Supporting Information

Facile Synthesis of Carbazoles via a Tandem Iodocyclization with

1,2-Alkyl Migration and Aromatization

Jia Wang,[†] Hai-Tao Zhu,[§] Yi-Feng Qiu,[†] Yuan Niu,[†] Si Chen, [†] Ying-Xiu

Li,[†] Xue-Yuan Liu[†] and Yong-Min Liang*^{,†,‡}

State Key Laboratory of Applied Organic Chemistry, Lanzhou University

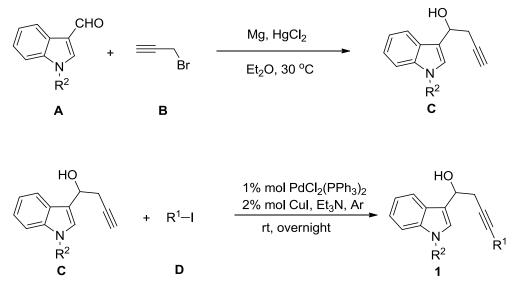
Lanzhou 730000, Fax: 0086-931-8912582 Tel: 0086-931-8912582

E-mail: liangym@lzu.edu.cn

Table of Contents

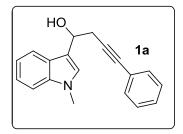
1	General Remarks	S2	
2	General Procedure for the Synthsis of Substrates (1a-1j, 1l-1n	S2 - S3	
	and 1s-1t)		
3	Characterization Data of 1a-1j, 1l-1n and 1s-1t	S3 - S7	
4	General Procedure for the Synthsis of 1k	S8	
5	Characterization Data of 1k	S8 - S9	
6	General Procedure for the Synthsis of 10-1r	S9	
7	Characterization Data of 10-1r	S10 - S11	
8	General Procedure for the Synthsis of 1u and 1v	S11	
9	Characterization Data of 1u and 1v	S11 - S12	
10	General Procedure for the Synthsis of Products	S12	
11	Characterization Data of Products	S13 - S20	
12	Typical Procedure for 3aa and 3ab Synthesis and		
	S2 Characterization Data of 3aa and 3ab		
13	Crystallographic data of 2e	S22	
14	Crystallographic data of 2v	S23	
15	¹ H NMR and ¹³ C NMR Spectra for Substrates	S24 - S67	
16	¹ H NMR and ¹³ C NMR Spectra for Products	S68 - S113	

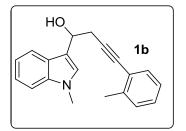
General Remarks


Column chromatography was carried out on silica gel. ¹H NMR spectra were recorded on 400 MHz in CDCl₃/DMSO and ¹³C NMR spectra were recorded on 100 MHz in CDCl₃/DMSO. IR spectra were recorded on a FT-IR spectrometer and only major peaks are reported in cm⁻¹. All products were further characterized by high resolution mass spectra (HRMS); Copies of their ¹H NMR and ¹³C NMR spectra are provided in the Supporting Information. Room temperature is 23–25 °C. The ICl was 1 M in CH₂Cl₂. THF were distilled over Na/benzophenone, dichloromethane, *i*PrOH, CH₃CN, CH₃NO₂ and CH₃COCH₃ were distilled over CaH₂, and other solvents were used without further purification.

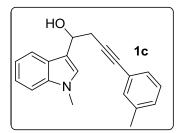
Synthetic Procedures and Spectral Data

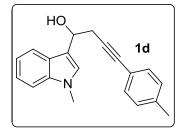
1-(1-methyl-1*H*-indol-3-yl)-4-phenylbut-3-yn-1-ol derivatives (1a-1j,

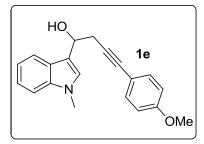

11-1n and 1s-1t)

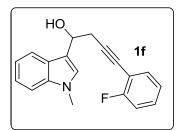

A mixture of Mg powders (15 mmol, 360 mg) and HgCl₂ (0.12 mmol, 32.4 mg, 0.8 mol %) in Et₂O (30 mL) was stirred vigorously for 15 min at room temperature. After that, a small amount of a solution of the corresponding propargylic bromide (18 mmol) was added. Then, the reaction mixture was stirred at 30 °C. When the reaction mixture started to bubble and became turbid, continuing to stir for 15 min. Subsequently, the reaction mixture was stirred for 30 min at room temperature. Then, a solution of indole-3-carboxaldehyde derivatives **A** (10 mmol) in THF (5 mL) were added dropwise through a syringe. The resulting solution was stirred at room temperature for 2 h. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by water, and extracted with ethyl acetate (3 x 40 mL). The combined organic layers were washed with water, brine, dried over

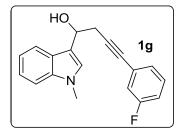
 Na_2SO_4 , and concentrated under reduced pressure. The crude material was purified by flash column chromatography (petroleum ether/EtOAc = 4/1) to give C.

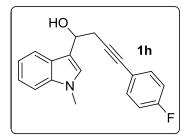

To a soluton of **C** in Et₃N (10 mL) was added PdCl₂ (PPh₃)₂ (1 mol %) and CuI (2 mol %) and the reaction vial was flushed with Ar and the reaction mixture was stirred for 5 minutes. A solution of **D** in Et₃N (5 mL) were then added dropwise through a syringe for 5 minutes. The resulting solution was stirred at room temperature overnight. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by addition of saturated aqueous ammonium chloride (10 mL) and extracted with ethyl acetate (3 x 40 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (petroleum ether/EtOAc = 4/1) to give the substrate **1**.

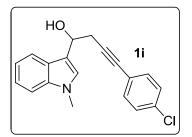

1-(1-methyl-1*H*-indol-3-yl)-4-phenylbut-3-yn-1-ol **1a** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, J = 7.6 Hz, 1H), 7.37 (d, J = 2.8 Hz, 2H), 7.26-7.20 (m, 5H), 7.11 (t, J = 7.2 Hz, 1H), 7.06 (s, 1H), 5.23 (t, J = 6.4 Hz, 1H), 3.66 (s, 3H), 3.02 (d, J = 6.4 Hz, 2H), 2.53 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.1, 131.6, 128.1, 127.7, 126.1, 126.0, 123.4, 121.8, 119.5, 119.2, 116.6, 109.3, 86.9, 82.9, 66.8, 32.6, 29.3.

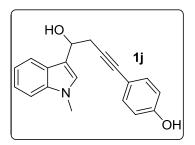

1-(1-methyl-1*H*-indol-3-yl)-4-(o-tolyl)but-3-yn-1-ol **1b** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.26-7.19 (m, 3H), 7.14-7.10 (m, 3H), 7.06 (d, *J* = 7.2 Hz, 2H), 5.22 (t, *J* = 6.0 Hz, 1H), 3.65 (s, 3H), 3.07 (d, *J* = 6.0 Hz, 2H), 2.51 (s, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 139.9, 137.1, 131.8, 129.2, 127.7, 126.1, 125.3, 123.2, 121.8, 119.5, 119.2, 116.5, 109.3, 90.6, 81.8, 66.9, 32.5, 29.3, 20.6.

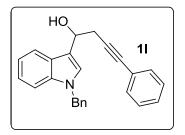

1-(1-methyl-1*H*-indol-3-yl)-4-(m-tolyl)but-3-yn-1-ol **1c** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.75 (d, J = 7.6 Hz, 1H), 7.29-7.18 (m, 4H), 7.15-7.10 (m, 2H), 7.06 (d, J = 9.2 Hz, 2H), 5.24 (t, J = 6.4 Hz, 1H), 3.69 (s, 3H), 3.03 (d, J = 6.4 Hz, 2H), 2.50 (s, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.7, 137.1, 132.2, 128.7, 128.6, 128.0, 126.1, 126.0, 123.2, 121.8, 119.5, 119.3, 116.6, 109.3, 86.4, 83.1, 66.8, 32.6, 29.3, 21.1.

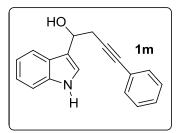

1-(1-methyl-1*H*-indol-3-yl)-4-(p-tolyl)but-3-yn-1-ol **1d** Pale yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.74 (d, *J* = 8.0 Hz, 1H), 7.28-7.20 (m, 4H), 7.13-7.08 (m, 2H), 7.06 (d, *J* = 7.6 Hz, 2H), 5.23 (t, *J* = 6.4 Hz, 1H), 3.69 (s, 3H), 3.02 (d, *J* = 6.4 Hz, 2H), 2.48 (s, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.8, 137.1, 131.5, 128.9, 126.2, 126.0, 121.8, 120.3, 119.5, 119.3, 116.6, 109.3, 86.0, 83.0, 66.9, 32.6, 29.4, 21.3.

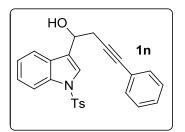

4-(4-methoxyphenyl)-1-(1-methyl-1*H*-indol-3-yl)but-3-yn-1-ol **1e** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, J = 8.0 Hz, 1H), 7.31-7.18 (m, 4H), 7.12-7.08 (m, 1H), 7.06 (s, 1H), 6.76 (d, J = 8.8 Hz, 2H), 5.22 (t, J = 6.0 Hz, 1H), 3.73 (s, 3H), 3.67 (s, 3H), 3.00 (d, J = 6.0 Hz, 2H), 2.55 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.2, 137.1, 132.9, 126.1, 126.0, 121.8, 119.5, 119.2, 116.7, 115.5, 113.8, 109.3, 85.2, 82.7, 66.8, 55.1, 32.6, 29.4.

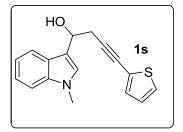

4-(2-fluorophenyl)-1-(1-methyl-1*H*-indol-3-yl)but-3-yn-1-ol **1f** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.72 (d, J = 7.6 Hz, 1H), 7.36-7.32 (m, 1H), 7.27-7.17 (m, 3H), 7.12-7.09 (m, 2H), 7.22-6.98 (m, 2H), 5.24 (t, J = 6.0 Hz, 1H), 3.68 (s, 3H), 3.05 (d, J = 5.6 Hz, 2H), 2.54 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.1, 161.6, 137.0, 133.5, 129.4, 129.4, 126.2, 126.1, 123.8, 123.7, 121.8, 119.4,

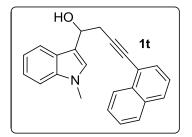

4-(3-fluorophenyl)-1-(1-methyl-1*H*-indol-3-yl)but-3-yn-1-ol **1g** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.74 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.26-7.18 (m, 2H), 7.13 (t, J = 8.0 Hz, 2H), 7.09-7.05 (m, 2H), 6.98-6.94 (m, 1H), 5.25 (t, J = 6.0 Hz, 1H), 3.72 (s, 3H), 3.03 (d, J = 5.6 Hz, 2H), 2.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.5, 161.0, 137.1, 129.7, 129.6, 127.5, 127.5, 126.0, 125.4, 125.3, 121.9, 119.5, 119.4, 118.5, 118.3, 116.5, 115.2, 115.0, 109.4, 88.0, 81.7, 66.8, 32.7, 29.2.


4-(4-fluorophenyl)-1-(1-methyl-1*H*-indol-3-yl)but-3-yn-1-ol **1h** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, J = 7.6 Hz, 1H), 7.34-7.31 (m, 2H), 7.29-7.19 (m, 2H), 7.14-7.10 (m, 1H), 7.07 (s, 1H), 6.93 (t, J = 8.8 Hz, 2H), 5.23 (t, J = 6.0 Hz, 1H), 3.69 (s, 3H), 3.01 (d, J = 5.6 Hz, 2H), 2.51 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.4, 160.9, 137.1, 133.4, 133.4, 126.1, 126.0, 121.9, 119.5, 119.3, 116.6, 115.4, 115.2, 109.4, 86.5, 81.7, 66.8, 32.6, 29.2.

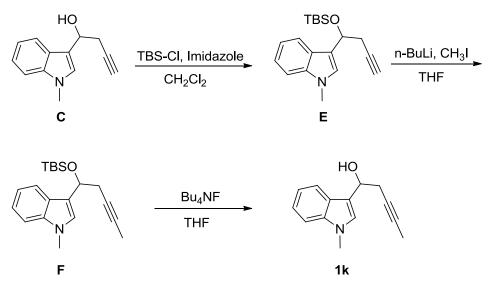

4-(4-chlorophenyl)-1-(1-methyl-1*H*-indol-3-yl)but-3-yn-1-ol **1i** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 (d, J = 8.0 Hz, 1H), 7.28-7.25 (m, 3H), 7.23-7.19 (m, 3H), 7.14-7.10 (m, 1H), 7.06 (s, 1H), 5.23 (t, J = 6.4 Hz, 1H), 3.69 (s, 3H), 3.02-3.00 (m, 2H), 2.47 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.1, 133.7, 132.8, 128.4, 126.1, 126.0, 121.9, 121.9, 119.5, 119.3, 116.6, 109.4, 88.2, 81.7, 66.8, 32.6, 29.3.


4-(4-hydroxy-4-(1-methyl-1*H*-indol-3-yl)but-1-yn-1-yl)phenol **1j** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.70 (d, J = 8.0 Hz, 1H), 7.26-7.20 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.12-7.09 (m, 1H), 7.03 (s, 1H), 6.64 (d, J = 8.8 Hz, 2H), 5.23 (t, J = 6.4 Hz, 1H), 4.81 (s, 2H), 3.64 (s, 3H), 3.01-2.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 155.9, 137.0, 133.1, 126.2, 126.1, 121.9, 119.4, 119.4, 116.0, 115.5, 114.9, 109.4, 84.6, 83.0, 67.0, 32.6, 29.1.


1-(1-benzyl-1*H*-indol-3-yl)-4-phenylbut-3-yn-1-ol **1**l Pale yellow solid, ¹H NMR (400 MHz, DMSO) δ ppm 7.78 (d, *J* = 8.0 Hz, 1H), 7.53 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.32 (s, 5H), 7.23 (s, 5H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 5.46 (d, *J* = 4.4 Hz, 1H), 5.40 (s, 2H), 5.17 (s, 1H). ¹³C NMR (100 MHz, DMSO) δ ppm 138.2, 136.2, 131.2, 128.4, 127.8, 127.2, 127.0, 126.4, 126.2, 123.4, 121.2, 119.8, 118.7, 118.0, 110.0, 88.7, 81.7, 65.8, 49.0, 29.1.

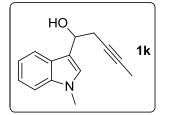

1-(1*H*-indol-3-yl)-4-phenylbut-3-yn-1-ol **1m** Yellow oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.19 (s, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.38-7.36 (m, 2H), 7.26-7.23 (m, 4H), 7.19-7.15 (m, 1H), 7.11 (t, J = 7.2 Hz, 1H), 7.05 (s, 1H), 5.24-5.21 (m, 1H), 3.02-3.00 (m, 2H), 2.63 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 136.3, 131.6, 128.2, 127.8, 125.6, 123.3, 122.2, 121.6, 119.7, 119.3, 117.6, 111.3, 86.8, 83.0, 66.9, 29.1.

4-phenyl-1-(1-tosyl-1*H*-indol-3-yl)but-3-yn-1-ol **1n** Yellow oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.96 (d, J = 8.4 Hz, 1H), 7.69-7.64 (m, 4H), 7.36-7.34 (m, 2H), 7.31-7.24 (m, 4H), 7.21 (d, J = 9.2 Hz, 1H), 6.98 (d, J = 8.0 Hz, 2H), 5.14 (t, J = 5.6 Hz, 1H), 3.00 (t, J = 6.0 Hz, 2H), 2.77 (s, 1H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 144.8, 135.3, 134.9, 131.6, 129.7, 128.8, 128.2, 128.0, 126.7, 124.8, 123.9, 123.2, 123.1, 120.3, 113.6, 85.5, 83.6, 66.3, 28.5, 21.4.

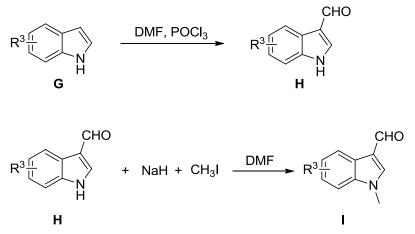


1-(1-methyl-1*H*-indol-3-yl)-4-(thiophen-2-yl)but-3-yn-1-ol **1s** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.71 (d, *J* = 8.0 Hz, 1H), 7.26-7.19 (m, 2H), 7.16-7.10 (m, 3H), 7.03 (s, 1H), 6.88 (t, *J* = 4.4 Hz, 1H), 5.20 (t, *J* = 6.0 Hz, 1H), 3.65 (s, 3H), 3.01 (d, *J* = 6.4 Hz, 2H), 2.53 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.1, 131.4, 126.7, 126.2, 126.0, 123.5, 121.8, 119.5, 119.3, 116.4, 109.3, 91.1, 76.0, 66.7, 32.6, 29.5.

1-(1-methyl-1*H*-indol-3-yl)-4-(naphthalen-1-yl)but-3-yn-1-ol **1t** Pale yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.11 (d, *J* = 7.6 Hz, 1H), 7.78-7.75 (m, 2H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.45-7.38 (m, 2H), 7.35-7.31 (m, 1H), 7.28-7.21 (m, 2H), 7.15-7.11 (m, 1H), 7.09 (s, 1H), 5.32 (t, *J* = 6.4 Hz, 1H), 3.63 (s, 3H), 3.19 (d, *J* = 6.4 Hz, 2H), 2.54 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.2, 133.4, 133.1, 130.1, 128.2, 128.1, 126.4, 126.3, 126.2, 126.1, 125.1, 121.9, 121.1, 119.5, 119.3, 116.6, 109.4, 91.8, 80.9, 67.0, 32.6, 29.5.

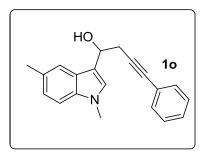

Synthesis of 1k

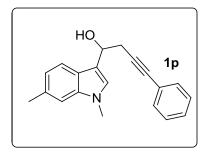
To a solution of 1-(1-methyl-1H-indol-3-yl)but-3-yn-1-ol C (10 mmol) in dry CH₂Cl₂, was added imidazole (22)mmol, 2.2 equiv), TBS-Cl (tert-butylchlorodimethylsilane, 15 mmol, 1.5 equiv), in sequence at 0 °C. After stirring 30 minutes at 0 °C, the resulting solution was stirred at room temperature overnight. The mixture was quenched by addition of water (30 mL) and extracted with CH₂Cl₂ (3 x 40 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (petroleum ether/EtOAc =30/1) to give **E**.


To a solution of **E** in THF with Ar was cooled to $-40 \,^{\circ}$ C and n-BuLi (1.1 equiv) was added dropwise, followed by dropwise addition of CH₃I (1.5 equiv) and the resulting mixture was removed to room temperature. After 2 h, the mixture was quenched by water, and extracted with ethyl acetate (3 x 40 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (petroleum ether/EtOAc = 30/1) to give **F**.

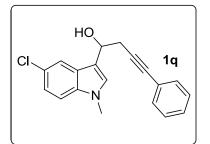
To a solution of **F** in THF was added tetrabutylammonium fluoride (2.0 equiv) and the resulting solution was stirred at room temperature for 4 h, When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by water, and extracted with ethyl acetate (3 x 40 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (petroleum ether/EtOAc = 10/1) to give **1k**.

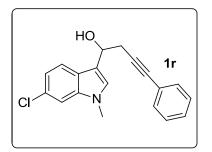
1-(1-methyl-1*H*-indol-3-yl)pent-3-yn-1-ol **1k** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.69 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 7.02 (s, 1H), 5.10 (t, J = 6.4 Hz, 1H), 3.68 (s, 3H), 2.75-2.73 (m, 2H), 2.47 (s, 1H), 1.79 (t, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.0, 126.1, 125.9, 121.7, 119.4, 119.1, 116.6, 109.3, 78.2, 76.9, 66.8, 32.6, 28.5, 3.5.


