}-\mathrm{N}$ bond. This stationary point lies $4.06 \mathrm{kcal} \mathrm{mol}^{-1}$ above $\boldsymbol{E} \mathbf{- 1 1 a}$, and is therefore not considered a significant component in the overall mechanism.

E-11a:

E(RB3LYP): -1500.85238008
Zero-point correction: 0.601051 (Hartree/Particle)
Thermal correction to Energy: 0.633405
Thermal correction to Enthalpy: 0.634349
Thermal correction to Gibbs Free Energy: 0.534510

Cartesian coordinates:

C	2.19453	3.5984	-0.75084
C	1.37754	2.40942	-1.29783
C	-0.12724	2.6163	-0.99775
C	-0.6114	3.95419	-1.58536
C	0.21864	5.14309	-1.08072
C	1.71497	4.93127	-1.34339
H	1.49228	2.35883	-2.39044
H	2.08752	3.61474	0.34232
H	3.26063	3.4473	-0.95966
H	-0.55171	3.90812	-2.68412
H	-1.66839	4.08476	-1.32827
H	-0.1282	6.06391	-1.56215
H	0.05051	5.27094	-0.00271
H	1.90502	4.94193	-2.42636
H	2.29859	5.75474	-0.91739

H	-0.25941	2.62845	0.08924
N	-0.95721	1.52475	-1.5054
C	-1.50661	0.52438	-0.75417
C	-2.55706	-0.16485	-1.32505
C	-3.82166	0.45336	-1.32
C	-2.34627	-1.40966	-1.9495
C	-4.8985	-0.21465	-1.91496
C	-3.45493	-2.0485	-2.52542
C	-4.7181	-1.46363	-2.50433
H	-5.87587	0.2585	-1.91633
H	-3.30844	-3.00263	-3.02246
H	-5.55862	-1.97288	-2.96667
H	-1.32073	1.65028	-2.44411
N	1.81878	1.129	-0.72349
C	2.95007	0.48151	-1.03976
H	1.15288	0.69272	-0.07017
C	-4.02684	1.79426	-0.69398
C	-3.48941	2.94947	-1.28516
C	-4.7816	1.92609	0.48004
C	-3.69598	4.20553	-0.71258
H	-2.94232	2.86667	-2.22285
C	-4.98838	3.18257	1.05218
H	-5.19895	1.03814	0.94614
C	-4.44499	4.32402	0.45994
H	-3.28719	5.09148	-1.19105
H	-5.57764	3.26899	1.96096
H	-4.61283	5.3015	0.90334
C	-1.01163	-2.0652	-2.03587
C	0.11253	-1.38324	-2.52978
C	-0.8709	-3.42007	-1.69391
C	1.33775	-2.03335	-2.67357
H	0.01687	-0.34523	-2.83346
C	0.35427	-4.07219	-1.83998
H	-1.73034	-3.96104	-1.30804
C	1.46452	-3.38068	-2.32815
H	2.18948	-1.49215	-3.07743
H	0.43669	-5.12552	-1.58407
H	2.41536	-3.89108	-2.45577
O	-1.03038	0.18617	0.5511
H	3.61783	0.8949	-1.76647
C	3.25059	-0.70914	-0.43235

C	2.28765	-1.30174	0.6132
H	2.28896	-0.68636	1.48853
H	1.29894	-1.34052	0.20596
H	2.606	-2.29007	0.87156
C	4.54911	-1.45365	-0.79449
C	4.85358	-2.66606	-0.17494
C	5.41971	-0.9169	-1.74274
C	6.02911	-3.34119	-0.50338
H	4.16683	-3.08929	0.57232
C	6.596	-1.59204	-2.07096
H	5.17948	0.03841	-2.23157
C	6.90057	-2.80392	-1.45118
H	6.26932	-4.29667	-0.01504
H	7.28232	-1.16861	-2.81861
H	7.82755	-3.33625	-1.70963

$Z-11 \mathrm{a}$:

E(RB3LYP): -1500.85033821
Zero-point correction: 0.601824 (Hartree/Particle)
Thermal correction to Energy: 0.633869
Thermal correction to Enthalpy: 0.634813
Thermal correction to Gibbs Free Energy: 0.535909

