Supporting Information

for
Molecular Design and Property Prediction For A Series of Novel Dicyclic Cyclotrimethylene Trinitramine(RDX)-Derivatized as High Energy Density Materials SHEN Cheng, WANG Pengcheng, LU Ming*
(School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Contents

S2 Kamlet-Jacobs equation
S3 Thermodynamic Properties of R4
S4 Reference

[^0]
Kamlet-Jacobs equation ${ }^{1}$

The calculation of the detonation parameters such as detonation velocity (D), detonation pressure (P) and heat of detonation (Q) was performed with the Kamlet-Jacobs equation. ${ }^{1}$ For a molecular formula form like $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{N}_{\mathrm{d}}$, the equation is
$\mathrm{D}=1.01\left(\mathrm{NM}^{1 / 2} \mathrm{Q}^{1 / 2}\right)^{1 / 2}(1+1.3 \rho)(1)$
$p=1.558 \rho^{2} N \bar{M}^{1 / 2} Q^{1 / 2}$

Where D is detontion velocity, P is detonation pressure, Q is heat of detonation, N is the number of moles of the gas generated per gram, \bar{M} is the average molecular weight of gaseous product, and ρ is crystal density.

In this paper these structure are all satisfied to $\mathrm{b} / 2 \leq \mathrm{c} \leq 2 \mathrm{a}+\mathrm{b} / 2$, so there is enough oxygen to convert hydrogen to H 20 while not enough to convert carbon to CO , then the decomposition equation is shown as followed,
$C_{a} H_{b} O_{c} N_{d} \rightarrow \frac{1}{2} d N_{2}+\frac{1}{2} b H_{2} O+\left(\frac{1}{2} c-\frac{1}{4} b\right) \mathrm{CO}_{2}+\left(a-\frac{1}{2} c+\frac{1}{4} b\right) C$ (3)

So, we have the following corollary to N, \bar{M} and Q,
$\mathrm{N}=\left[\frac{1}{2} d+\frac{1}{2} b+\left(\frac{1}{2} c-\frac{1}{4} b\right)\right] / \mathrm{M}=(\mathrm{b}+2 \mathrm{c}+2 \mathrm{~d}) / 4 \mathrm{M}$ (4)
$\overline{\mathrm{M}}=\frac{\frac{1}{2} d * 28+\frac{1}{2} b * 18+\left(\frac{1}{2} c-\frac{1}{4} b\right) * 44}{\frac{1}{2} d+\frac{1}{2} b+\left(\frac{1}{2} c-\frac{1}{4} b\right)}=(56 \mathrm{~d}+88 \mathrm{c}-8 \mathrm{~b}) /(\mathrm{b}+2 \mathrm{c}+2 \mathrm{~d})$
$\mathrm{Q} \cong-\Delta \mathrm{H}_{0}=-\left[\Delta \mathrm{H}_{f}^{0}(\right.$ detonation products $)-\Delta \mathrm{H}_{f}^{0}($ explosive $\left.)\right] / \mathrm{M}$ (6)

Then the standard heats of formation for $\mathrm{H} 2 \mathrm{O}(\mathrm{g}), \mathrm{N} 2(\mathrm{~g})$, and $\mathrm{CO} 2(\mathrm{~g})$ and solid carbon are taken into this equation,
$\mathrm{Q}=\left[28.9 \mathrm{~b}+94.05(\mathrm{c} / 2-\mathrm{b} / 4)+\Delta \mathrm{H}_{\mathrm{f}}^{0}(\right.$ explosive $\left.)\right] / \mathrm{M}$ (7)
Here, the parameter unit of $\Delta \mathrm{H}_{\mathrm{f}}^{0}$ (explosive) is $\mathrm{kcal} / \mathrm{mol}$, the unit of Q is $\mathrm{kcal} / \mathrm{mol}$, so this equation can be obtained with the following formula,
$\mathrm{Q} * 10^{-3}=\left(28.9 \mathrm{~b}+94.05(\mathrm{c} / 2-\mathrm{b} / 4)+0.239 \Delta \mathrm{H}_{\mathrm{f}}^{0}\right) / \mathrm{M}(8)$