Synthesis of 10-1r

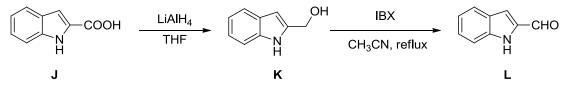

To a well-stirred solution of indole derivatives **G** (20 mmol) in anhydrous DMF (24ml) under dry argon atmosphere, phosphorus chloride oxide (60 mmol, 5.6 ml, 3.0 equiv) was added at 0 °C and the resulting mixture was stirred at room temperature. After being stirred for 1h, the reaction mixture was poured into cold saturated NaHCO₃ solution (aqueous) and stirred for 30 min. The reaction mixture was extracted by ethyl acetate for several times. The combined organic layer was dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified by silica gel flash column chromatography (petroleum ether/EtOAc = 2/1) to provide desired products **H**.

To a solution of **H** in DMF was added NaH (60%, 2 equiv) slowly at 0 °C, The resulting solution was stirred 2h at 0 °C, Then, the CH₃I (2 equiv) was added dropwise through a syringe. The reaction mixture was stirred at room temperature for another 2h. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by water and extracted by ethyl acetate for three times. The combined organic layer was dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified by silica gel flash column chromatography (petroleum ether/EtOAc = 2/1) to provide desired products **I**.


The substrate **10-1r** was synthesized from **I** according to general procedure as mentioned above.

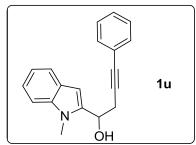

1-(1,5-dimethyl-1*H*-indol-3-yl)-4-phenylbut-3-yn-1-ol **10** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.54 (s, 1H), 7.39-7.37 (m, 2H), 7.25-7.24 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 12.4 Hz, 1H), 5.22 (t, *J* = 6.0 Hz, 1H), 3.66 (s, 3H), 3.03 (d, *J* = 6.8 Hz, 2H), 2.44 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 135.6, 131.6, 128.5, 128.1, 127.8, 126.3, 126.1, 123.5, 119.2, 116.0, 109.1, 86.9, 82.9, 66.9, 32.6, 29.3, 21.4.

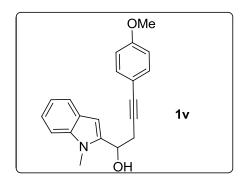
1-(1,6-dimethyl-1*H*-indol-3-yl)-4-phenylbut-3-yn-1-ol **1p** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.59 (d, *J* = 7.6 Hz, 1H), 7.37-7.35 (m, 2H), 7.22-7.20 (m, 3H), 7.03 (s, 1H), 6.93 (d, *J* = 5.6 Hz, 2H), 5.17 (t, *J* = 6.0 Hz, 1H), 3.58 (s, 3H), 2.98 (d, *J* = 6.0 Hz, 2H), 2.65 (s, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.5, 131.5, 131.5, 128.0, 127.6, 125.4, 123.9, 123.4, 120.9, 119.1, 116.4, 109.2, 87.0, 82.7, 66.8, 32.4, 29.2, 21.7.



1-(5-chloro-1-methyl-1*H*-indol-3-yl)-4-phenylbut-3-yn-1-ol **1q** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.72 (s, 1H), 7.38-7.36 (m, 2H), 7.27-7.25 (m, 3H), 7.14 (s, 2H), 7.08 (s, 1H), 5.15 (t, *J* = 5.6 Hz, 1H), 3.66 (s, 3H), 2.98 (d, *J* = 5.6 Hz, 2H), 2.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 135.5, 131.6, 128.2, 127.9, 127.3, 127.1, 125.1, 123.3, 122.1, 119.1, 116.3, 110.4, 86.4, 83.1, 66.6, 32.8, 29.4.

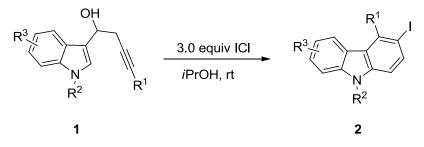
1-(6-chloro-1-methyl-1*H*-indol-3-yl)-4-phenylbut-3-yn-1-ol **1r** Yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.60 (d, *J* = 8.8 Hz, 1H), 7.37-7.34 (m, 2H), 7.25-7.23 (m, 4H), 7.07-7.04 (m, 1H), 7.02 (s, 1H), 5.18-5.14 (m, 1H), 3.60 (s, 3H), 2.97 (d, *J* = 6.0 Hz, 2H), 2.62 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.5, 131.5, 128.2, 127.9, 126.7, 124.7, 123.3, 120.5, 119.9, 116.8, 109.4, 86.5, 83.0, 66.6, 32.7, 29.3.


Synthesis of 1u and 1v

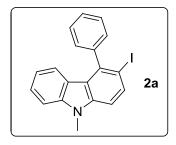

To a solution of indole-2-carboxylic acid **J** (50 mmol) in dry THF (150 mL) was added LiAlH₄ (100 mmol, 2.0 equiv) slowly at 0 °C and the resulting mixture was stirred at room temperature. After being stirred for 4h, the reaction was quenched with water at 0 °C then filtered through a sand core funnel and washed with ethyl acetate (5 x 20 mL). The filtrate was extracted by ethyl acetate for several times and the combined organic layers were washed with water, brine, dried over Na₂SO₄. Concentration led to the yellow product **K**, which was used directly in the next reaction.

To a solution of (1*H*-indol-2-yl)methanol **K** (20 mmol) in anhydrous CH₃CN (40 mL) was added 2-iodoxybenzoic acid (26 mmol, 1.3 equiv), then the mixture was refluxed. After 2 hours, the reaction was cooled to room temperature and filtered through a sand core funnel, washed with ethyl acetate (3 x 20 mL). The combined organic layers were directly concentrated under reduced pressure. Purification of the residue by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) gave white product compound **L**.

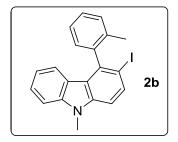
The substrate **1u** and **1v** were synthesized from **L** according to general procedure as mentioned above.

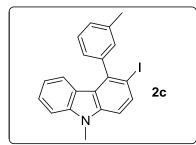


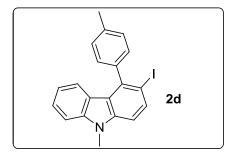
1-(1-methyl-1*H*-indol-2-yl)-4-phenylbut-3-yn-1-ol **1u** Pale yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.57 (d, *J* = 7.6 Hz, 1H), 7.39-7.37 (m, 2H), 7.25-7.18 (m, 5H), 7.08 (d, *J* = 7.6 Hz, 1H), 6.50 (s, 1H), 4.98 (q, *J* = 6.0 Hz, 1H), 3.67 (s, 3H), 3.05-3.04 (m, 2H), 2.55 (d, *J* = 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 139.9, 137.8, 131.6, 128.2, 128.0, 127.0, 123.0, 121.9, 120.8, 119.5, 109.1, 99.2, 85.6, 83.5, 65.3, 29.9, 27.5.

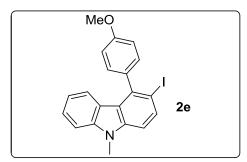


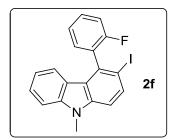
4-(4-methoxyphenyl)-1-(1-methyl-1*H*-indol-2-yl)but-3-yn-1-ol **1v** Pale yellow solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 (d, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.2 Hz, 1H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.53 (s, 1H), 5.02 (q, *J* = 6.0 Hz, 1H), 3.73 (s, 6H), 3.08-3.06 (m, 2H), 2.52 (d, *J* = 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.3, 140.0, 137.8, 133.0, 127.0, 121.9, 120.8, 119.5, 115.1, 113.8, 109.1, 99.2, 83.9, 83.4, 65.4, 55.2, 30.0, 27.5.


General procedure for synthesis of iodocarbazole compounds

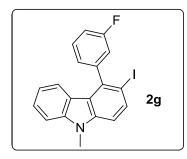

To a solution of **1** (0.20 mmol) in *i*PrOH (4.0 mL) was added ICl (0.6 mmol, 3.0 equiv) at room temperature. When the reaction was considered complete as determined by TLC analysis, the reaction mixture was quenched by addition of saturated aqueous sodium thiosulfate and diluted with ethyl acetate (3 x 15 mL), washed with water, saturated brine, dried over Na_2SO_4 and evaporated under reduced pressure. The residue was purified by chromatography on silica gel (petroleum ether/EtOAc = 30/1) to afford corresponding iodocarbazole derivatives **2**.


3-iodo-9-methyl-4-phenyl-9*H*-carbazole **2a** Pale yellow solid (68.2 mg, 89%), mp: 132-134 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (d, *J* = 8.4 Hz, 1H), 7.54-7.52 (m, 3H), 7.37-7.29 (m, 4H), 7.10 (d, *J* = 8.8 Hz, 1H), 6.89 (t, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.4, 141.0, 140.9, 140.7, 135.0, 129.2, 128.7, 128.0, 126.0, 122.4, 122.3, 122.1, 119.1, 109.5, 108.2, 88.2, 29.1. IR (neat, cm⁻¹): 2923, 1688, 1583, 1450, 1385, 1029, 740, 700. HRMS (ESI) *m*/*z* Calcd for C₁₉H₁₅IN: [M+H]⁺ = 384.0244. Found: 384.0229.

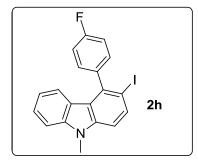

3-iodo-9-methyl-4-(o-tolyl)-9*H*-carbazole **2b** White solid (70.7 mg, 89%), mp: 128-130 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.94 (d, *J* = 8.4 Hz, 1H), 7.47-7.43 (m, 1H), 7.41-7.31 (m, 4H), 7.14 (t, *J* = 8.4 Hz, 2H), 6.92-6.88 (m, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 142.7, 140.8, 140.7, 140.6, 136.0, 135.0, 130.2, 129.0, 128.3, 126.4, 126.0, 122.3, 122.2, 121.8, 119.3, 109.4, 108.2, 88.4, 29.1, 19.5. IR (neat, cm⁻¹): 2925, 1583, 1448, 1312, 1156, 1024, 796, 749. HRMS (ESI) *m*/*z* Calcd for C₂₀H₁₇IN: [M+H]⁺ = 398.0400. Found: 398.0385.


3-iodo-9-methyl-4-(m-tolyl)-9*H*-carbazole **2c** Pale yellow solid (72.3 mg, 91%), mp: 112-114 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (d, *J* = 8.8 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.38-7.29 (m, 3H), 7.14-7.09 (m, 3H), 6.92-6.88 (m, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 3.78 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.3, 141.2, 140.9, 140.6, 138.3, 135.0, 129.7, 128.7, 128.6, 126.1, 125.9, 122.4, 122.3, 122.1, 119.0, 109.4, 108.2, 88.3, 29.1, 21.6. IR (neat, cm⁻¹): 2925, 1584, 1450, 1351, 1122, 1024, 790, 743. HRMS (ESI) *m*/*z* Calcd for C₂₀H₁₇IN: [M+H]⁺ = 398.0400. Found: 398.0384.

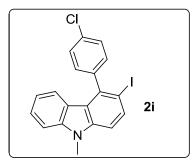
3-iodo-9-methyl-4-(p-tolyl)-9*H*-carbazole **2d** Pale yellow solid (72.3 mg, 91%), mp: 154-156 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (d, *J* = 8.4 Hz, 1H), 7.38-7.29 (m, 4H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 1H), 6.91 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 3.78 (s, 3H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 141.1, 140.9, 140.7, 140.5, 137.6, 135.0, 129.5, 129.0, 125.9, 122.5, 122.3, 122.2, 119.0, 109.4, 108.2, 88.7, 29.1, 21.5. IR (neat, cm⁻¹): 2924, 1584, 1449, 1329, 1123, 1023, 790, 746. HRMS (ESI) *m*/*z* Calcd for C₂₀H₁₇IN: [M+H]⁺ = 398.0400. Found: 398.0382.

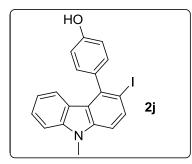


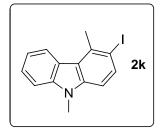
3-iodo-4-(4-methoxyphenyl)-9-methyl-9*H*-carbazole **2e** Pale yellow solid (76.0 mg, 92%), mp: 130-132 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91 (d, *J* = 8.8 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.23-7.20 (m, 2H), 7.09-7.06 (m, 3H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 3.91 (s, 3H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.3, 140.8, 140.8, 140.7, 135.9, 134.9, 130.3, 125.9, 122.7, 122.3, 122.2, 119.0, 114.1, 109.4, 108.2, 89.3, 55.2, 29.1. IR (neat, cm⁻¹):2954, 2932, 1513, 1450, 1312, 1029, 792, 747. HRMS (ESI) *m*/*z* Calcd for C₂₀H₁₇INO: [M+H]⁺ = 414.0349. Found: 414.0332.

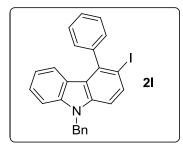


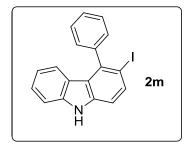
4-(2-fluorophenyl)-3-iodo-9-methyl-9*H*-carbazole **2f** Pale yellow solid (56.9 mg, 71%), mp: 130-132 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.93 (d, *J* = 8.8 Hz, 1H), 7.57-7.52 (m, 1H), 7.40-7.27 (m, 5H), 7.13 (d, *J* = 8.8 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.7, 158.3, 140.9, 140.6, 135.0, 134.9, 131.5, 131.5, 130.8, 130.7, 130.4, 130.3, 126.2,

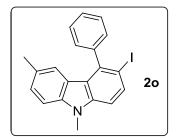

124.6, 124.6, 122.8, 121.8, 121.6, 119.3, 116.3, 116.1, 110.1, 108.4, 88.5, 29.1. IR (neat, cm⁻¹): 2924, 1583, 1450, 1314, 1103, 1026, 795, 747. HRMS (ESI) *m/z* Calcd for $C_{19}H_{14}FIN$: $[M+H]^+ = 402.0149$. Found: 402.0136.

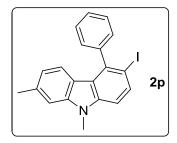

4-(3-fluorophenyl)-3-iodo-9-methyl-9*H*-carbazole **2g** Pale yellow solid (58.5 mg, 73%), mp: 116-118 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.93 (d, *J* = 8.8 Hz, 1H), 7.52 (q, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.26-7.21 (m, 1H), 7.14 (d, *J* = 8.8 Hz, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 9.6 Hz, 1H), 6.95-6.91 (m, 1H), 6.70-6.68 (m, 1H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.2, 161.7, 145.4, 145.3, 140.9, 140.6, 139.6, 135.1, 130.5, 130.4, 126.2, 125.1, 122.3, 122.1, 121.7, 119.2, 116.6, 116.4, 115.1, 114.9, 109.8, 108.4, 87.6, 29.1. IR (neat, cm⁻¹): 2927, 1583, 1450, 1350, 1121, 1024, 787, 746. HRMS (ESI) *m/z* Calcd for C₁₉H₁₄FIN: [M+H]⁺ = 402.0149. Found: 402.0134.

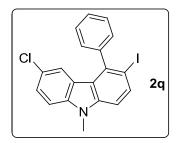

4-(4-fluorophenyl)-3-iodo-9-methyl-9*H*-carbazole **2h** yellow solid (56.9 mg, 71%), mp: 188-190 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91 (d, *J* = 8.8 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.28-7.20 (m, 4H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.68 (t, *J* = 8.0 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.8, 161.3, 140.9, 140.7, 139.9, 139.3, 139.3, 135.0, 131.1, 131.0, 126.1, 122.5, 122.1, 121.9, 119.1, 115.9, 115.7, 109.7, 108.4, 88.5, 29.1. IR (neat, cm⁻¹): 2925, 1510, 1449, 1315, 1092, 1026, 794, 745. HRMS (ESI) *m*/*z* Calcd for C₁₉H₁₄FIN: [M+H]⁺ = 402.0149. Found: 402.0131.

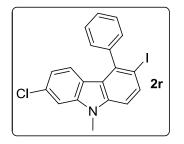

4-(4-chlorophenyl)-3-iodo-9-methyl-9*H*-carbazole **2i** Pale yellow solid (63.4 mg, 76%), mp: 166-168 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (d, *J* = 8.8 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.41-7.37 (m, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.25-7.21 (m, 2H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.96-6.92 (m, 1H), 6.71 (d, *J* = 8.0 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 141.7, 140.9, 140.6, 139.6, 135.0, 134.0, 130.7, 129.1, 126.2, 122.3, 122.1, 121.8, 119.2, 109.8, 108.4, 88.1, 29.2. IR (neat, cm⁻¹): 2925, 1584, 1448, 1313, 1087, 1016, 791, 747. HRMS (ESI) *m*/*z* Calcd for C₁₉H₁₄CIIN: [M+H]⁺ = 417.9854. Found: 417.9835.

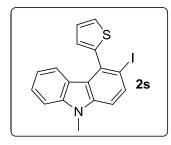

4-(3-iodo-9-methyl-9*H*-carbazol-4-yl)phenol **2j** Pale yellow solid (66.2 mg, 83%), mp: 76-78 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.90 (d, *J* = 8.4 Hz, 1H), 7.38-7.34 (m, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.20-7.16 (m, 2H), 7.08 (d, *J* = 8.8 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 2H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 5.05 (s, 1H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 155.4, 140.8, 140.7, 140.6, 135.9, 134.9, 130.5, 125.9, 122.7, 122.3, 122.1, 119.0, 115.7, 109.4, 108.2, 89.2, 29.1. IR (neat, cm⁻¹): 3368, 2927, 1585, 1449, 1311, 1023, 791, 747. HRMS (ESI) *m/z* Calcd for C₁₉H₁₅INO: [M+H]⁺ = 400.0193. Found: 400.0179.

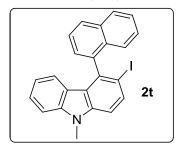

3-iodo-4,9-dimethyl-9*H*-carbazole **2k** Yellow solid (23.8 mg, 37%), mp: 88-90 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 8.15 (d, *J* = 7.6 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.50-7.46 (m, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 3.76 (s, 3H), 2.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.7, 140.7 136.0, 135.5, 125.6, 122.8, 122.8, 122.0, 119.2, 108.4, 108.1, 90.2, 29.0, 25.8. IR (neat, cm⁻¹): 2924, 1586, 1459, 1311, 1276, 1124, 740, 720. HRMS (ESI) *m/z* Calcd for C₁₄H₁₃IN: [M+H]⁺ = 322.0087. Found: 322.0081.

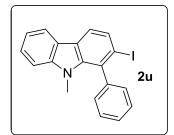

9-benzyl-3-iodo-4-phenyl-9*H*-carbazole **2l** White solid (76.2 mg, 83%), mp: 168-170 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.88 (d, *J* = 8.4 Hz, 1H), 7.56-7.53 (m, 3H), 7.36-7.34 (m, 2H), 7.29 (d, *J* = 6.0 Hz, 2H), 7.24-7.21 (m, 3H), 7.11-7.07 (m, 3H), 6.92-6.88 (m, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 5.44 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.3, 141.2, 140.5, 140.3, 136.6, 135.1, 129.2, 128.8, 128.8, 128.1, 127.6, 126.3, 126.1, 122.7, 122.4, 122.3, 119.4, 109.9, 108.7, 88.8, 46.5. IR (neat, cm⁻¹): 3058, 2923, 1582, 1447, 1329, 1027, 797, 747. HRMS (ESI) *m/z* Calcd for C₂₅H₁₉IN: [M+H]⁺ = 460.0557. Found: 460.0537.