Cartesian coordinates:

C	2.19453	3.5984	-0.75084
C	1.37754	2.40942	-1.29783
C	-0.12724	2.6163	-0.99775
C	-0.6114	3.95419	-1.58536

C
C

H
H
H
H
H
H
H
H
H
H
N
C
C
C
C
C
C
C
H
H
H
H
N
C
H
C
C
C
C
H
C
H
C
H
H
H
C

C
C

0.21864	5.14309	-1.08072
1.71497	4.93127	-1.34339
1.49228	2.35883	-2.39044
2.08752	3.61474	0.34232
3.26063	3.4473	-0.95966
-0.55171	3.90812	-2.68412
-1.66839	4.08476	-1.32827
-0.1282	6.06391	-1.56215
0.05051	5.27094	-0.00271
1.90502	4.94193	-2.42636
2.29859	5.75474	-0.91739
-0.25941	2.62845	0.08924
-0.95721	1.52475	-1.5054
-1.50661	0.52438	-0.75417
-2.55706	-0.16485	-1.32505
-3.82166	0.45336	-
-2.34627	-1.40966	-1.9495
-4.8985	-0.21465	-1.91496
-3.45493	-2.0485	-2.52542
-4.7181	-1.46363	-2.50433
-5.87587	0.2585	-1.91633
-3.30844	-3.00263	-3.02246
-5.55862	-1.97288	-2.96667
-1.32073	1.65028	-2.44411
1.81878	1.129	-0.72349
2.95007	0.48151	-1.03976
1.15288	0.69272	-0.07017
-4.02684	1.79426	-0.69398
-3.48941	2.94947	-1.28516
-4.7816	1.92609	0.48004
-3.69598	4.20553	-0.71258
-2.94232	2.86667	-2.22285
-4.98838	3.18257	1.05218
-5.19895	1.03814	0.94614
-4.44499	4.32402	0.45994
-3.28719	5.09148	-1.19105
-5.57764	3.26899	1.96096
-4.61283	5.3015	0.90334
-1.01163	-2.0652	-2.03587
0.11253	-1.38324	-2.52978
-0.8709	-3.42007	-1.69391

C
H
C
H
C
H
H
H
0
H
C
C

H
H
H
C
C
C
C
H
C
H
C
H
H
H

1.33775	-2.03335	-2.67357
0.01687	-0.34523	-2.83346
0.35427	-4.07219	-1.83998
-1.73034	-3.96104	-1.30804
1.46452	-3.38068	-2.32815
2.18948	-1.49215	-3.07743
0.43669	-5.12552	-1.58407
2.41536	-3.89108	-2.45577
-1.03038	0.18617	0.5511
3.61783	0.8949	-1.76647
3.25059	-0.70914	-0.43235
4.55018	-1.45033	-0.79745
4.48462	-1.81119	-1.80263
5.37932	-0.77933	-0.71274
4.68955	-2.27548	-0.13066
2.29046	-1.30531	0.61375
2.59806	-2.51792	1.23134
1.11454	-0.6324	0.94489
1.72917	-3.05775	2.17959
3.52543	-3.04807	0.97045
0.24502	-1.17269	1.89317
0.87233	0.32371	0.4586
0.55238	-2.38525	2.51022
1.97137	-4.01355	2.66632
-0.68212	-0.64198	2.15405
-0.13271	-2.81132	3.25761

$Z E-11 a$:

E(RB3LYP): - 1500.84591639
Zero-point correction: 0.602142 (Hartree/Particle)
Thermal correction to Energy: 0.634163
Thermal correction to Enthalpy: 0.635107
Thermal correction to Gibbs Free Energy: 0.536151

Cartesian coordinates:

C	6.15171	0.40262	-1.41019
C	5.01241	0.35631	-2.44952
C	5.46033	1.04917	-3.75968
C	6.74556	0.39551	-4.29872
C	7.87661	0.39829	-3.26054
C	7.43066	-0.2561	-1.94685
H	4.78146	-0.69116	-2.69239
H	6.34817	1.45466	-1.16254
H	5.83051	-0.08387	-0.48113
H	6.52541	-0.64208	-4.59521
H	7.05278	0.92826	-5.20545
H	8.75128	-0.11959	-3.66887
H	8.18809	1.43372	-3.06667
H	7.25118	-1.32849	-2.11068
H	8.22453	-0.18522	-1.19523
H	5.65508	2.10374	-3.53809
N	4.42416	1.02544	-4.79111
C	3.63152	2.07891	-5.15009
C	3.00903	1.98723	-6.3783
C	3.78308	2.25562	-7.52295
C	1.6669	1.57111	-6.47551
C	3.1812	2.14536	-8.78207
	1.10071	1.48278	-7.75635

C	1.84435	1.77195	-8.89718
H	3.77409	2.34872	-9.66878
H	0.07119	1.15112	-7.85097
H	1.38679	1.68555	-9.87837
H	4.45257	0.23244	-5.42309
N	3.78714	0.99972	-1.95073
C	2.95007	0.48151	-1.03976
H	3.55166	1.89533	-2.40133
C	5.21882	2.65367	-7.41237
C	6.18903	1.72479	-7.00164
C	5.62663	3.95383	-7.74197
C	7.53373	2.08901	-6.91604
H	5.89273	0.69885	-6.78929
C	6.9717	4.31761	-7.65667
H	4.88322	4.68002	-8.05798
C	7.9275	3.38852	-7.24173
H	8.27444	1.35416	-6.61221
H	7.27275	5.32844	-7.91778
H	8.97457	3.67203	-7.18251
C	0.83463	1.21259	-5.29346
C	1.27828	0.28707	-4.33464
C	-0.45902	1.74233	-5.15834
C	0.45711	-0.09345	-3.27381
H	2.26143	-0.16145	-4.43993
C	-1.2825	1.36007	-4.09843
H	-0.81614	2.46129	-5.89029
C	-0.82677	0.4423	-3.15019
H	0.81274	-0.82698	-2.55485
H	-2.28616	1.77069	-4.02205
H	-1.47224	0.1331	-2.33247
0	3.43561	3.22075	-4.31181
H	2.04761	0.99803	-0.78746
C	3.25059	-0.70914	-0.43235
C	4.55018	-1.45033	-0.79745
H	4.48462	-1.81119	-1.80263
H	5.37932	-0.77933	-0.71274
H	4.68955	-2.27548	-0.13066
C	2.29046	-1.30531	0.61375
C	2.59806	-2.51792	1.23134
C	1.11454	-0.6324	0.94489
C	1.72917	-3.05775	2.17959

H
C
H
C
H
H
H

3.52543	-3.04807	0.97045
0.24502	-1.17269	1.89317
0.87233	0.32371	0.4586
0.55238	-2.38525	2.51022
1.97137	-4.01355	2.66632
-0.68212	-0.64198	2.15405
-0.13271	-2.81132	3.25761

8. Supplementary Optimization Tables

Table S1. α-Hydroxylation Catalyst Screen.

Table S2. α-Fluorination Catalyst Screen.

Table S3. α-Hydroxylation Amide Catalyst Screen.

Table S4. α-Fluorination Amide Catalyst Screen.

Table S5. α-Hydroxylation Additive Screen.
Table S6. α-Fluorination Additive Screen.