Where the parameter unit of $\Delta \mathrm{H}_{\mathrm{f}}^{0}$ is $\mathrm{kJ} / \mathrm{mol}$, the unit of Q is $\mathrm{cal} / \mathrm{mol}$.
So when the structures are satisfied to $\mathrm{b} / 2 \leq \mathrm{c} \leq 2 \mathrm{a}+\mathrm{b} / 2$, the parameters $\mathrm{N}, \overline{\mathrm{M}}$ and Q can be obtained as the following equation,
$\mathrm{N}=(\mathrm{b}+2 \mathrm{c}+2 \mathrm{~d}) / 4 \mathrm{M}(9)$
$\bar{M}=(56 d+88 c-8 b) /(b+2 c+2 d)(10)$
$\mathrm{Q} * 10^{-3}=\left(28.9 \mathrm{~b}+94.05(\mathrm{c} / 2-\mathrm{b} / 4)+0.239 \Delta \mathrm{H}_{\mathrm{f}}^{0}\right) / \mathrm{M} \quad(11)$

Thermodynamic Properties of R4

With the help of Gaussian03 program, the thermodynamic properties were obtained by analysis vibrational data. Then, standard molar thermal enthalpy $\mathrm{H}_{\mathrm{m}}^{\theta}$, standard molar heat capacity $\mathrm{C}_{\mathrm{p}, \mathrm{m}}^{\theta}$ and standard molar entropy S_{m}^{θ} from 200 K to 600 K were listed in Table 5,

Table 5. Standard Molar Thermal Enthalpy $\mathrm{H}_{\mathrm{m}}^{\ominus}$, Standard Molar Heat Capacity $\mathrm{C}_{\mathrm{p}, \mathrm{m}}^{\theta}$ and Standard Molar Entropy S_{m}^{θ} of R4

Temperature(K)	$\mathbf{H}_{\mathbf{m}}^{\boldsymbol{\theta}}(\mathbf{K c a l} / \mathbf{m o l})$	$\mathbf{C}_{\mathbf{p}, \mathbf{m}}^{\boldsymbol{\theta}}(\mathbf{K c a l} / \mathbf{m o l})$	$\mathbf{S}_{\mathbf{m}}^{\boldsymbol{\theta}}(\mathbf{K c a l} / \mathbf{m o l})$
$\mathbf{2 0 0}$	154.465	65.277	139.355
$\mathbf{2 9 8}$	162.293	89.985	170.873
$\mathbf{3 0 0}$	162.464	90.430	171.443
$\mathbf{4 0 0}$	172.849	112.635	201.164
$\mathbf{5 0 0}$	185.249	130.696	228.759
$\mathbf{6 0 0}$	199.255	144.869	254.256

From this table we can see that the thermodynamic properties increase with temperature. This is mainly because the translations and rotations of the molecules are the key factors at lower temperature, while under high temperature the vibrational motion makes more contribution to the thermodynamic properties.

Figure 1. The Relationship between Temperature and Thermodynamic Properties

The relationship between temperature and thermodynamic properties have been calculated in following equations,

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{m}}^{\theta}=143.975+3.1740 \times 10^{-2} \mathrm{~T}+1.00911 \times 10^{-4} \mathrm{~T}^{2} \\
& \mathrm{C}_{\mathrm{p}, \mathrm{~m}}^{\theta}=2.95945+3.4783 \times 10^{-1} \mathrm{~T}-1.85248 \times 10^{-4} \mathrm{~T}^{2} \\
& \mathrm{~S}_{\mathrm{m}}^{\theta}=68.81084+3.7496 \times 10^{-1} \mathrm{~T}-1.09915 \times 10^{-4} \mathrm{~T}^{2}
\end{aligned}
$$

The correlation coefficients and standard deviations for standard molar thermal enthalpy $\mathrm{H}_{\mathrm{m}}^{\theta}$, standard molar heat capacity $\mathrm{C}_{\mathrm{p}, \mathrm{m}}^{\theta}$ and standard molar entropy $\mathrm{S}_{\mathrm{m}}^{\theta}$ from 200 K to 600 K are, in order, 0.99995 and $0.15842,0.99996$ and $0.23176,1.00000$ and 0.07624 .

Reference

(1) Kamlet M. J.; Jacobs S. T. Chemistry of Detonation. I. A Simple Method for Calculating Detonation Properties of C, H, N, O Explosives. J. Chem. Phys. 1968, 48, 23-35.

[^0]: * Corresponding author, E-mail: luming@mail.njust.edu.cn