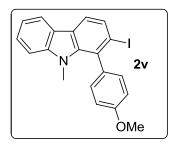

3-iodo-4-phenyl-9*H*-carbazole **2m** yellow solid (55.4 mg, 75%), mp: 96-98 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 8.00 (s, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.54 (s, 3H), 7.33-7.29 (m, 4H), 7.09 (d, *J* = 8.4 Hz, 1H), 6.91-6.88 (m, 1H), 6.63 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.3, 141.1, 139.4, 139.1, 135.2, 129.1, 128.8, 128.1, 126.1, 123.0, 122.6, 122.3, 119.5, 111.6, 110.4, 88.8. IR (neat, cm⁻¹): 3417, 1595, 1443, 1317, 1121, 1024, 802, 736. HRMS (ESI) *m/z* Calcd for C₁₈H₁₃IN: [M+H]⁺ = 370.0087. Found: 370.0074.


3-iodo-6,9-dimethyl-4-phenyl-9*H*-carbazole **20** Pale yellow solid (61.9 mg, 78%), mp: 80-82 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.90 (d, *J* = 8.4 Hz, 1H), 7.55-7.53 (m, 3H), 7.32-7.30 (m, 2H), 7.21-7.16 (m, 2H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.39 (s, 1H), 3.76 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.5, 141.0, 140.8, 139.2, 134.7, 129.2, 128.7, 128.2, 127.9, 127.3, 122.3, 122.2, 122.1, 109.4, 107.9, 87.8, 29.1, 21.4. IR (neat, cm⁻¹): 3056, 2920, 1586, 1449, 1302, 1027, 796, 737. HRMS (ESI) *m/z* Calcd for C₂₀H₁₇IN: [M+H]⁺ = 398.0400. Found: 398.0383.

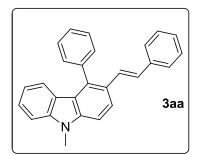

6-iodo-2,9-dimethyl-5-phenyl-9*H*-carbazole **2p** Yellow solid (61.9 mg, 78%), mp: 170-172 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.89 (d, *J* = 8.4 Hz, 1H), 7.56-7.51 (m, 3H), 7.32-7.30 (m, 2H), 7.10-7.06 (m, 2H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.51 (d, *J* = 8.0 Hz, 1H), 3.74 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.5, 141.3, 140.7, 140.6, 136.3, 134.5, 129.2, 128.7, 127.9, 122.6, 121.9, 120.6, 119.8, 109.4, 108.4, 88.1, 29.0, 22.1. IR (neat, cm⁻¹): 2923, 1587, 1449, 1305, 1127, 1026, 796, 738. HRMS (ESI) *m*/*z* Calcd for C₂₀H₁₇IN: [M+H]⁺ = 398.0400. Found: 398.0385.


6-chloro-3-iodo-9-methyl-4-phenyl-9*H*-carbazole **2q** Yellow solid (67.6 mg, 81%), mp: 116-118 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.96 (d, *J* = 8.4 Hz, 1H), 7.59-7.57 (m, 3H), 7.30-7.22 (m, 4H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.53 (d, *J* = 1.6 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 142.8, 141.3, 141.1, 139.2, 135.7, 128.9, 128.3, 126.0, 124.4, 123.1, 121.9, 121.6, 109.7, 109.2, 88.5, 29.3. IR (neat, cm⁻¹): 2926, 1582, 1445, 1297, 1075, 1018, 795, 760. HRMS (ESI) *m/z* Calcd for C₁₉H₁₄CIIN: [M+H]⁺ = 417.9854. Found: 417.9836.

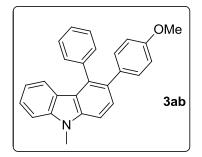

2-chloro-6-iodo-9-methyl-5-phenyl-9*H*-carbazole **2r** White solid (66.7 mg, 80%), mp: 180-182 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.93 (d, *J* = 8.4 Hz, 1H), 7.54-7.53 (m, 3H), 7.28-7.25 (m, 3H), 7.09 (d, *J* = 8.4 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 6.49 (d, *J* = 8.4 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 143.0, 141.4, 141.0, 140.9, 135.4, 131.9, 129.0, 128.8, 128.2, 123.0, 122.0, 120.6, 119.6, 109.7, 108.4, 88.8, 29.2. IR (neat, cm⁻¹): 2928, 1582, 1447, 1299, 1073, 1025, 796, 762. HRMS (ESI) *m*/*z* Calcd for C₁₉H₁₄CIIN: [M+H]⁺ = 417.9854. Found: 417.9837.


3-iodo-9-methyl-4-(thiophen-2-yl)-9*H*-carbazole **2s** White solid (63.8 mg, 82%), mp: 140-142 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.90 (d, *J* = 8.4 Hz, 1H), 7.55-7.54 (m, 1H), 7.41-7.37 (m, 1H), 7.30-7.24 (m, 2H), 7.11-7.05 (m, 2H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 144.1, 140.9, 140.4, 134.8, 133.4, 127.4, 127.2, 126.3, 126.3, 124.0, 122.3, 121.8, 119.3, 110.4, 108.3, 90.9, 29.1. IR (neat, cm⁻¹): 2926, 1584, 1447, 1276, 1182, 1023, 791, 746. HRMS (ESI) *m*/*z* Calcd for C₁₇H₁₃INS: [M+H]⁺ = 389.9808. Found: 389.9803.

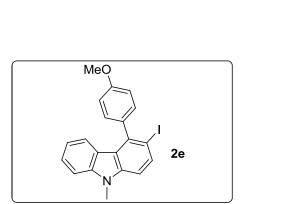
3-iodo-9-methyl-4-(naphthalen-1-yl)-9*H*-carbazole **2t** White solid (76.2 mg, 88%), mp: 174-176 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 8.01 (d, *J* = 8.8 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.27-7.24 (m, 3H), 7.21 (t, *J* = 7.6 Hz, 1H), 6.70-6.66 (m, 1H), 6.20 (d, *J* = 8.0 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 140.9, 140.8, 140.7, 139.2, 135.1, 133.7, 131.3, 128.4, 128.3, 126.9, 126.3, 126.1, 125.9, 125.8, 125.5, 123.3, 122.1, 121.9, 119.4, 109.7, 108.2, 89.3, 29.2. IR (neat, cm⁻¹): 3053, 2927, 1582, 1448, 1257, 1023, 791, 746. HRMS (ESI) *m*/*z* Calcd for C₂₃H₁₇IN: [M+H]⁺ = 434.0400. Found: 434.0392.

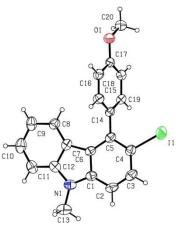

2-iodo-9-methyl-1-phenyl-9*H*-carbazole **2u** Pale yellow solid (52.1 mg, 68%), mp: 80-82 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 8.06 (d, *J* = 7.6 Hz, 1H), 7.76 (s, 2H), 7.49-7.47 (m, 3H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.32-7.29 (m, 2H), 7.26-7.21 (m, 2H), 3.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 142.5, 141.5, 138.6, 130.8, 129.6, 129.2, 128.2, 128.1, 126.3, 123.6, 122.0, 120.7, 120.0, 119.5, 108.9, 99.1, 31.9. IR (neat, cm⁻¹): 2924, 1579, 1435, 1397, 1232, 1052, 733, 700. HRMS (ESI) *m/z* Calcd for C₁₉H₁₅IN: [M+H]⁺ = 384.0244. Found: 384.0247.

2-iodo-1-(4-methoxyphenyl)-9-methyl-9*H*-carbazole **2v** Pale yellow solid (67.7 mg, 82%), mp: 122-124 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 8.04 (d, *J* = 7.6 Hz, 1H), 7.74 (s, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.22-7.18 (m, 3H), 7.00 (d, *J* = 8.4 Hz, 1H), 3.88 (s, 3H), 3.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.4, 141.4, 138.9, 134.8, 131.8, 129.3, 129.1, 126.2, 123.6, 122.0, 120.6, 120.0, 119.4, 113.4, 108.8, 100.2, 55.2, 32.0. IR (neat, cm⁻¹): 2930, 1609, 1511, 1397, 1246, 1031, 833, 736. HRMS (ESI) *m*/*z* Calcd for C₂₀H₁₇INO: [M+H]⁺ = 414.0349. Found: 414.0353.


Typical Procedure for 3aa and 3ab Synthesis and Characterization

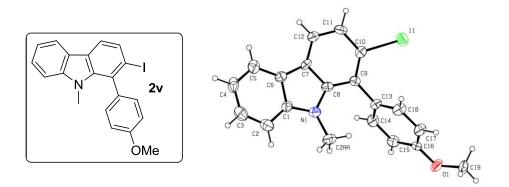
Data of 3aa and 3ab




(E)-9-methyl-4-phenyl-3-styryl-9H-carbazole То solution 3aa a of 3-iodo-9-methyl-4-phenyl-9H-carbazole 2a (76.6 mg, 0.20 mmol) in DMF (2 mL) was added K₂CO₃ (138.0 mg, 5.0 equiv), tetrabutylammonium bromide (128.8 mg, 2.0 equiv), Pd(OAc)₂(1.34 mg, 3 mol %). The reaction vial was flushed with Ar and the reaction mixture was stirred for 5 minutes at room temperature. A solution of styrene (208 mg, 10 equiv) in DMF (2 mL) was then added dropwise through a syringe. The resulting solution was stirred at 100 $\,^{\circ}$ C for 12 h. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched slowly by addition of aqueous 1M HCl (5 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to give **3aa** in 77% yield. White solid, mp: 162-164 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.94 (d, J = 8.8 Hz, 1H), 7.57-7.53 (m, 3H), 7.44 (d, J = 7.2 Hz, 2H), 7.40 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 6.0 Hz, 2H), 7.30 (d, J = 7.6 Hz, 2H), 7.25 (t, J = 7.6 Hz, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.11-6.97 (m, 2H), 6.92-6.88 (m, 1H), 6.79 (d, J = 8.0 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 141.3, 140.4, 139.2, 138.1, 136.3, 129.9, 128.7, 128.5, 127.6, 127.5, 126.8,

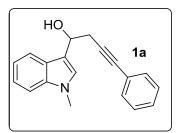
126.6, 126.2, 125.4, 122.9, 122.2, 121.4, 118.9, 108.3, 108.0, 29.1. IR (neat, cm⁻¹): 3054, 2926, 1585, 1462, 1312, 1026, 796, 746. HRMS (ESI) m/z Calcd for C₂₇H₂₂N: [M+H]⁺ = 360.1747. Found: 360.1741.

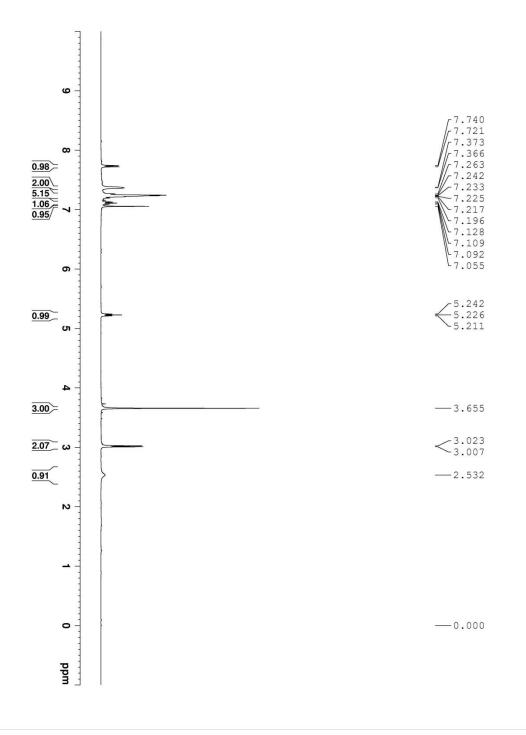
3-(4-methoxyphenyl)-9-methyl-4-phenyl-9H-carbazole 3ab To a solution of 3-iodo-9-methyl-4-phenyl-9H-carbazole 2a (76.6 mg, 0.20 mmol) in dioxane/H₂O (2:0.5 mL) was added 4-Methoxyphenylboronic acid (60.8 mg, 2.0 equiv), Pd(PPh₃)₄ (23.12 mg, 10 mol %), Na₂CO₃ (106 mg, 5.0 equiv). The reaction vial was flushed with Ar and the reaction mixture was stirred at 80 °C for 12 h. On completion, the reaction mixture was quenched with H₂O (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to give 3a (yield 90%) as a white solid. mp: 206-208 °C ¹H NMR (400 MHz, CDCl₃) δ ppm 7.52 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.35-7.29 (m, 7H), 7.09 (d, J = 8.4 Hz, 2H), 6.92-6.86 (m, 2H), 6.70 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 3.71 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ ppm 157.6, 141.5, 140.2, 139.9, 135.4, 134.3, 131.8, 131.4, 130.4, 128.2, 128.0, 126.9, 125.4, 122.8, 122.4, 121.3, 118.5, 112.9, 108.1, 107.4, 55.0, 29.0. IR (neat, cm⁻¹): 3051, 2930, 1588, 1463, 1246, 1024, 806, 750. HRMS (ESI) m/z Calcd for C₂₆H₂₂NO: $[M+H]^+ = 364.1696$. Found: 364.1691.

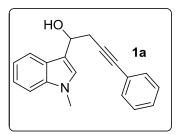


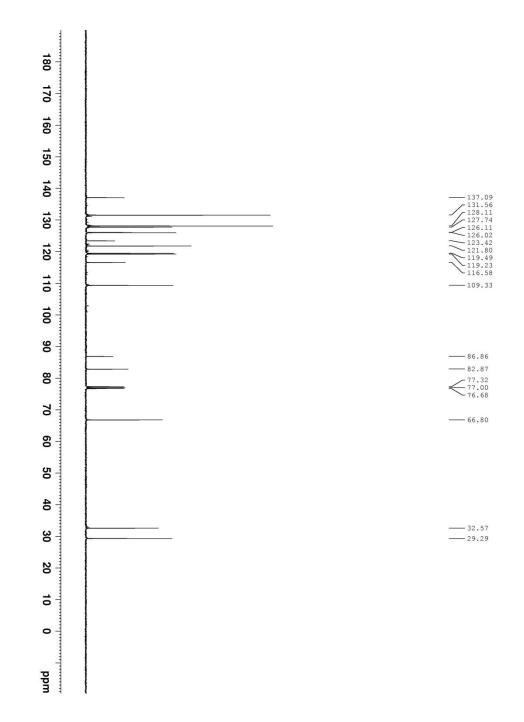
structure of 2e

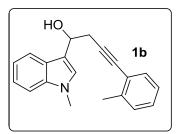
Datablock

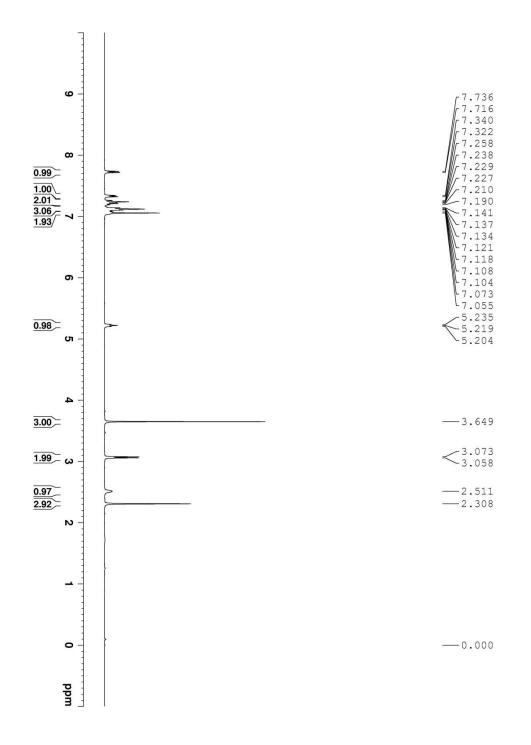

Bond precision:	C-C = 0.0093 A	Wavelength=0.71073					
Cell: a=10	b. 699(1) b =11. 7260(11)) c=22.2683(12)					
alpha=94.284(6) beta=101.795(6) gamma=109.369(8)							
Temperature: 292 K							
	Calculated	Reported					
Volume	2549.0(4)	2549.0(4)					
Space group	P -1	P -1					
Hall group	-P 1	-P 1					
Moiety formula	C20 H16 I N O	C20 H16 I N O					
Sum formula	C20 H16 I N O	C20 H16 I N O					
Mr	413.24	413.24					
Dx,g cm-3	1.615	1.615					
Z	6	6					
Mu (mm-1)	1.888	1.888					
F000	1224.0	1224. 0					
F000'	1221.57						
h,k,lmax	13, 14, 27	13, 14, 27					
Nref	10042	10025					
Tmin, Tmax	0. 573, 0. 636	0. 793, 1. 000					
Tmin'	0.521						
Correction method= # Reported T Limits: Tmin=0.793 Tmax=1.000							
AbsCorr = MULTI-SCAN							
Data completeness= 0.998 Theta(max)= 26.022							
R(reflections) = 0.0555(5787) wR2(reflections) = 0.1481(10025)							
S = 1.032	Npar= 628						

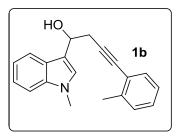


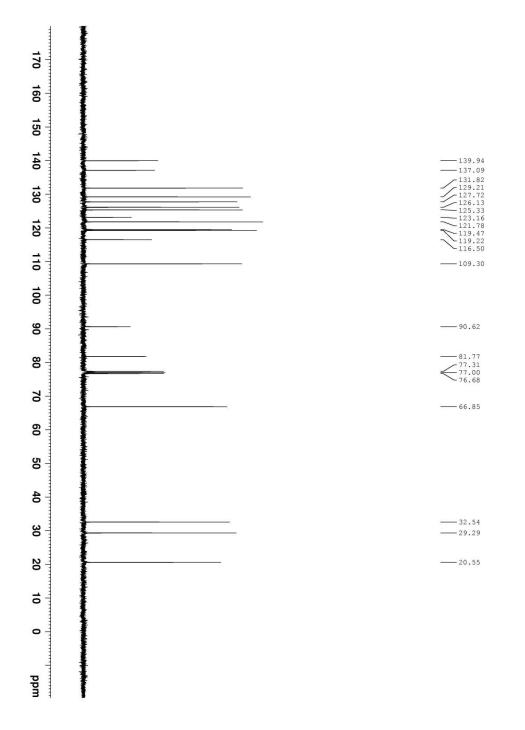

structure of 2v

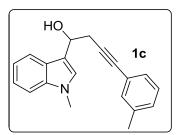

Datablock

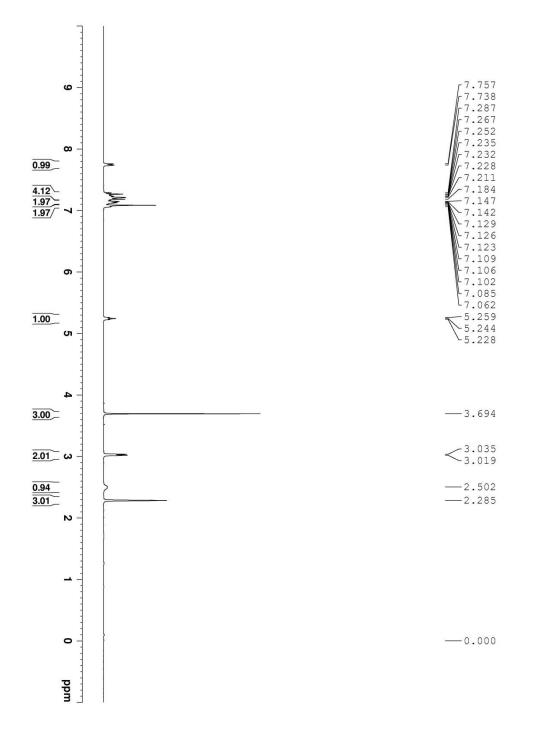

Bond precision:		C = 0.0098 A	Wavelength=0.71073			
Cell:	a=7.2355(5)	b=20. 9295 (19)	c=23. 0167 (15)			
	alpha=90	beta=90	gamma=90			
Temperature	:293 K					
	Calc	ulated	Reported			
Volume	3485	.5(5)	3485.5(5)			
Space group	Рb	c a	Рbса			
Hall group	-P 2	ac 2ab	-P 2ac 2ab			
Moiety form	ula C20	H16 I N O	C20 H16 I N O			
Sum formula	C20	H16 I N O	C20 H16 I N O			
Mr	413.	24	413.24			
Dx,g cm-3	1.57	5	1.575			
Ζ	8		8			
Mu (mm-1)	1.84	1	1.841			
F000	1632	. 0	1632.0			
F000'	1628	1628.76				
h,k,lmax	8,25	, 28	8, 25, 28			
Nref	3432		3426			
Tmin, Tmax	0.55	0, 0. 597	0.804, 1.000			
Tmin' (0. 539				
Correction method= # Reported T Limits: Tmin=0.804 Tmax=1.000						
AbsCorr = MULTI-SCAN						
Data completeness= 0.998 Theta(max)= 26.020						
R(reflections) = 0.0639(1933) wR2(reflections) = 0.1839(3426)						
S = 1.032		par= 210				