		$\xrightarrow[\substack{\text { THF, } 0.15 \mathrm{M} \\ 23^{\circ} \mathrm{C}}]{6(20 \mathrm{~mol} \%)}$	 7a	
Entry	Additive(s)	Time	Conversion ${ }^{\text {a }}$	$e e^{\text {b }}$
1	None	16 h	73\%	75\%
2	1 equiv $\mathrm{H}_{2} \mathrm{O}$	19 h	77\%	72\%
3	$20 \mathrm{~mol} \% \mathrm{AcOH}$	19 h	72\%	79\%
4	$20 \mathrm{~mol} \% \mathrm{BzOH}$	17 h	61\%	81\%
5	$20 \mathrm{~mol} \%$ DCA	2 h	91\%	80\%
6	$20 \mathrm{~mol} \%$ TCA	2 h	64\%	70\%
7	$20 \mathrm{~mol} \%$ TFA	2 h	87\%	73\%
8	0.5 equiv NaOAc	160 h	54\%	42\%
9	0.5 equiv NaOBz	160 h	66\%	42\%
10	1.5 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$	92 h	52\%	57\%
11	1.5 equiv NaHCO_{3}	48 h	72\%	71\%
12	20 mol\% TFA +1.5 equiv NaHCO_{3}	4 h	85\%	87\%
13	$20 \mathrm{~mol} \%$ TCA +1.5 equiv NaHCO_{3}	4 h	66\%	87\%
14	$\begin{gathered} 20 \mathrm{~mol}_{\mathrm{mo} \mathrm{DCA}} \\ +1.5 \text { equiv } \mathrm{NaHCO}_{3} \end{gathered}$	4 h	85\%	84\%
15	$\begin{aligned} & 20 \text { mol\% TFA } \\ & +1.5 \text { equiv } \mathrm{Na}_{2} \mathrm{CO}_{3} \end{aligned}$	4 h	87\%	88\%
16	$20 \mathrm{~mol} \%$ TCA +1.5 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$	4 h	67\%	86\%
17	$\begin{gathered} 20 \mathrm{~mol} \% \mathrm{DCA}^{2} \\ +1.5 \text { equiv } \mathrm{Na}_{2} \mathrm{CO}_{3} \end{gathered}$	4 h	75\%	85\%
18	$\begin{aligned} & 20 \text { mol\% TFA }^{\text {T }} \\ & \text { +1.0 equiv NEt } \end{aligned}$	19 h	56\%	16\%
19	$20 \mathrm{~mol} \%$ TCA +1.0 equiv NEt_{3}	19 h	56\%	18\%

Table S7. α-Hydroxylation Solvent Screen.

 1a	${ }_{(1.2}^{2} \text { equiv) }$		 7a
Entry	Solvent	Conversion ${ }^{\text {a }}$	$e e^{\text {b }}$
1	THF	88\%	87\%
2	2-MeTHF	87\%	87\%
3	THP	83\%	87\%
4	Dioxane	88\%	81\%
5	CPME	34\%	84\%
6	tBME	20\%	84\%
7	$\mathrm{Et}_{2} \mathrm{O}$	14\%	83\%
8	toluene	62\%	71\%
9	benzene	61\%	70\%
10	EtOAc	62\%	84\%
11	MeCN	38\%	79\%
12	MeOH	9\%	33\%
13	DMF	8\%	N.D.
14	DCM	6\%	72\%
15	hexanes	7\%	59\%

${ }^{a}$ Determined by GC. ${ }^{b}$ Determined by HPLC.

Table S8. α-Fluorination Solvent Screen.

	$\xrightarrow[\substack{\mathrm{TFA}^{2}(20 \mathrm{~mol} \%) \\ \mathrm{NaHCO}_{3}(1.5 \text { equiv }) \\ \text { solvent, } 0.15 \mathrm{M} \\ 23^{\circ} \mathrm{C}, 4 \mathrm{~h}}]{\mathrm{k}(20 \mathrm{hos}}$		
Entry	Solvent	Conversion ${ }^{\text {a }}$	$e e^{\text {b }}$
1	THF	71\%	83\%
2	2-MeTHF	59\%	76\%
3	THP	66\%	76\%
4	Dioxane	69\%	75\%
5	CPME	47\%	63\%
6	tBME	27\%	58\%
7	$\mathrm{Et}_{2} \mathrm{O}$	31\%	58\%
8	toluene	30\%	40\%
9	benzene	31\%	40\%
10	EtOAc	69\%	74\%
11	MeCN	48\%	71\%
12	MeOH	24\%	54\%
13	DMF	58\%	58\%
14	DCM	22\%	45\%
15	hexanes	8\%	34\%

${ }^{a}$ Determined by GC. ${ }^{b}$ Determined by HPLC.

Table S9. α-Hydroxylation Base Screen.

Table S11. α-Hydroxylation Acid Screen.

${ }^{a}$ Determined by GC. ${ }^{\text {D }}$ Determined by HPLC.

Table S10. α-Fluorination Base Screen.

Table S12. α-Fluorination Acid Screen.

