Supporting Information

Long-term *n*-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction

Shijian Ge, Joseph G. Usack, Catherine M. Spirito, Largus T. Angenent*

Department of Biological and Environmental Engineering, Cornell University, 226 Riley-Robb Hall, Ithaca, NY 14853, USA. E-mail: la249@cornell.edu; Fax: +1-607-255-4449; Tel: +1-607-255-2480

* Corresponding author

Summary:

This supporting information consists of seven pages, two figures, and one table, and includes: the cover sheet; the calculations of the total carboxylate production rate (S1 and equation 1); the thermodynamic calculations (S2 and equations 2-8); the composition of the yeast-fermentation beer substrate (Table S-1); the solids concentration in the bioreactor broth and in the effluent (Figure S-1); the ammonium concentrations during the operating period (Figure S-2); and the references.

S1. Calculations of the volumetric *n*-caproate production rate

The *n*-caproate production rate for the system was calculated from the concentrations in two streams: the effluent and the stripping solution.

$$\gamma_n = \left[\frac{C_{e,n}V_{ASBR}}{HRT} + \frac{(C_{b,n} - C_{b,n-1})V_b}{T_n}\right] \frac{M}{1000V_{ASBR}}$$
(1)

where

 γ_n =production rate on day *n*, g COD l⁻¹ d⁻¹

 $C_{e,n}$ =concentration of *n*-caproate in the bioreactor effluent on day *n*, mmol Γ^{1}

 V_{ASBR} =volume of ASBR, L

HRT=hydraulic retention time on day *n*, d

 $C_{b,n}$, $C_{b,n-1}$ =concentrations of *n*-caproate in the base extraction solution on day *n* and *n*-1, mmol 1^{-1}

 V_b =volume of the base extraction solution on day n, L

 T_n =day n, d

M=substances chemical oxygen demand, g O_2 mol⁻¹; for example, acetic acid is 64 g O_2 mol⁻¹

S2. Thermodynamic calculations

r

We estimated the minimum hydrogen partial pressure required in the system to prevent carboxylate oxidation under anaerobic conditions. The oxidation of acetate to hydrogen and carbon dioxide, *n*-butyrate acid to acetate, and *n*-caproate to *n*-butyrate and acetate is expressed by equations (2-4):

$$C_2 H_3 O_2^- + H^+ + 2H_2 O \leftrightarrow 2CO_2 + 4H_2 \tag{2}$$

$$C_4 H_7 O_2^- + 2H_2 O \leftrightarrow 2C_2 H_3 O_2^- + H^+ + 2H_2$$
(3)

$$C_6 H_{11} O_2^- + 2H_2 O \leftrightarrow C_4 H_7 O_2^- + C_2 H_3 O_2^- + H^+ + 2H_2$$
(4)

The Gibbs free energy change $(\Delta G'_r)$ available can be calculated with the standard ΔG^0_r and the reaction quotient (Q):

$$\Delta G_r' = \Delta G_r^0 + RT ln(Q) \tag{5}$$

where R is the universal gas constant (8.314 J K^{-1} mol⁻¹) and T is the absolute temperature in K. For equation (2) and equation (4), the energetics of the chemical reactions showed very little variation over a narrow temperature range near 25°C,¹

and therefore we assumed the ΔG_f^0 at 25°C to be the same compared to 30°C. For

equation (3), the standard ΔG_r^0 of the components at 30°C was calculated by linear interpolation of the values from 25°C and 37°C given by Amend and Shock.¹ Moreover, a minimal energy quantity for a microbial reaction is reported to be in the range of -15 to -20 KJ mol^{-1,2,3} Thus, with equation 6-8 and setting $\Delta G'_r$ to -20 KJ mol^{-1,4,5} the limits for the partial pressures of hydrogen for anaerobic oxidation of *n*-butyrate and *n*-caproate were calculated using the measured carboxylate concentrations of the bioreactor.

$$pH_2 \approx \sqrt[4]{e^{\frac{(\Delta G'_r - \Delta G^0_r)}{RT}} \frac{[C_2 H_3 O_2^-][H^+]}{[pCO_2]^2}}$$
(6)

$$pH_2 \approx \sqrt{e^{\frac{(\Delta G'_r - \Delta G^0_r)}{RT}} \frac{[C_4 H_7 O_2^-]}{[C_2 H_3 O_2^-]^2 [H^+]}}$$
(7)

$$pH_2 \approx \sqrt{e^{\frac{(\Delta G'_r - \Delta G^0_r)}{RT}} \frac{[C_6 H_{11} O_2^-]}{[C_4 H_7 O_2^-][C_2 H_3 O_2^-][H^+]}}$$
(8)

Table S-1. The composition of two batches of yeast-fermentation beer. The yeast-fermentation beer fed to the reactor was obtained from Western New York Energy in Medina, NY. During the first 443 days, we used batch 1 and for the remainder of the study we used batch 2.

Batch	TS (g l ⁻¹)	VS (g l ⁻¹)	TCOD (g l ⁻¹)	SCOD (g l ⁻¹)	Ethanol (g l ⁻¹)	Average ethanol COD (%)
1	126±0.1(n=8)	117±0.2(n=8)	388±13.6(n=8)	328±18.9(n=8)	148±4.1(n=8)	79.6
2	110±1.0(n=6)	102±1.0(n=6)	567±35.8(n=6)	440±16.3(n=6)	160±6.9 (n=6)	59.1

Figure S-1. Solids concentrations in the: (A) bioreactor broth; and (B) effluent during the operating period.

Figure S-2. Total ammonium concentration during the operating period.

References:

- 1. Amend, J. P.; Shock, E. L., Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. *FEMS Microbiol. Rev.* **2001**, *25*, (2), 175-243.
- 2. Thauer, R. K.; Jungermann, K.; Decker, K., Energy conservation in chemotrophic anaerobic bacteria. *Bacteriol. rev.* **1977**, *41*, (1), 81.
- 3. Schink, B., Energetics of syntrophic cooperation in methanogenic degradation. *Microbiol. Mol. Biol. Rev.* **1997,** *61*, (2), 262-80.
- 4. Agler, M. T.; Wrenn, B. A.; Zinder, S. H.; Angenent, L. T., Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. *Trends Biotechnol.* **2011**, *29*, (2), 70-78.
- 5. Steinbusch, K. J. J.; Hamelers, H. V. M.; Buisman, C. J. N., Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. *Water Res.* **2008**, *42*, (15), 4059-4066.