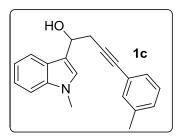


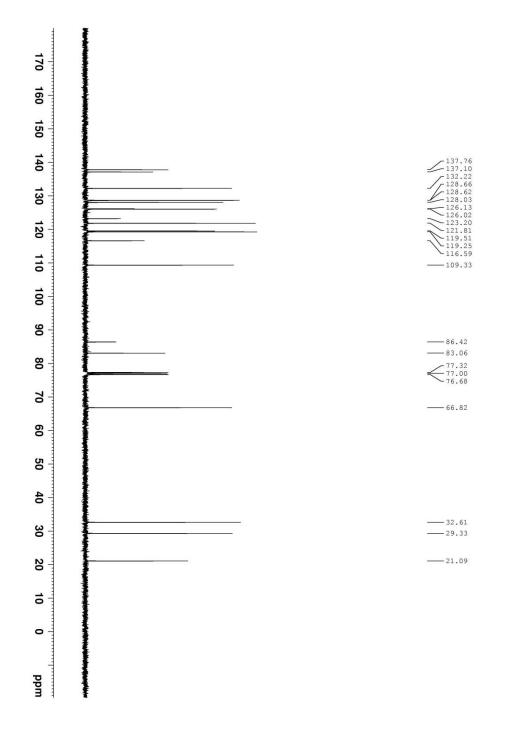


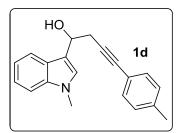


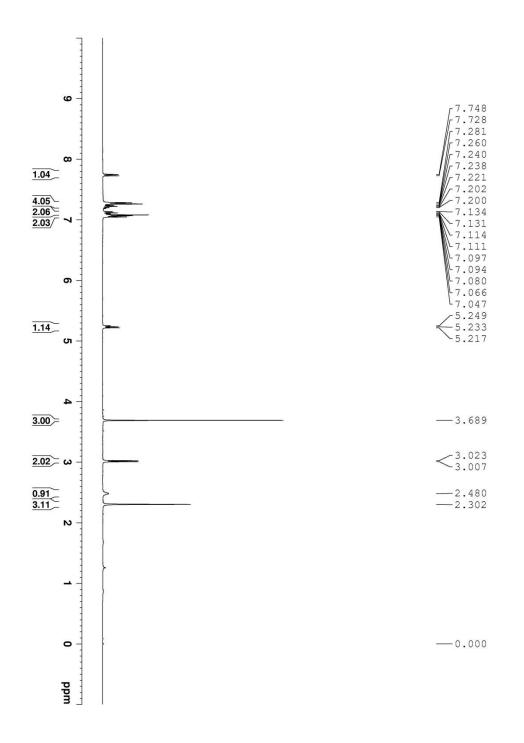


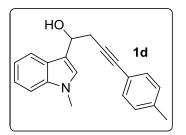


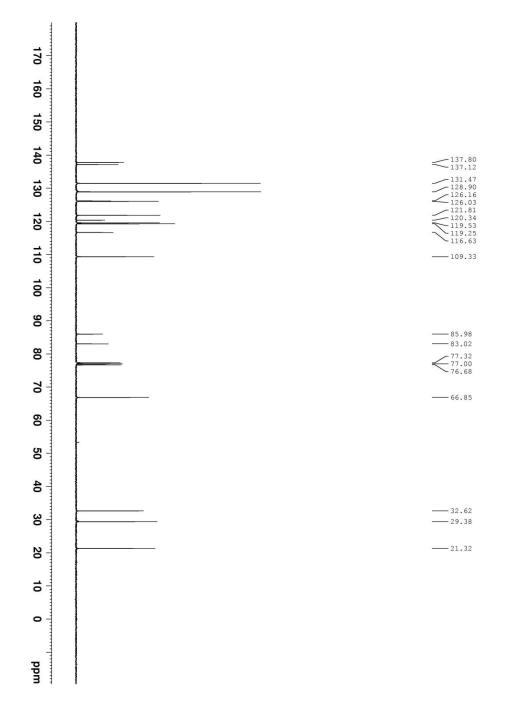


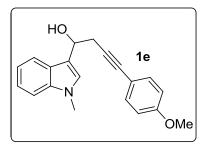


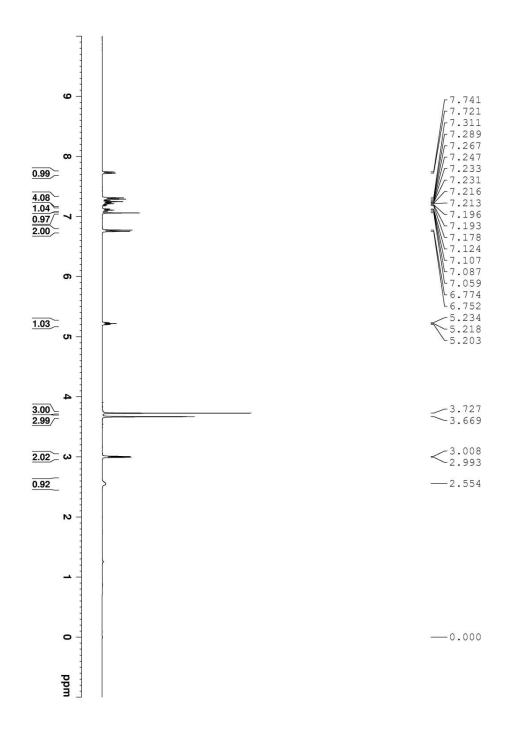


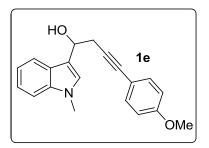


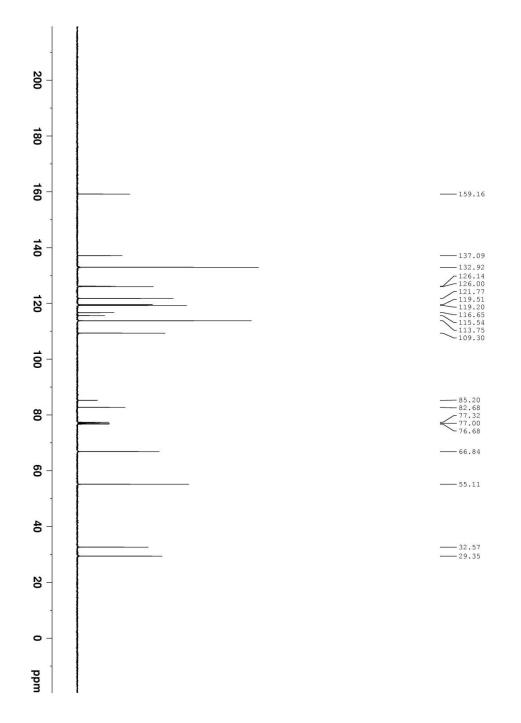


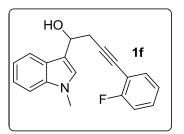


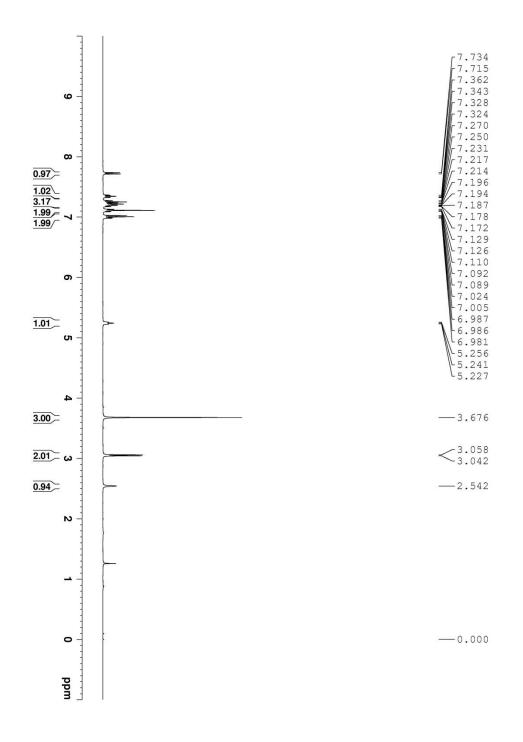


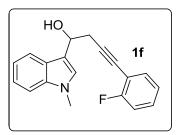


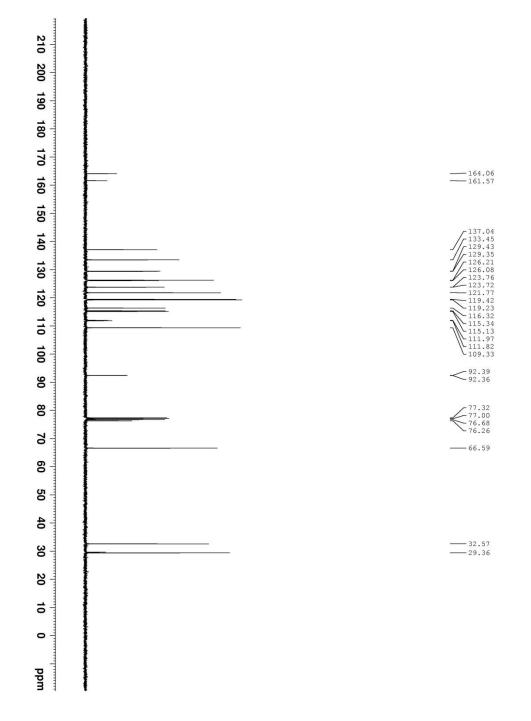


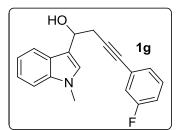


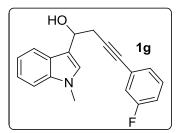


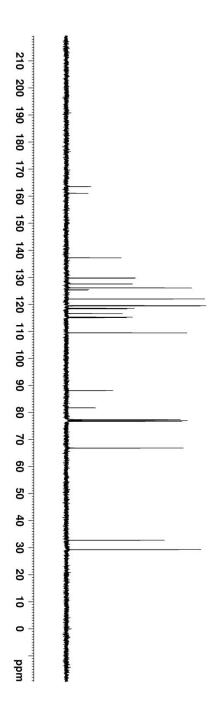


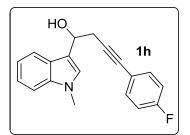


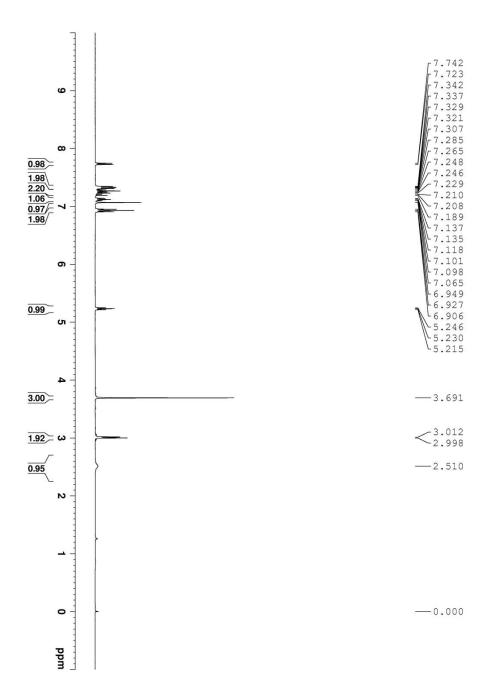


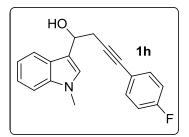


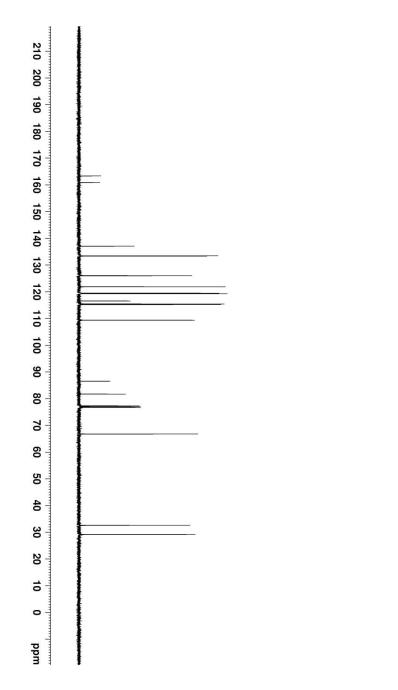


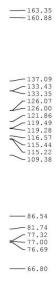


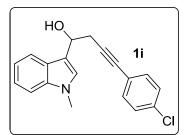

-0.000

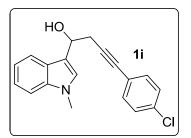


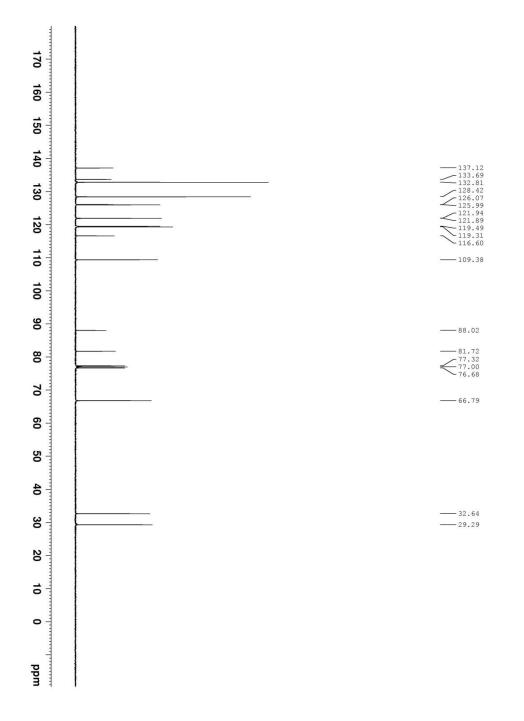


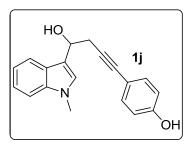


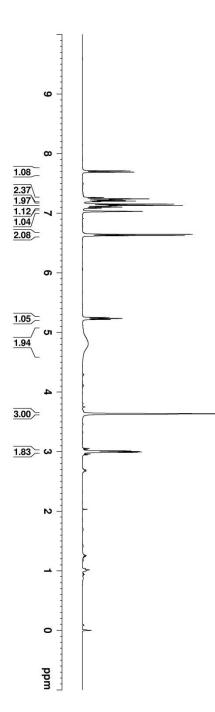

_____ 32.70 _____29.23

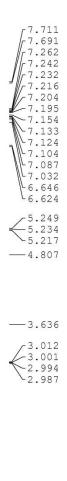


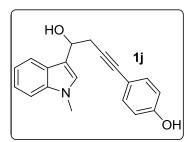


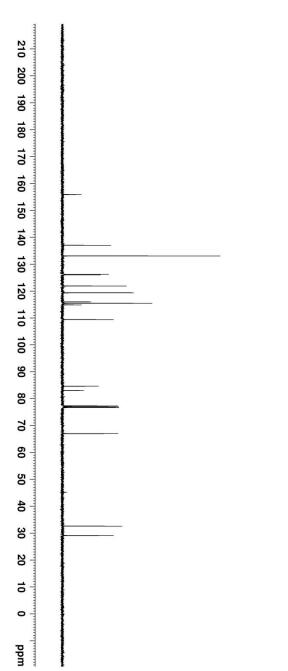


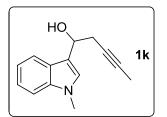


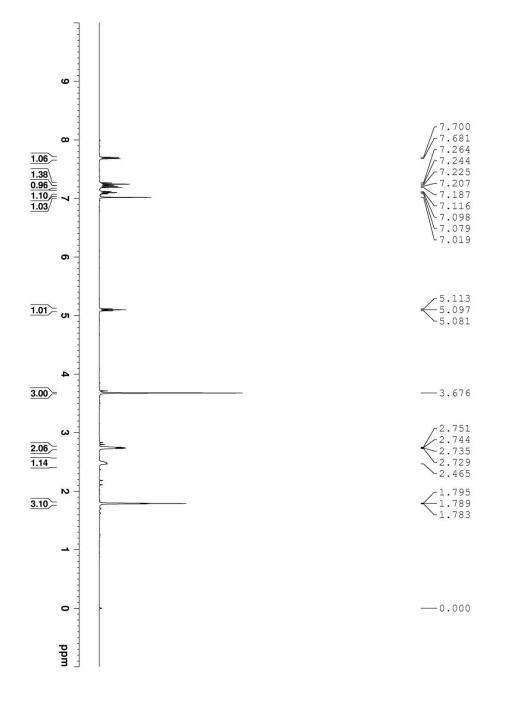


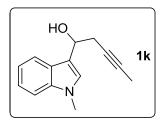


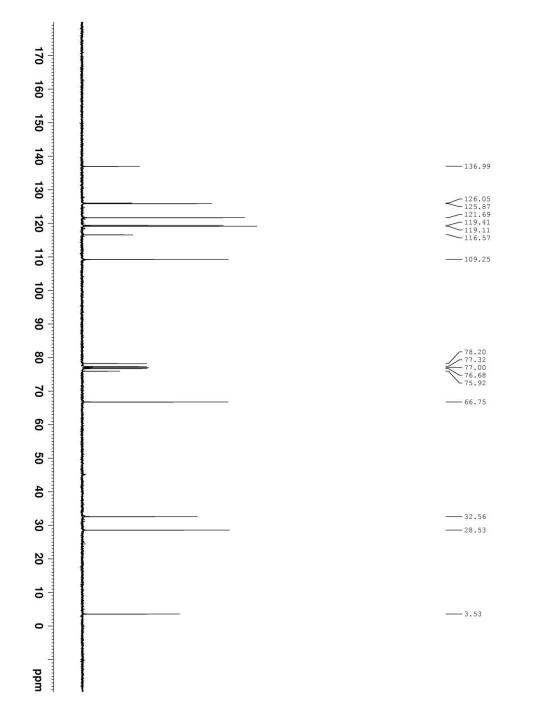


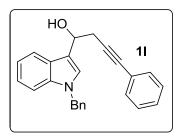


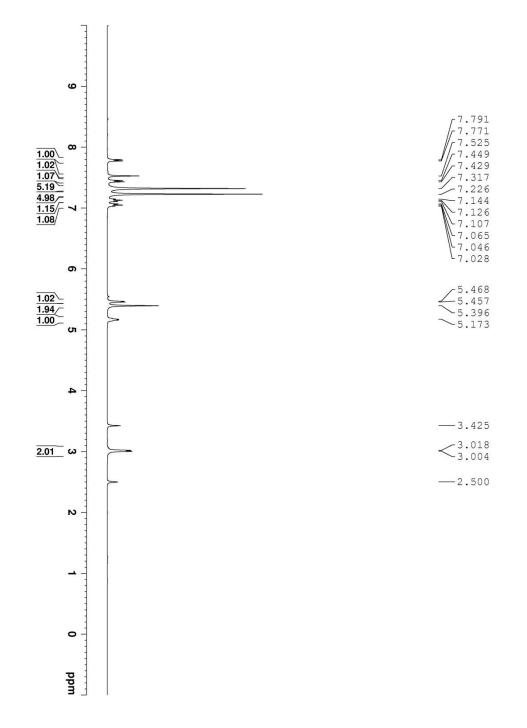


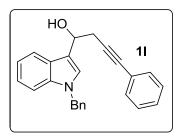


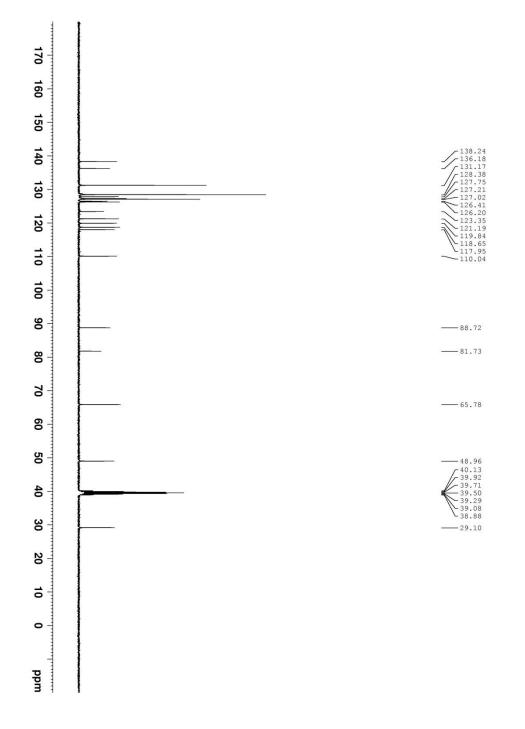

	1	3	7	•	0	4
	1	3	3		0	8
			6			
1	1	2	1		8	9
			99			
1			5			
12			54			
~	1	0	9	•	4	2