 1a	$\xrightarrow[\substack{\text { acid } \left.(20 \mathrm{~mol} \%) \\ \mathrm{NaHCO}(1) \\ \mathrm{THF}^{2}, 0.15 \mathrm{equiv}\right) \\ 23^{\circ} \mathrm{C}, 4 \mathrm{~h}}]{6(20 \mathrm{hol})}$		
Entry	Acid	Conversion ${ }^{\text {a }}$	$e e^{\text {b }}$
1	TFA	83\%	83\%
2	TCA	74\%	78\%
3	DCA	83\%	82\%
4	AcOH	59\%	80\%
5	BzOH	61\%	79\%
6	$2-\mathrm{NO}_{2}-\mathrm{BzOH}$	73\%	82\%
7	$3-\mathrm{NO}_{2}-\mathrm{BzOH}$	73\%	82\%
8	$4-\mathrm{NO}_{2}-\mathrm{BzOH}$	77\%	80\%
9	$\mathrm{MeSO}_{2} \mathrm{OH}$	15\%	78\%
10	$\mathrm{PhSO}_{2} \mathrm{OH}$	33\%	75\%
11	2-NBSA	41\%	76\%
12	4-NBSA	27\%	78\%
13	2,4-diNBSA	26\%	75\%
14	$(\mathrm{PhO})_{2} \mathrm{PO}_{2} \mathrm{H}$	61\%	82\%
15	$(\mathrm{BnO})_{2} \mathrm{PO}_{2} \mathrm{H}$	76\%	80\%
16	$\mathrm{H}_{2} \mathrm{SO}_{4}$	22\%	76\%
17	HCl	29\%	74\%
18	HFIP	50\%	78\%
19	phenol	54\%	78\%
20	4- NO_{2}-phenol	58\%	78\%
21	L-tartaric acid	75\%	82\%
22	D-tartarc acid	74\%	79\%

${ }^{a}$ Determined by GC. ${ }^{b}$ Determined by HPLC.

Table S13. α-Hydroxylation NaHCO_{3} Loading.

	2 (1.2 equiv)	$\xrightarrow[\text { TFA (20 mol\%) }]{\substack{\text { (20 mol\%) } \\ \mathrm{NaHCO}_{3} \text { (X equiv) } \\ \text { THF, } 0.15 \mathrm{M} \\ 23^{\circ} \mathrm{C}, 4 \mathrm{~h}}}$	 a
Entry	X	Conversion ${ }^{\text {a }}$	ee ${ }^{\text {b }}$
1	0.0	87\%	73\%
2	0.5	85\%	84\%
3	1.0	85\%	84\%
4	1.5	85\%	84\%
5	2.0	85\%	84\%
6	5.0	85\%	84\%
${ }^{\text {a }}$ Determine	by GC. ${ }^{\text {b }}$ Det	ermined by HPLC.	

Table S15. α-Hydroxylation TFA Loading.

Table S17. α-Hydroxylation Catalyst Loading.

 1a	$\begin{gathered} \mathbf{2} \\ \text { (1.2 equiv) } \end{gathered}$		$\begin{aligned} & \mathrm{Me} \\ & \stackrel{\mathrm{Me}}{\mathrm{Ph}} \\ & \mathrm{Ph} \\ & \mathrm{a} \end{aligned}$
Entry	X	Conversion ${ }^{\text {a }}$	$e e^{\text {b }}$
1	5	37\%	77\%
2	10	63\%	83\%
3	20	85\%	84\%

Table S19. α-Hydroxylation Concentration.

Table S14. α-Fluorination NaHCO_{3} Loading.

 1a	$\xrightarrow[\begin{array}{c} \text { TFA (20 mol\%) } \\ \mathrm{NaHCO}_{3} \text { (X equiv) } \\ \text { THF, } 0.15 \mathrm{M} \\ 23^{\circ} \mathrm{C}, 4 \mathrm{~h} \end{array}]{\substack{\text { (20) }}}$		
Entry	X	Conversion ${ }^{\text {a }}$	$e e^{\text {b }}$
1	0.0	64\%	80\%
2	0.5	83\%	83\%
3	1.0	83\%	82\%
4	1.5	83\%	83\%
5	2.0	83\%	82\%
6	5.0	83\%	81\%

Table S16. α-Fluorination TFA Loading.

Table S18. α-Fluorination Catalyst Loading.

${ }^{\text {a }}$ Determined by GC. ${ }^{b}$ Determined by HPLC.

Table S20. α-Fluorination Concentration.

Table S21. α-Hydroxylation Electrophile Loading. Table S22. α-Fluorination Electrophile Loading.

Table S23. α-Hydroxylation Temperature Screen.

	$+\underset{(1.2 \text { equiv) }}{\mathbf{2}}$	$\xrightarrow[\substack{\operatorname{TFA}(20 \mathrm{~mol} \%) \\ \mathrm{NaHCO}_{3}(1.5 \text { equiv })}]{\mathrm{THF}(20 \mathrm{~mol})} \mathrm{H}^{-}$		$\begin{aligned} & \mathrm{Me} \\ & \mathrm{Y}^{-י \prime \mathrm{OH}} \\ & \mathrm{Ph} \\ & \mathbf{a} \end{aligned}$
Entry	Temperature	Time	Conversion ${ }^{\text {a }}$	$e e^{\text {b }}$
1	$23^{\circ} \mathrm{C}$	4 h	88\%	87\%
2	$3^{\circ} \mathrm{C}$	4 h	73\%	86\%
3	$-10^{\circ} \mathrm{C}$	21 h	61\%	88\%
4	$-25^{\circ} \mathrm{C}$	46 h	>65\%	93\%

Table S24. α-Fluorination Temperature Screen.

9. Results with Additional Substrates

Table S25. Additional α-Hydroxylation Reactions.

Table S26. Additional α-Fluorination Reactions.

10. X-Ray Crystallography Information

Fluorohydrin 10d:

Fluorohydrin $\mathbf{1 0 d}$ was crystallized from hexanes $/ \mathrm{Et}_{2} \mathrm{O}$. A crystal was mounted on a diffractometer and data was collected at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II DUO CCD diffractometer $\left(\mathrm{Cu}_{\mathrm{K} \alpha}\right.$ radiation, $\left.\lambda=1.54178 \AA\right)$, equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at $30^{\circ}, 55^{\circ}, 80^{\circ}$ and 115° in 2θ. Data integration down to $0.84 \AA$ resolution was carried out using SAINT V8.34 $\mathrm{C}^{[26]}$ with reflection spot size optimization. Absorption corrections were made with the program SADABS. ${ }^{[26]}$ The structure was solved by the Intrinsic Phasing methods and refined by least-squares methods again F^{2} using SHELXT-2014 and SHELXL-2014 ${ }^{[27]}$ with OLEX 2 interface. ${ }^{[28]}$ Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. The ORTEP plot was produced with SHELXL-2014 program.

[^16]Figure S2. View of crystal structure depicting 50\% probability displacement.

Crystal data	
Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}$
M_{r}	168.20
Crystal system, space group	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Temperature (K)	100
$a, b, c(\AA)$	5.5342 (2), 11.1421 (4), 14.6505 (6)
$V\left(\AA^{3}\right)$	903.39 (6)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.76
Crystal size (mm)	$0.18 \times 0.14 \times 0.10$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	$\begin{aligned} & \text { Multi-scan } \\ & S A D A B S \end{aligned}$
$T_{\text {min }}, T_{\text {max }}$	0.687, 0.753
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	22169, 1597, 1534
$R_{\text {int }}$	0.036
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.596
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.026, 0.068, 1.06
No. of reflections	1597
No. of parameters	115
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.13, -0.13

| Absolute structure | Flack
 (Parsons, S.; Flack, H. D.; Wagner, T. Acta Cryst., 2013, B69, 249-259.) |
| :--- | :--- | :--- |
| Absolute structure parameter | $0.05(5)$ |

Fluorohydrin 10i:

Fluorohydrin $\mathbf{1 0 i}$ was crystallized from hexanes $/ \mathrm{Et}_{2} \mathrm{O}$. A crystal was mounted on a diffractometer and data was collected at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II DUO CCD diffractometer $\left(\mathrm{Cu}_{\mathrm{K} \alpha}\right.$ radiation, $\left.\lambda=1.54178 \AA\right)$, equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at $30^{\circ}, 55^{\circ}, 80^{\circ}$ and 115° in 2θ. Data integration down to $0.84 \AA$ resolution was carried out using SAINT V8.34 C ${ }^{[26]}$ with reflection spot size optimization. Absorption corrections were made with the program SADABS. ${ }^{[26]}$ The structure was solved by the Intrinsic Phasing methods and refined by least-squares methods again F^{2} using SHELXT-2014 and SHELXL-2014 ${ }^{[27]}$ with OLEX 2 interface. ${ }^{[28]}$ Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. The ORTEP plot was produced with SHELXL-2014 program.