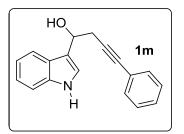


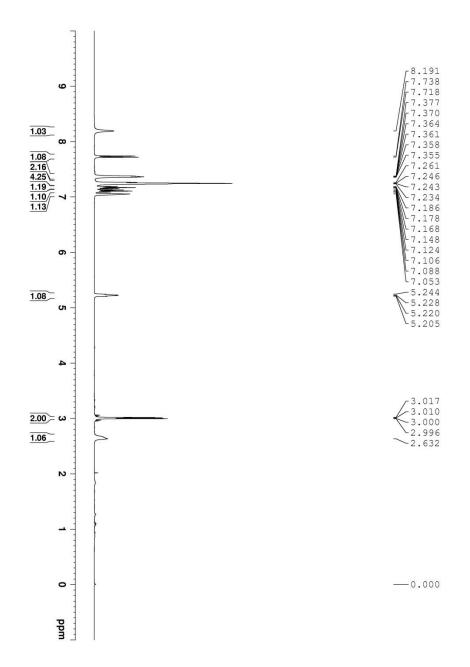

nation initia

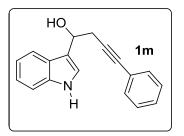


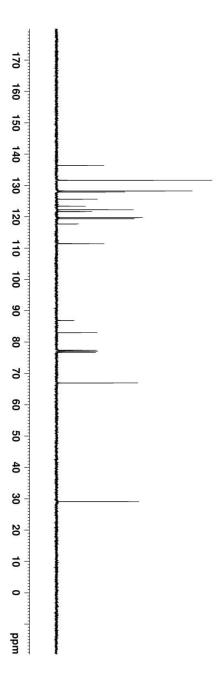


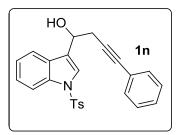


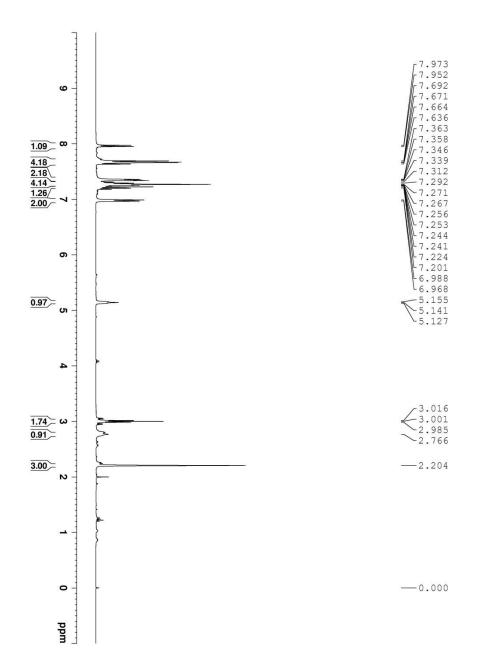


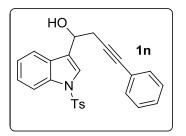


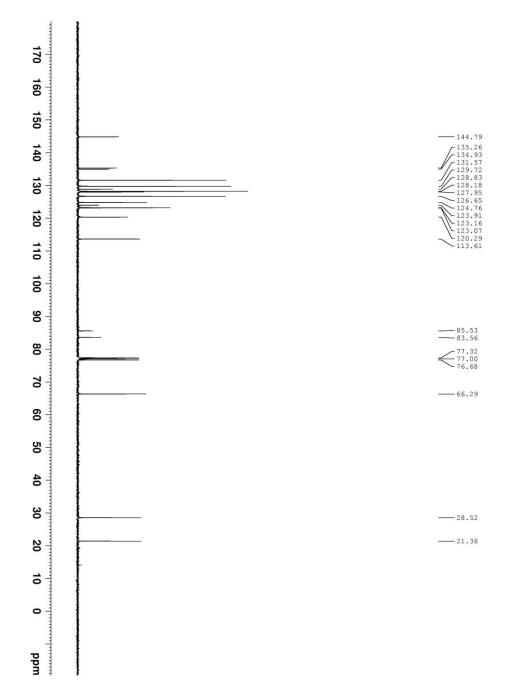




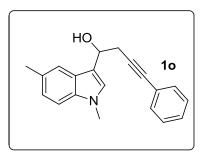


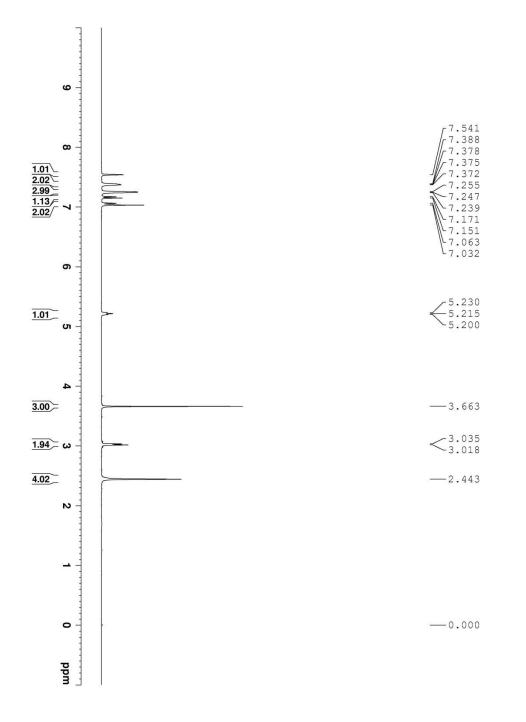

136.29 131.58 128.17 - 125.55 - 123.30 - 122.17 - 121.59 - 119.65 - 119.32 - 117.64 - 111.34

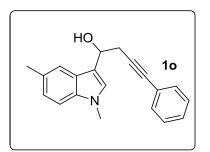

	86.78
	82.97
1	77.32
\leftarrow	77.00
1	76.68

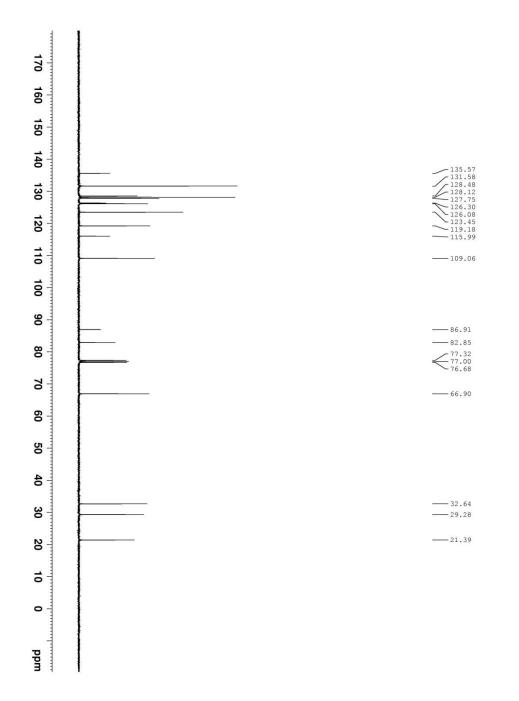

---- 66.88

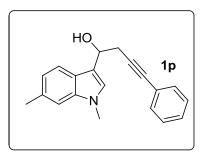
S49

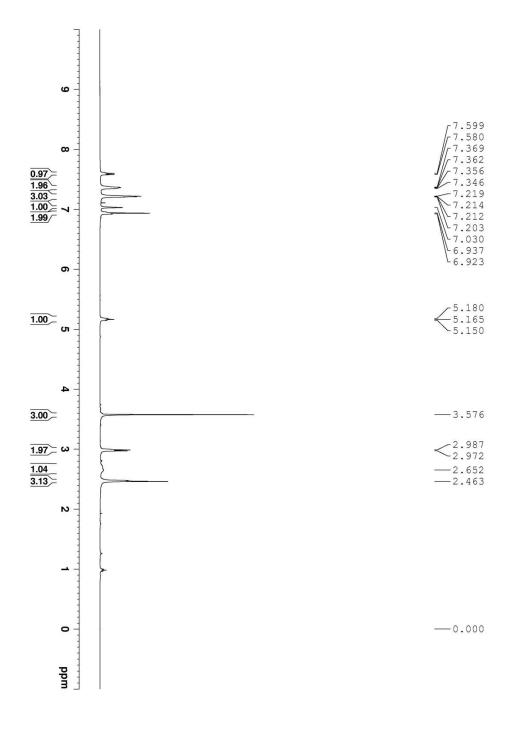


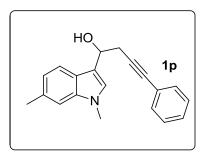


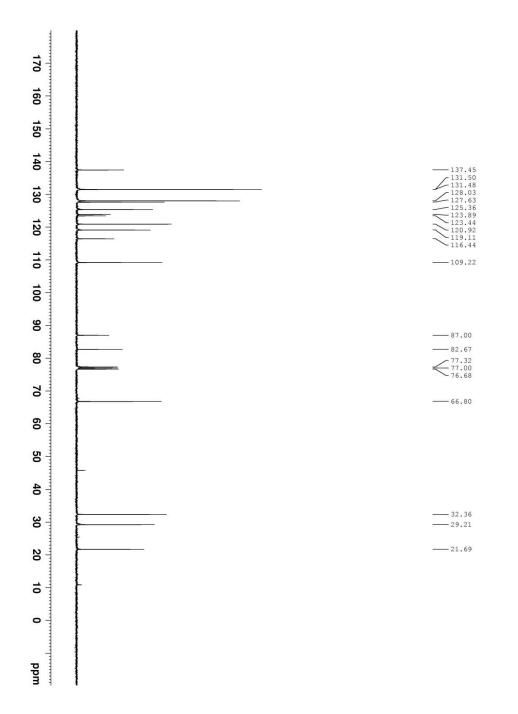


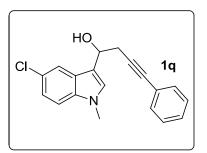


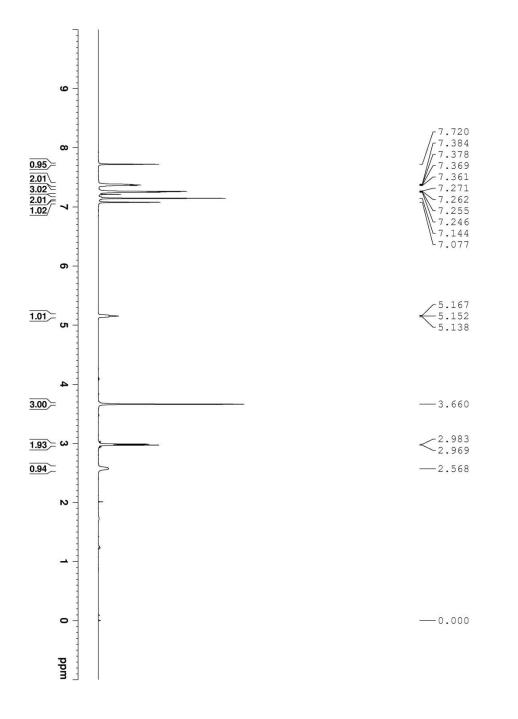

S51

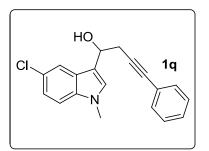


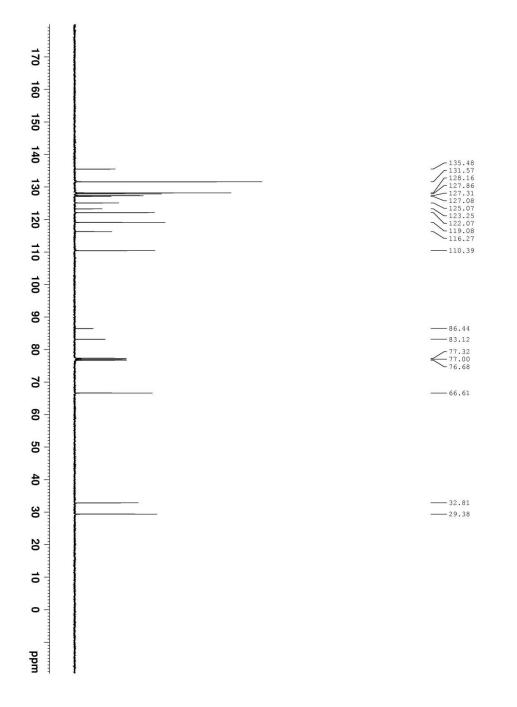


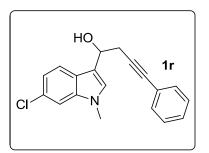


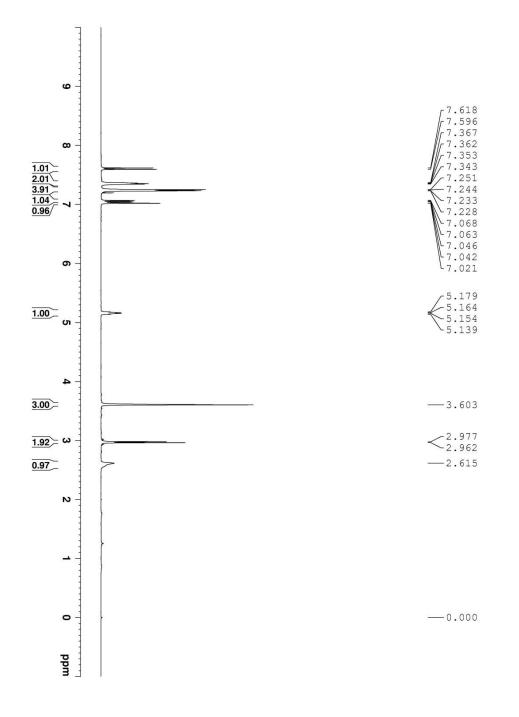


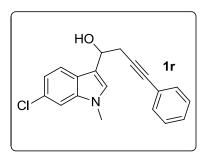


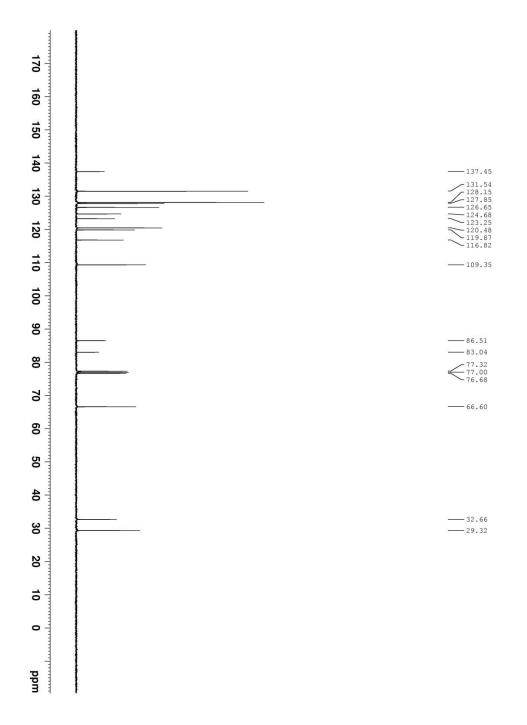


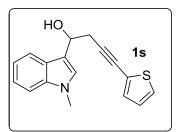


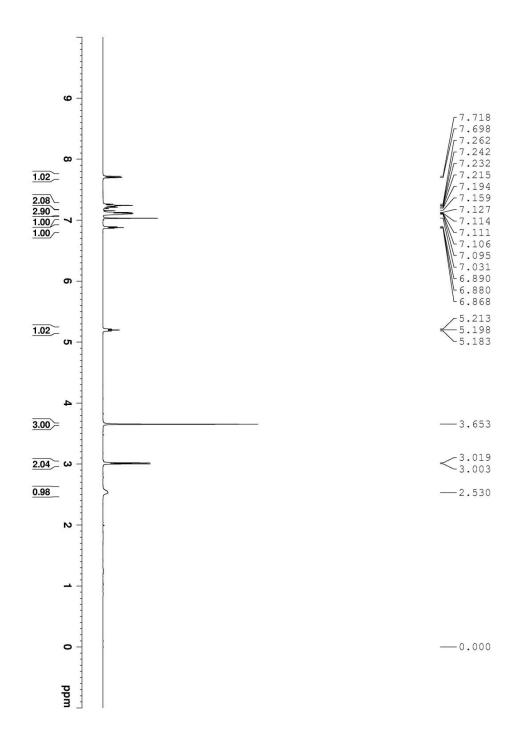


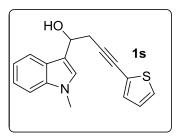


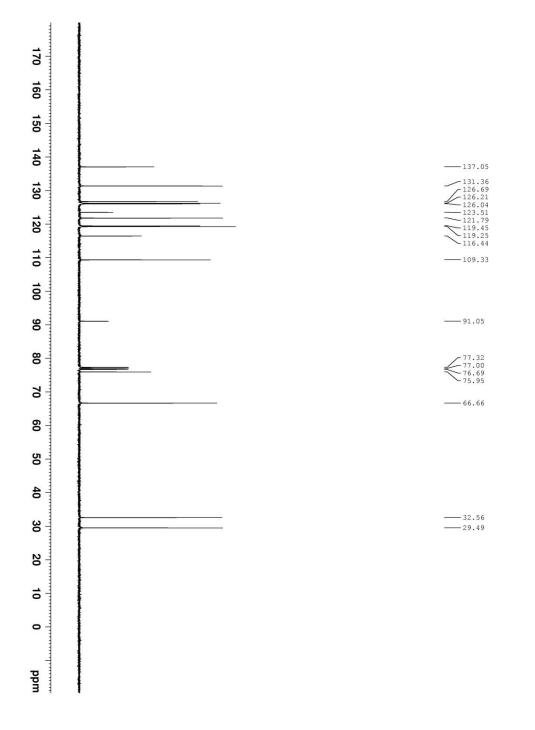


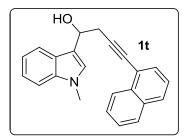


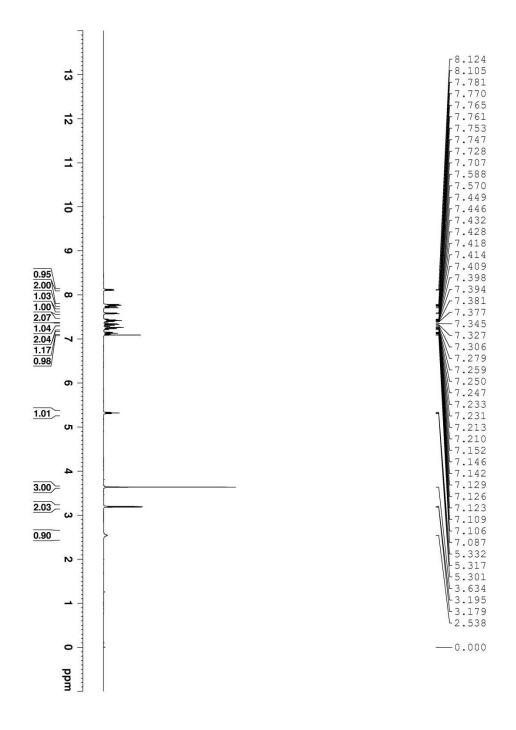


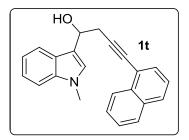


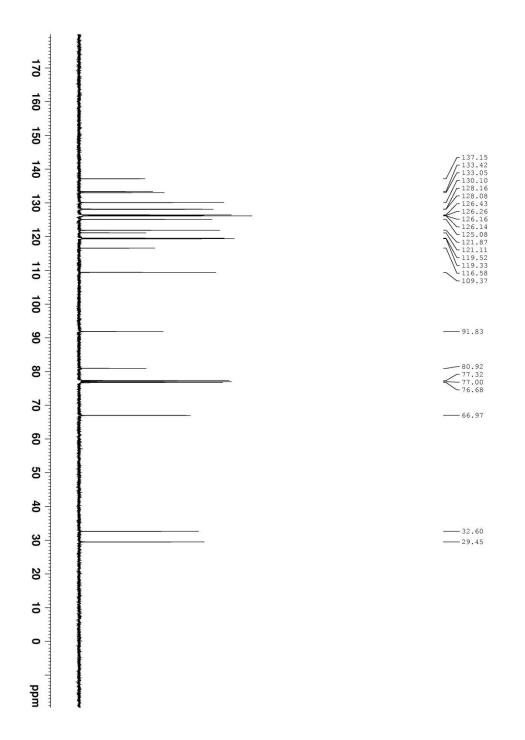


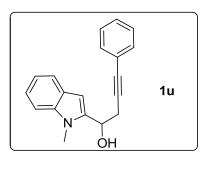


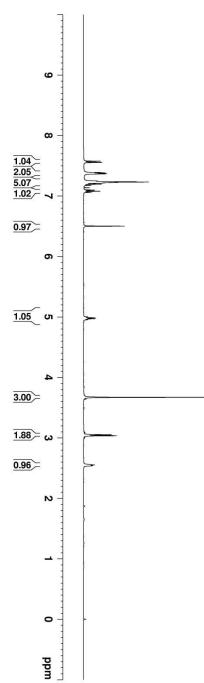


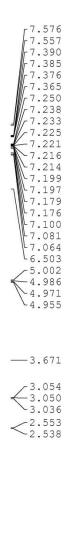


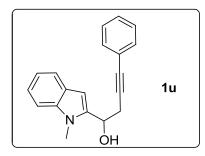


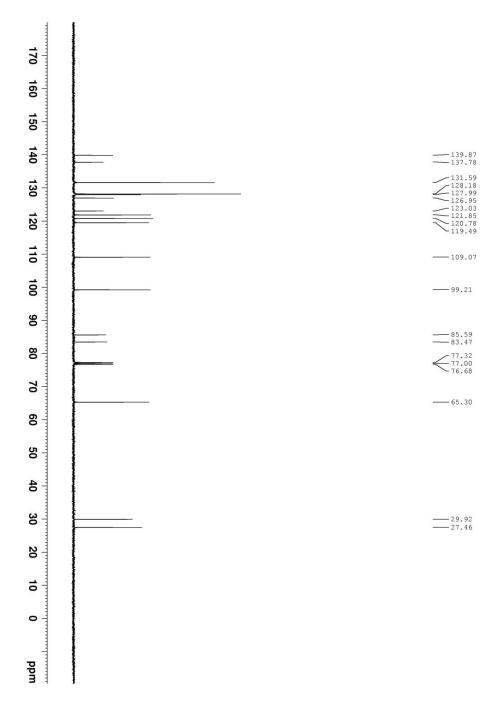


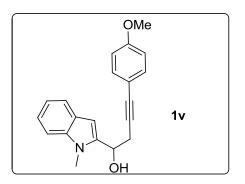


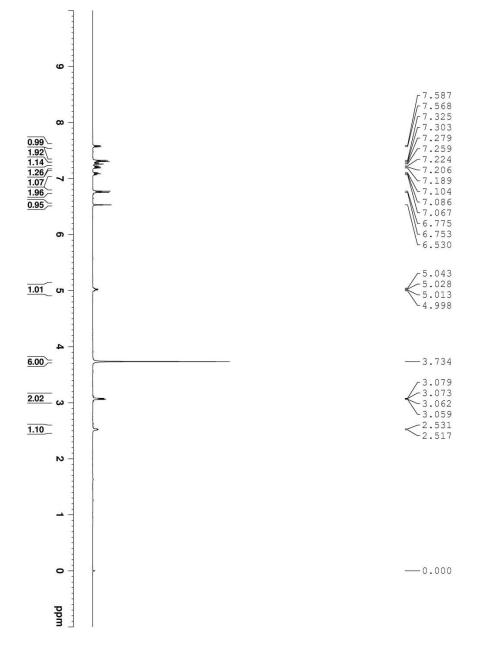


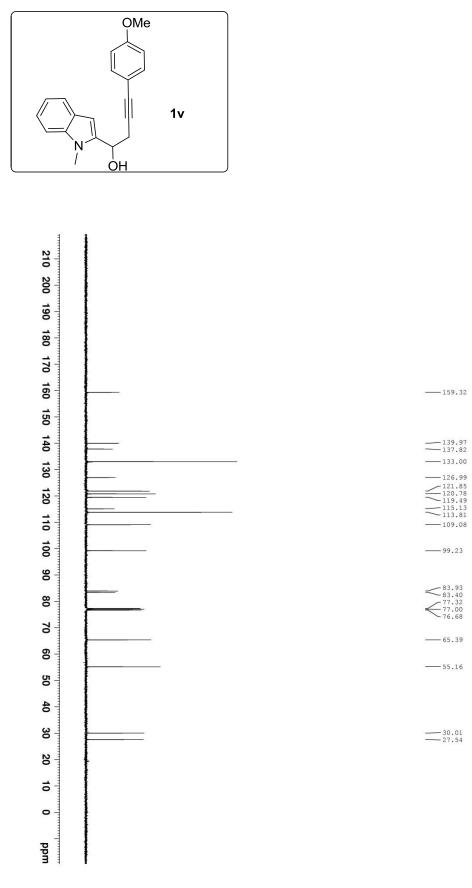


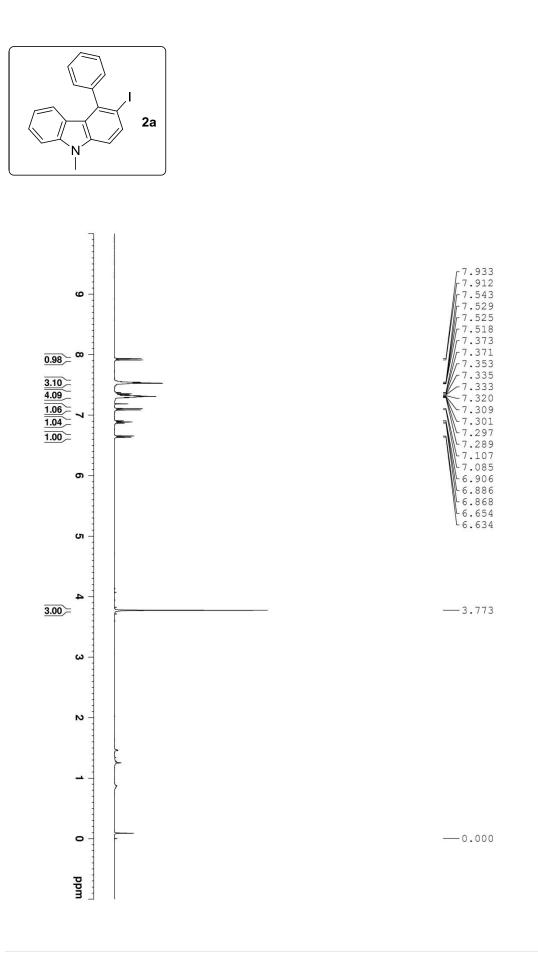


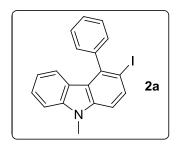


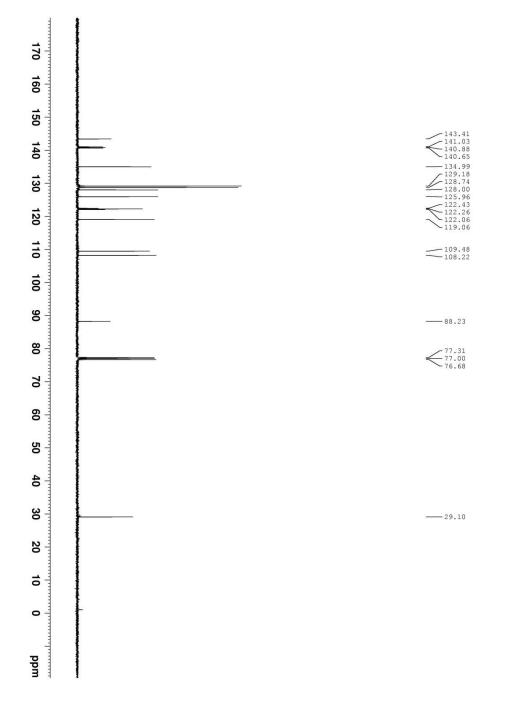


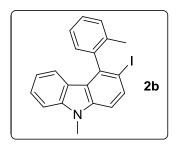


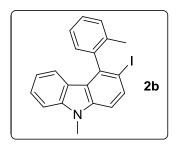


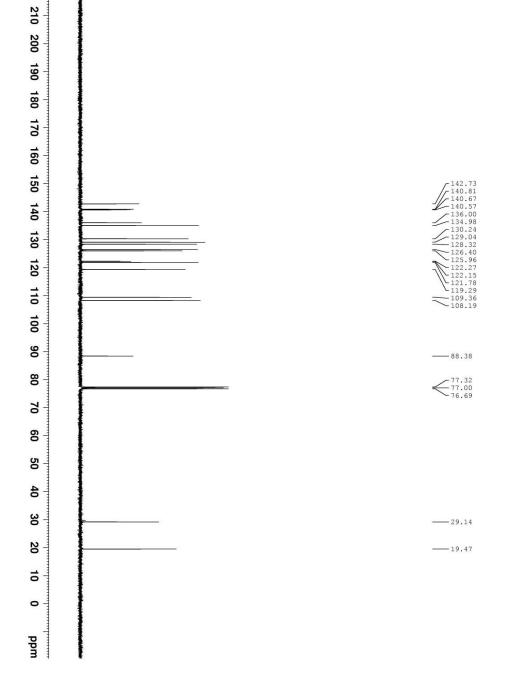


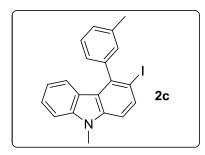


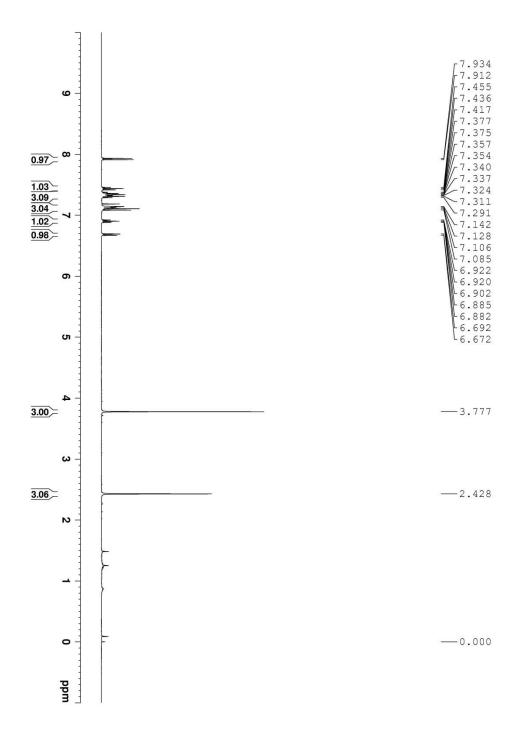

S66

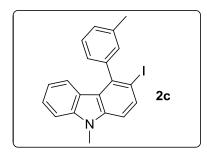


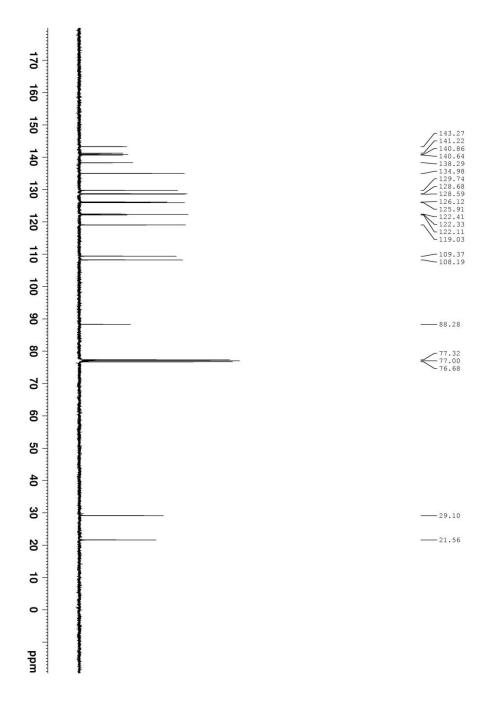


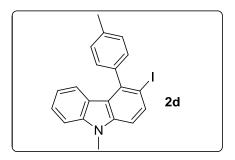


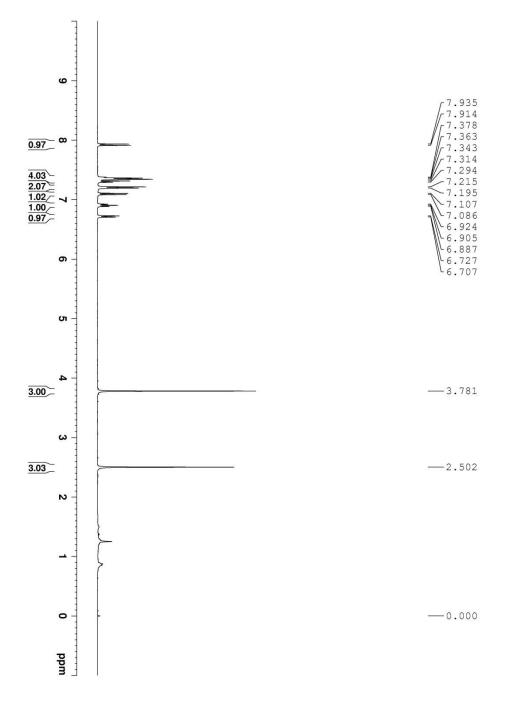


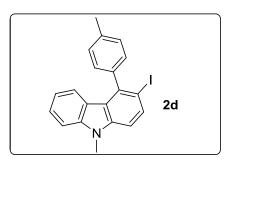


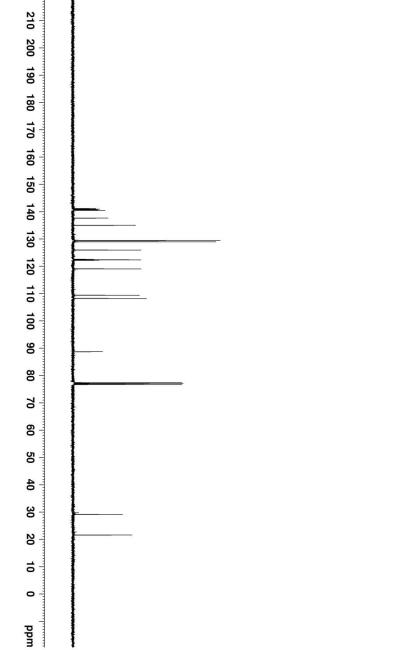


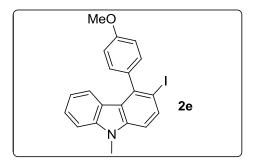


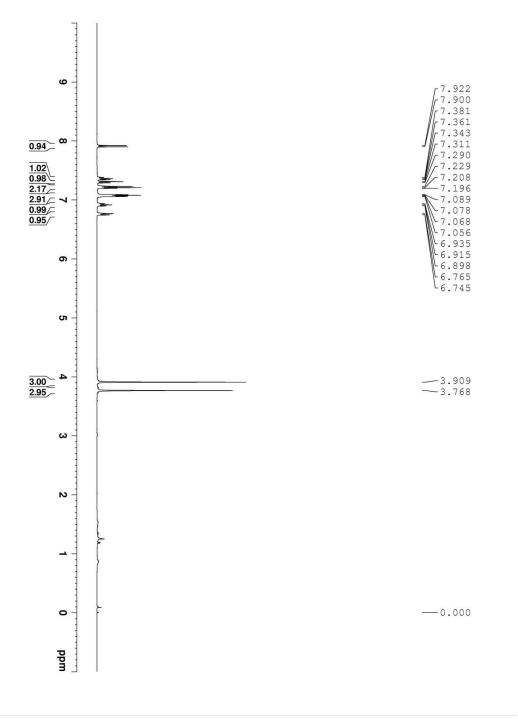