Figure S3. View of crystal structure depicting 50\% probability displacement.

Crystal data	
Chemical formula	$\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{O}_{3}$
M_{r}	612.70
Crystal system, space group	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Temperature (K)	100
$a, b, c(\AA)$	6.1061 (2), 18.8064 (5), 27.8827 (7)
$V\left(\AA^{3}\right)$	3201.88 (16)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.74
Crystal size (mm)	$0.16 \times 0.08 \times 0.06$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	$\begin{aligned} & \text { Multi-scan } \\ & S A D A B S \end{aligned}$
$T_{\text {min }}, T_{\text {max }}$	0.773, 0.864
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	56690, 5672, 5034
$R_{\text {int }}$	0.069

$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.596
Refinement	$0.042, \quad 0.111, \quad 1.07$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	5672
No. of reflections	416
No. of parameters	37
No. of restraints	H atoms treated by a mixture of independent and constrained refinement
H-atom treatment	$0.34,-0.25$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	Flack \quad x \quad determined \quad using \quad 1993 \quad quotients $\quad[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ Absolute structure
Absolute structure parameter	0.05 (7)

Fluorohydrin 10j:

Fluorohydrin $\mathbf{1 0 j}$ was crystallized from hexanes $/ \mathrm{Et}_{2} \mathrm{O}$. A crystal was mounted on a diffractometer and data was collected at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II DUO CCD diffractometer $\left(\mathrm{Mo}_{\mathrm{K} \alpha}\right.$ radiation, $\left.\lambda=0.71073 \AA\right)$, equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 0.5° scans in ω at 28° in 2θ. Data integration down to $0.78 \AA$ resolution was carried out using SAINT V8.34 $\mathrm{C}^{[26]}$ with reflection spot size optimization. Absorption corrections were made with the program SADABS. ${ }^{[26]}$ The structure was solved by the direct methods procedure and refined by least-squares methods again F^{2} using SHELXT-2014 and SHELXL-2014 ${ }^{[27]}$ with OLEX 2 interface. ${ }^{[28]}$ Non-hydrogen atoms were refined
anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. The ORTEP plot was produced with SHELXL-2014 program.

Figure S4. View of crystal structure depicting 50\% probability displacement.

Crystal data	
Chemical formula	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrFO}$
M_{r}	233.08
Crystal system, space group	Monoclinic, $P 2_{1}$
Temperature (K)	100
$a, b, c(\AA)$	$8.013(3), 5.1662(18), 10.972(4)$
$\beta\left(^{\circ}\right)$	$93.376(5)$
$V\left(\AA^{3}\right)$	$453.4(3)$
Z	2
Radiation type	Mo Ka
$\mu\left(\mathrm{mm}{ }^{-1}\right)$	4.50
Crystal size (mm)	$0.14 \times 0.12 \times 0.10$
	Bruker D8 goniometer with CCD area detector diffractometer Data collection Diffractometer Absorption correction $T_{\text {min }}, T_{\text {max }}$

No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	10136, 2018, 1898
$R_{\text {int }}$	0.037
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.646
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.019, 0.047, 1.04
No. of reflections	2018
No. of parameters	114
No. of restraints	1
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.32, -0.20
Absolute structure	Flack $\quad \mathrm{x} \quad$ determined using 805 quotients $\quad[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, S.; Flack, H. D.; Wagner, T. Acta Cryst., 2013, B69, 249-259.)
Absolute structure parameter	-0.008 (9)

[^0]: ${ }^{[1]}$ Mao, G.; Orita, A.; Matsuo, D.; Hirate, T.; Iwanaga, T.; Toyota, S.; Otera, J. Tetrahedron Lett. 2009, 50, 2860-2864.

[^1]: ${ }^{[2]}$ Dickie, D. A.; Chan, A. Y. C.; Jalali, H.; Jenkins, H. A.; Yu, H.-Z.; Clyburne, J. A. C. Chem. Commun. 2004, 2432-2433.
 ${ }^{[3]}$ Branca, M.; Pena, S.; Guillot, R.; Gori, D.; Alezra, V.; Kouklovsky, C. J. Am. Chem. Soc. 2009, 131, 10711-10718.

[^2]: ${ }^{[4]}(R, R)$-1,2-trans-diaminocyclohexane was resolved according to: a) Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem. 1994, 59, 1939-1942; b) Larrow, J. F.; Jacobsen, E. N. Org. Synth. 1998, 75, 1-6.

[^3]: ${ }^{[5]}$ Fu, J.-Y.; Xu, X.-Y.; Li, Y.-C.; Huang, Q.-C.; Wang, L.-X. Org. Biomol. Chem. 2010, 8, 4524-4526.
 ${ }^{[6]}$ Baumann, T.; Vogt, H.; Bräse, S. Eur. J. Org. Chem. 2007, 2007, 266-282.

[^4]: ${ }^{[7]}$ Hoffmann, S.; Nicoletti, M.; List, B. J. Am. Chem. Soc. 2006, 128, 13074-13075.
 ${ }^{[8]}$ Vyas, D. J.; Larionov, E.; Besnard, C.; Guénée, L.; Mazet, C. J. Am. Chem. Soc. 2013, 135, 6177-6183.
 ${ }^{[9]}$ List, B.; Čorić, I.; Grygorenko, O. O.; Kaib, P. S. J.; Komarov, I.; Lee, A.; Leutzsh, M.; Pan, S. C.; Tymtsunik, A. V.; Van Gammeren, M. Angew. Chem. Int. Ed. 2014, 53, 282-285.

[^5]: ${ }^{[10]}$ Friest, J. A.;. Maezato, Y; Broussy, S.; Blum, P.; Berkowitz, D. B. J. Am. Chem. Soc. 2010, 132, 59305931.

[^6]: ${ }^{[11]}$ For comparison: Du, Z.; Kawatani, T.; Kataoka, K.; Omatsu, R.; Nokami, J. Tetrahedron 2012, 68, 2471-2480.
 ${ }^{[12]}$ For comparison: DeBergh, J. R.; Spivey, K. M.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 7828-7829.

[^7]: ${ }^{[14]}$ For comparison: Ishibashi, H.; Maeki, M.; Yagi, J.; Ohba, M.; Kanai, T. Tetrahedron 1999, 55, 60756080.

[^8]: ${ }^{[15]}$ For comparison: Cleji, M.; Archelas, A.; Furstoss, R. Tetrahedron: Asymmetry 1998, 9, 1839-1842.

[^9]: ${ }^{[16]}$ For comparison: Agami, C.; Couty, F.; Lequesne, C. Tetrahedron 1995, 51, 4043-4056.

[^10]: ${ }^{[17]}$ For comparison: Brandes, S.; Niess, B.; Bella, M.; Prieto, A.; Overgaard, J.; Jørgensen, K. A. Chem.-Eur. J. 2006, 12, 6039-6052.

[^11]: ${ }^{[18]}$ For comparison: Goj, O.; Burchardt, A.; Haufe, G. Tetrahedron: Asymmetry 1997, 8, 399-408.

[^12]: ${ }^{[19]}$ For comparison: Lee, S. Y.; Neufeind, S.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 8899-8902.

[^13]: ${ }^{[20]}$ For comparison: Theodorou, A.; Papadopoulos, G. N.; Kokotos, C. G. Tetrahedron 2013, 69, 54385443.

[^14]: ${ }^{[21]}$ For comparison: Paulmier, C.; Outurquin, F.; Plaquevant, J.-C. Tetrahedron Lett. 1988, 29, 5889-5891.

[^15]: ${ }^{[22]}$ Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg,

[^16]: ${ }^{[26]}$ Bruker AXS APEX II, Bruker AXS, Madison, Wisconsin, 2014.
 ${ }^{[27]}$ Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
 ${ }^{[28]}$ Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