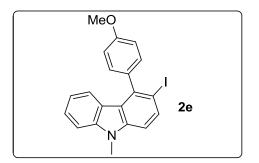


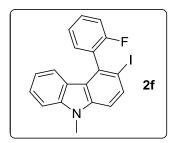


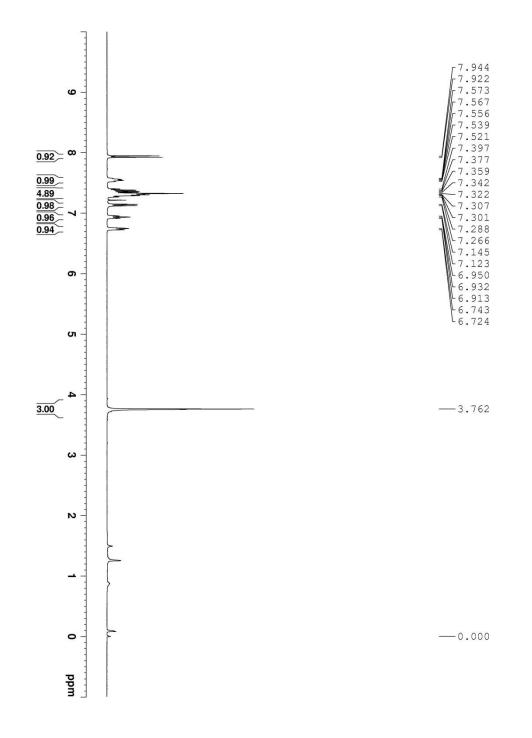


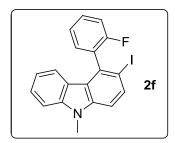


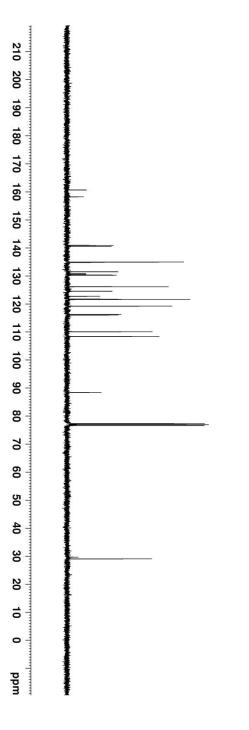


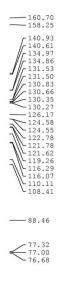


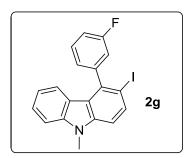


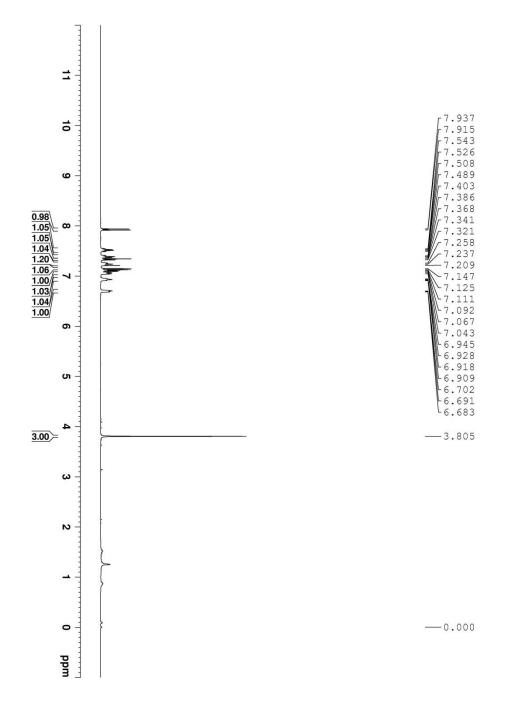


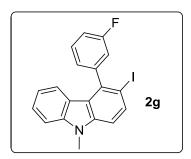


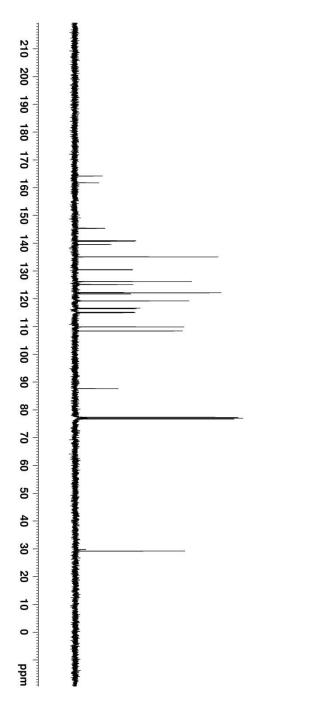



S77

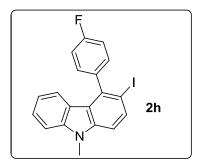


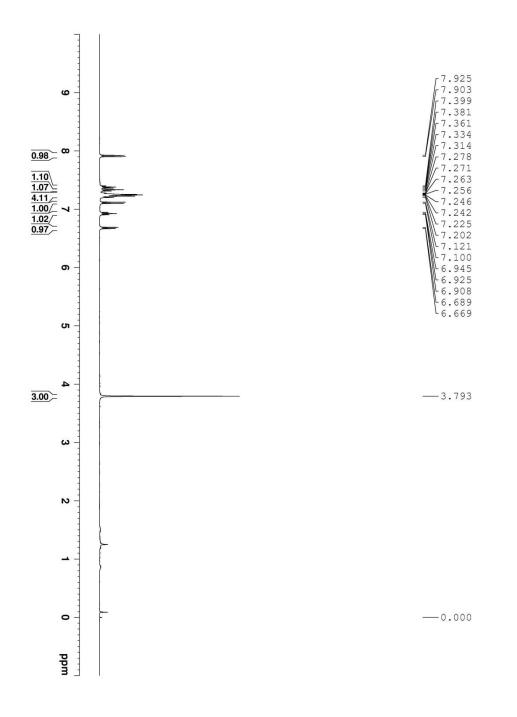


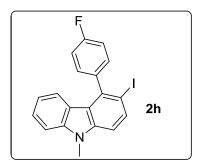


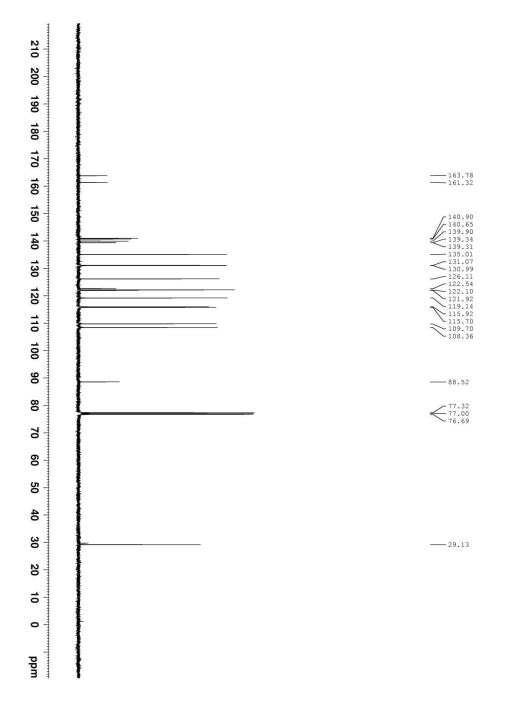


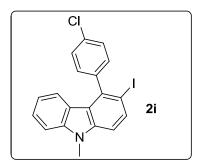
____29.07

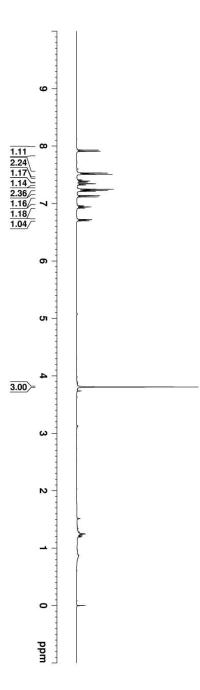


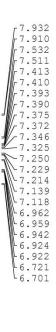


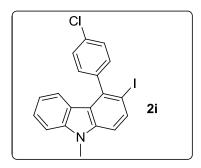


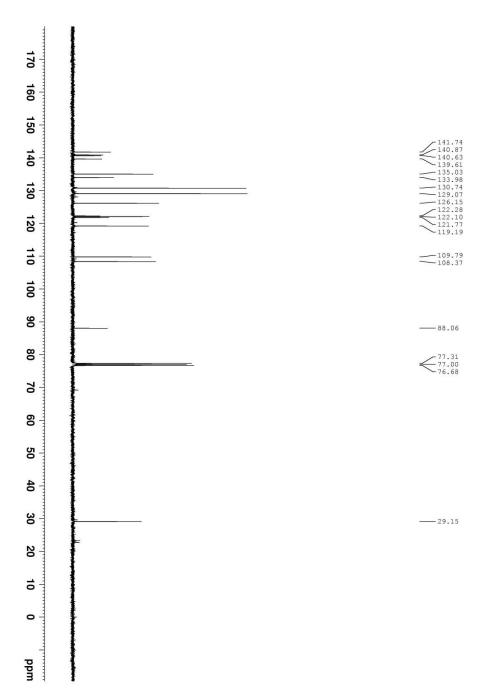


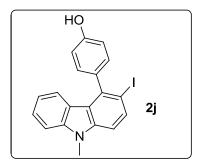

S81

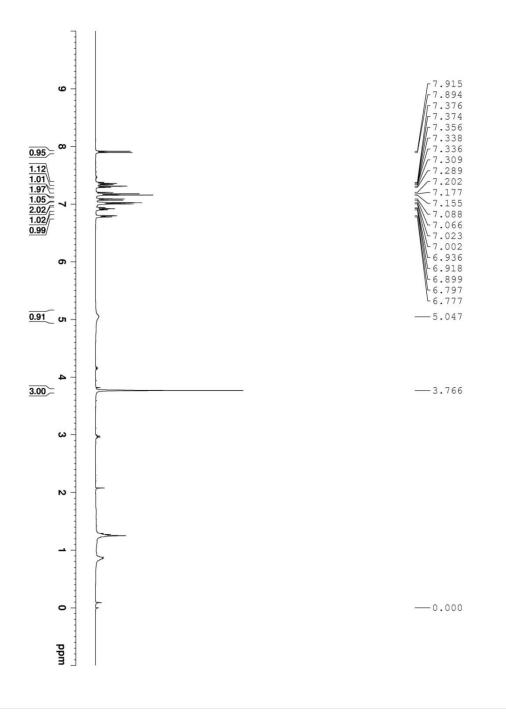


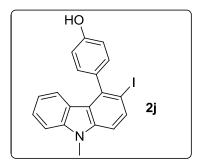


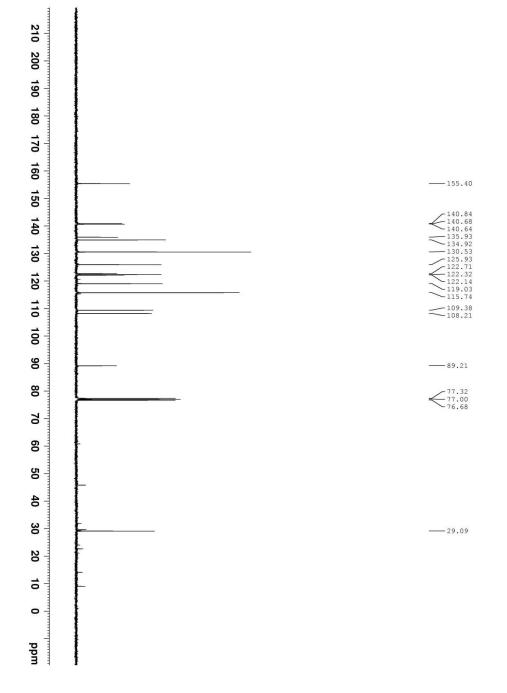


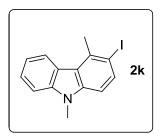


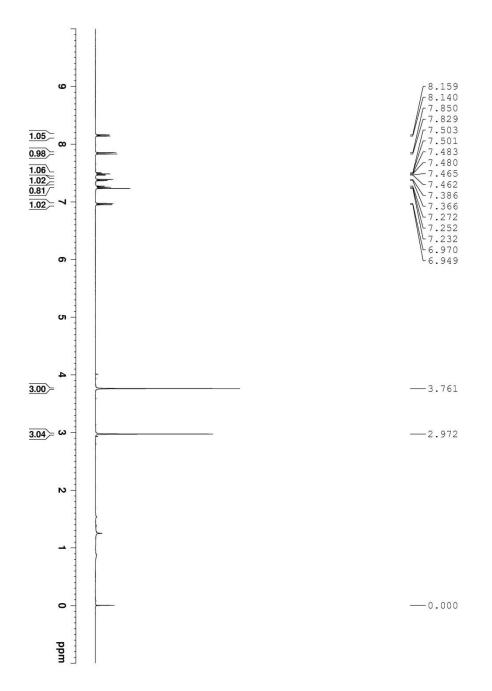


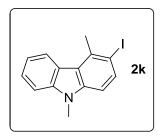


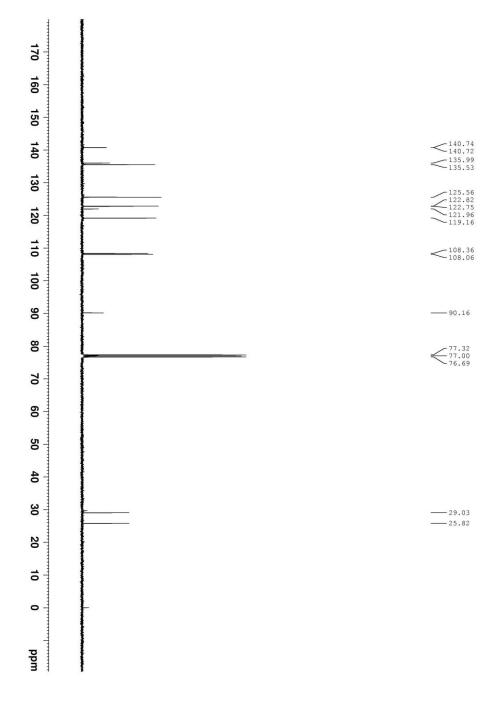


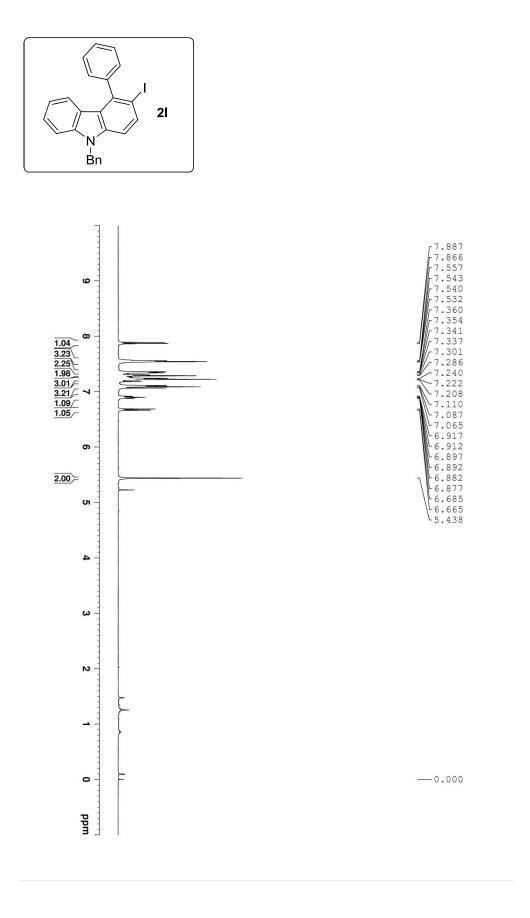


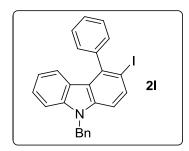


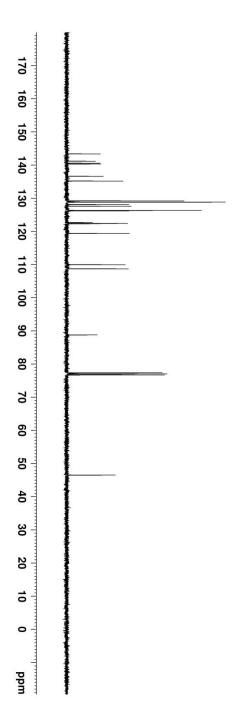


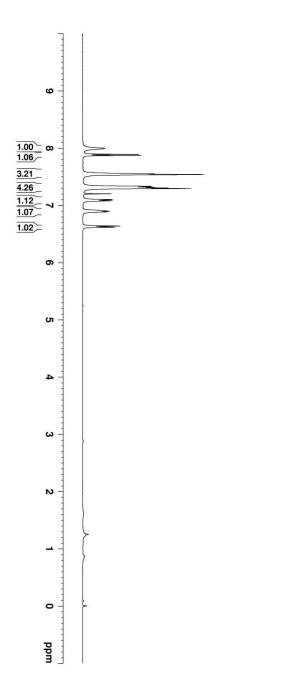


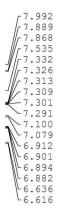


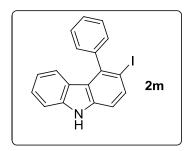


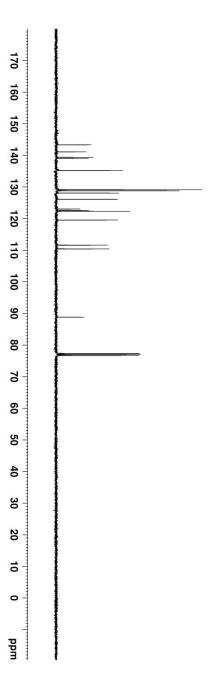


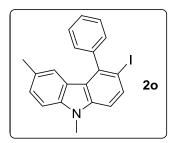


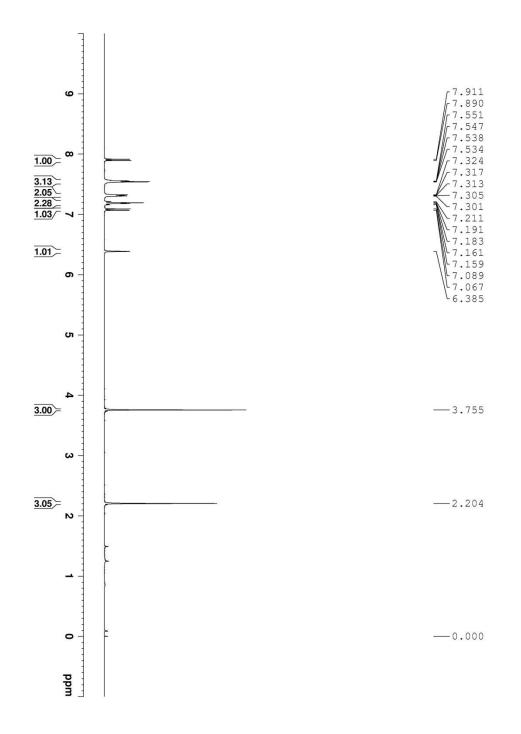


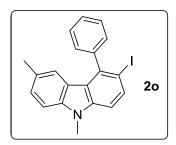


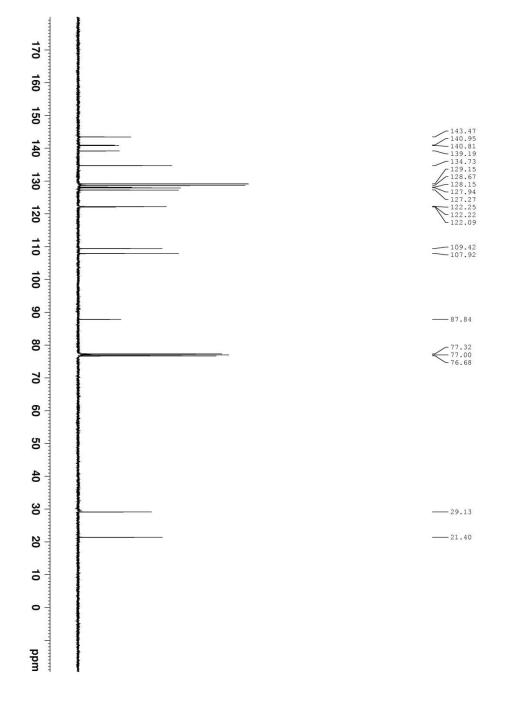

77.32
77.00
76.68

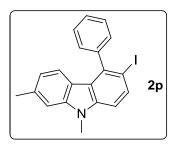


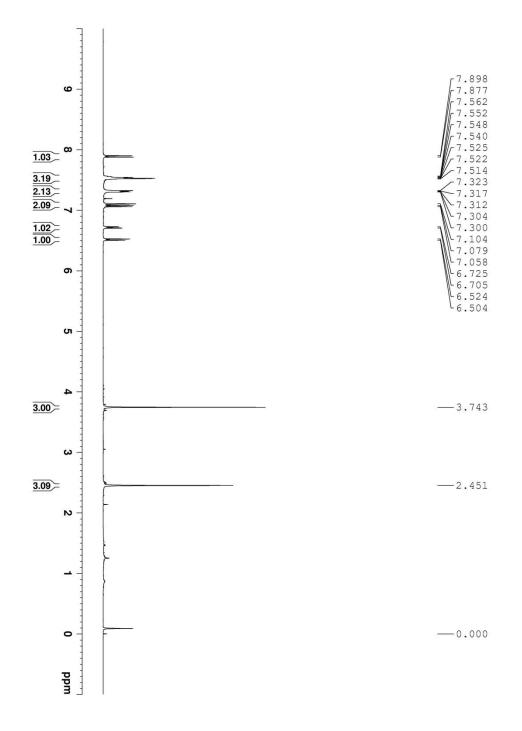


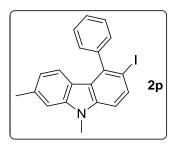


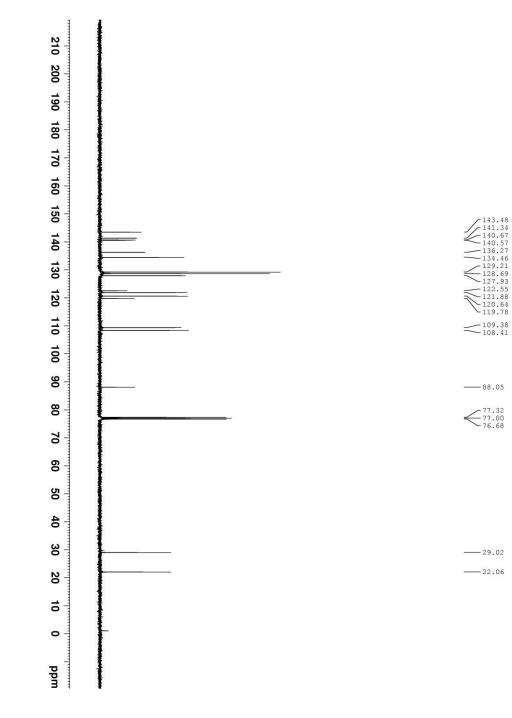


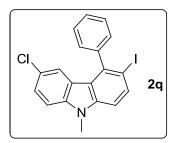

_	1	4	3		2	1
-			1	-	~	_
5	1	3	9		3	6
~	1	3	9		0	5
	1	3	5		2	0
1	1	2	9		1	3
			8			
-	1	2	8		0	5
	1	2	б		1	0
-	1	2	3	•	0	2
1	1	2	2	•	5	6
11	1	2	2		2	7
~	1	1	9	•	5	2
_	1	1	1		5	9
-	1	1	0		3	9

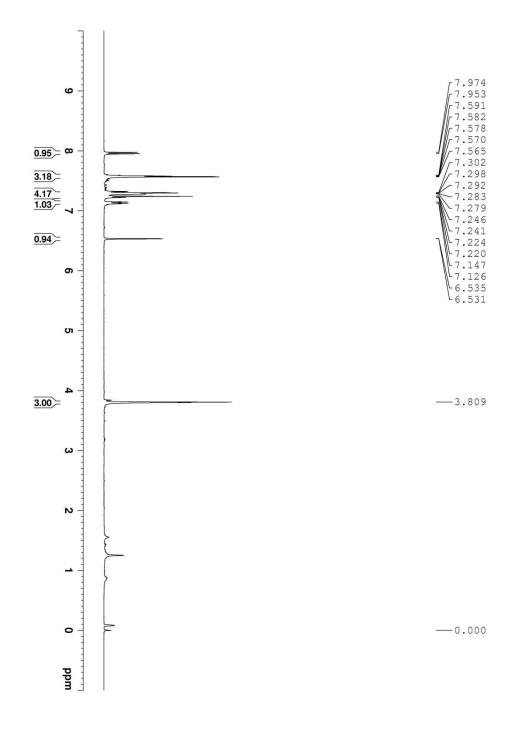

77.32
77.00
76.68

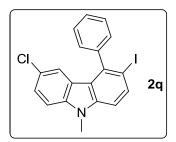


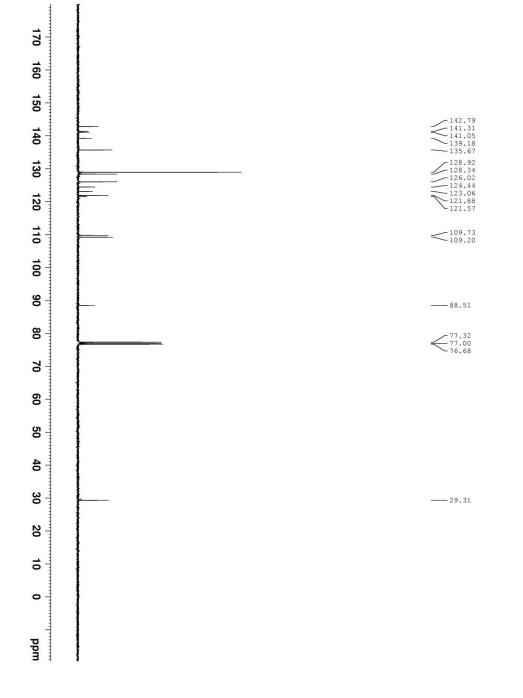


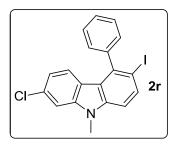


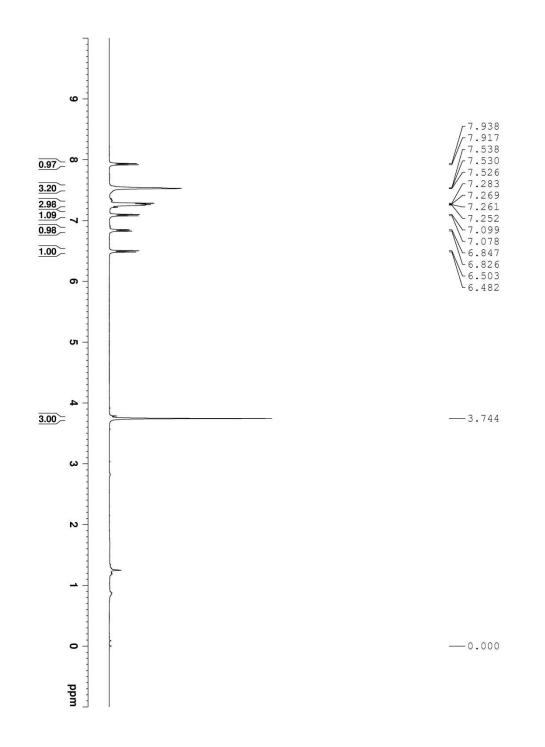


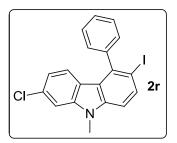


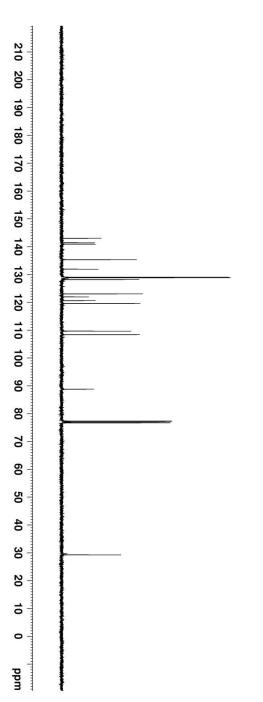


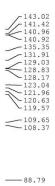


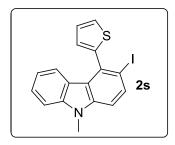


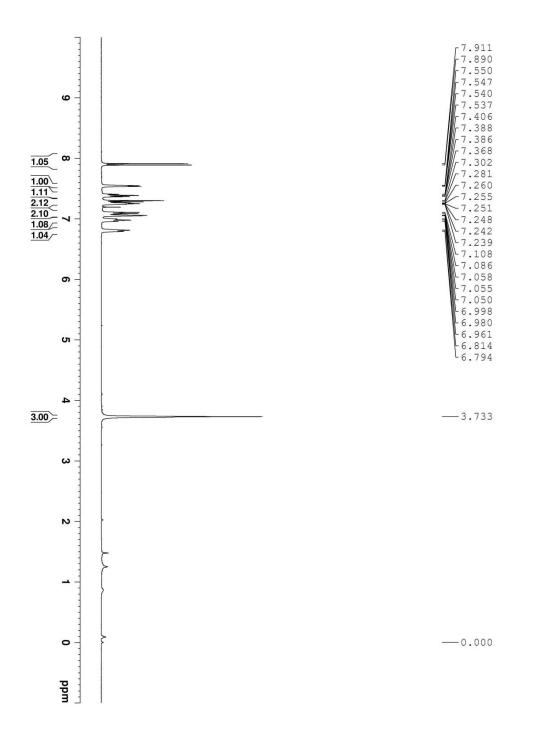


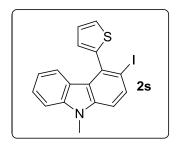


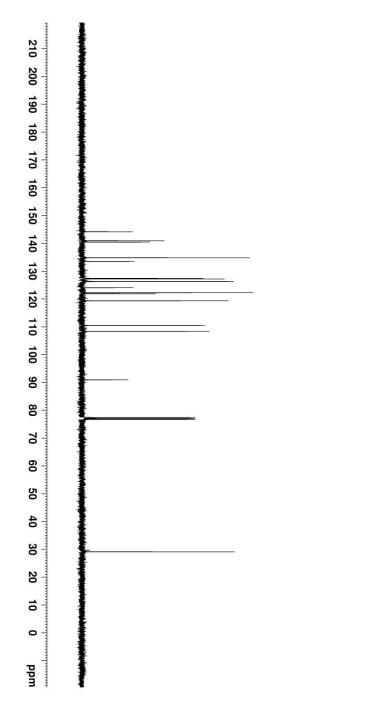




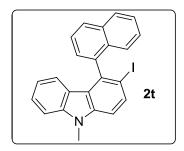


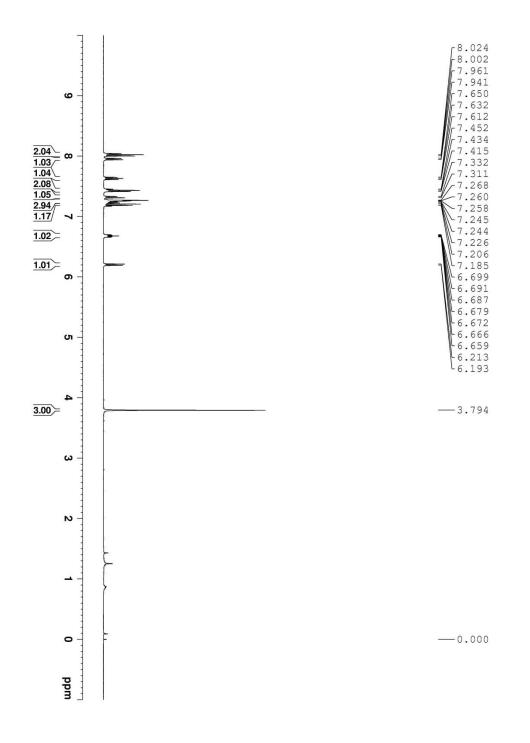


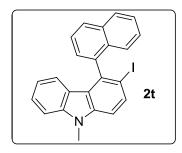


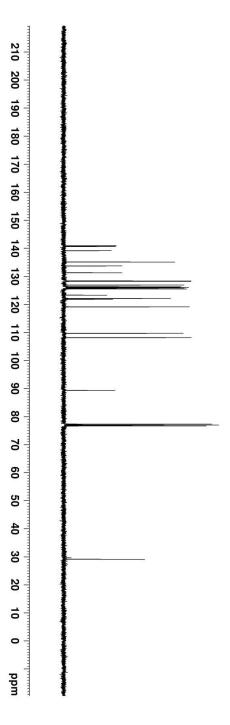

77.32
77.00
76.69

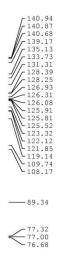
_____29.24



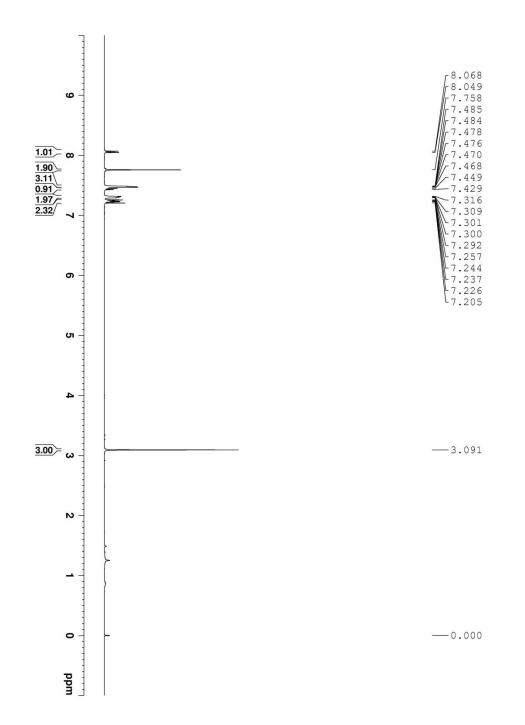


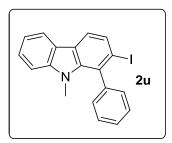


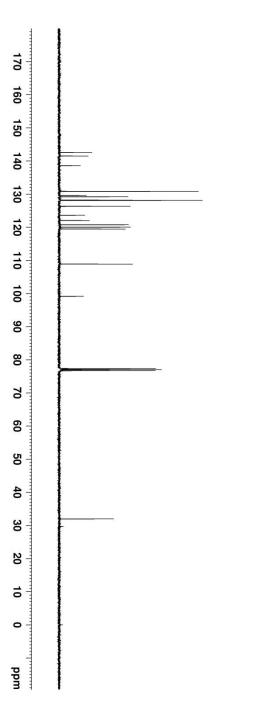


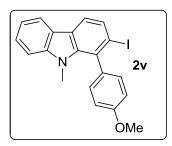


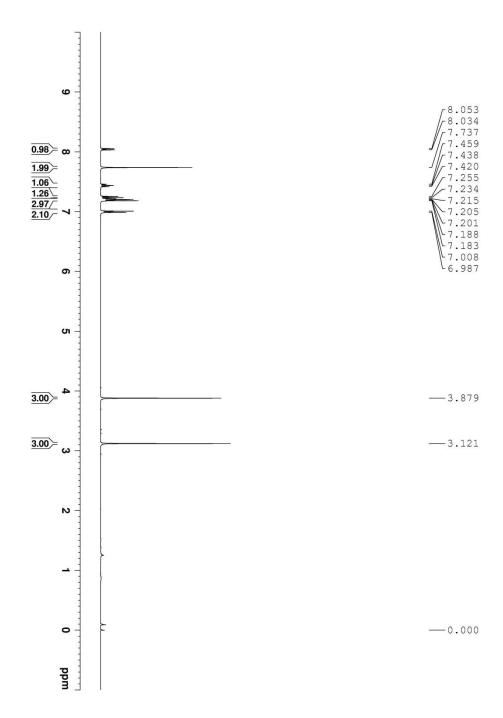


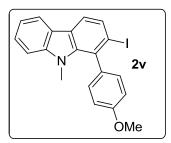


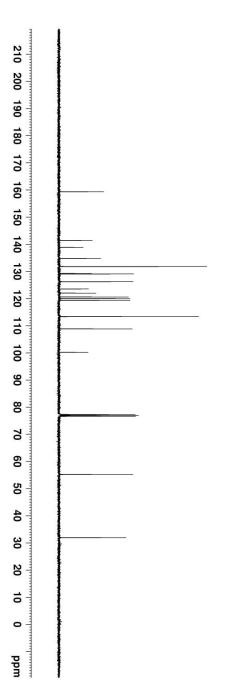


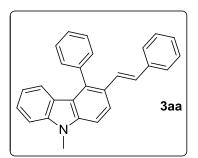


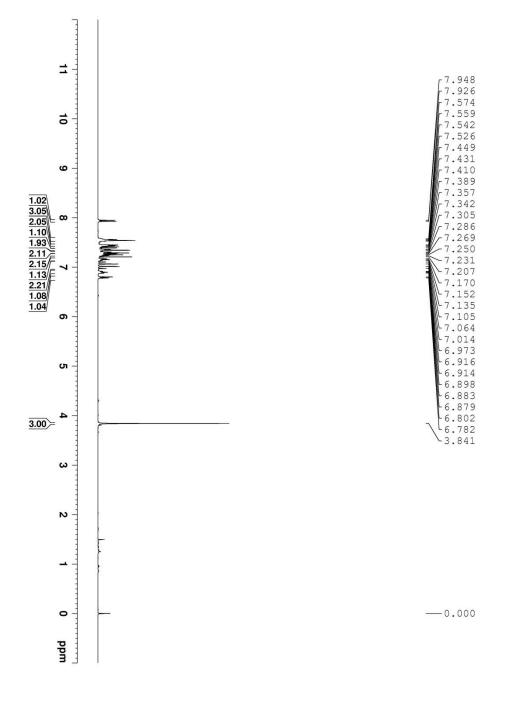


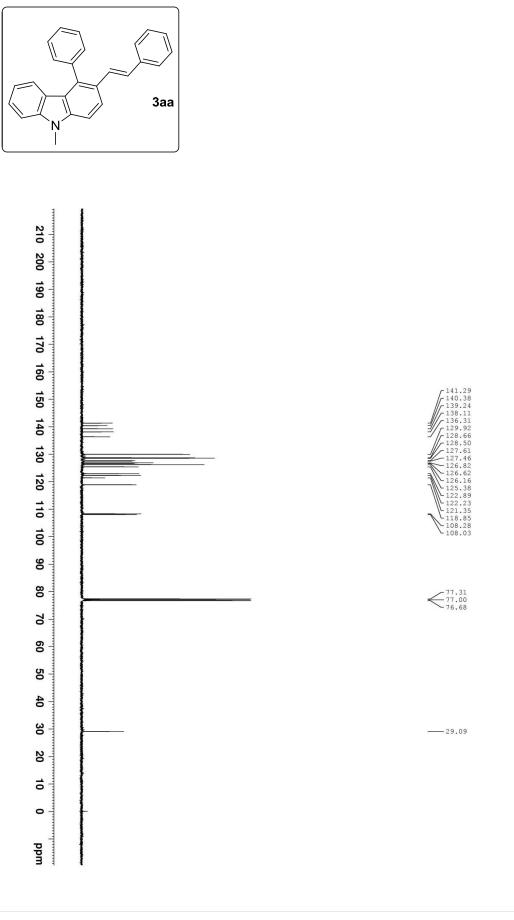


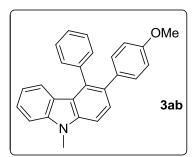


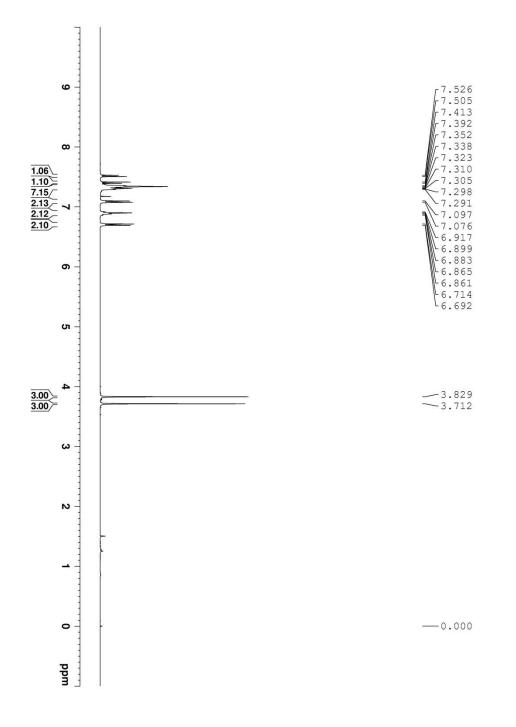







141.43 138.88 134.81 129.26 129.29 126.23 123.56 122.03 120.60 126.23 123.56 122.03 119.97 119.38 113.39 108.84


77.32
77.00
76.68


_____ 31.97

