Supporting Information

Enantioselective, Catalytic Trichloromethylation through Visible-Light-Activated Photoredox Catalysis with a Chiral Iridium Complex

Haohua Huo, Chuanyong Wang, Klaus Harms, and Eric Meggers*

*meggers@chemie.uni-marburg.de

1. General Information S2
2. Synthesis of Substrates. S3
3. Iridium-Catalyzed Photoredox Reactions S11
4. Enantioselectivities as Determined by Chiral HPLC S26
5. Mechanistic Experiments S47
5.1 Control Experiments for Table 1 S47
5.2 Discussion of Competition between Bromination and Trichloromethylation S49
5.3 Synthesis of the Proposed Intermediate Complexes I and II S51
5.4 Luminescence Quenching Experiments (Figure 5) S53
5.5 Trapping Experiments with Electron Rich Alkenes S53
5.6 Trapping Experiment with TEMPO S54
5.7 Coordination Strength Comparison of 2-Acylimidazoles and 2-Acylpyridines S55
5.8 Quantum Yield Measurement S56
6. Attempted Transformation of 2-Acyl Imidazole Products S60
7. NMR Spectra S62
8. Single-Crystal X-Ray Diffraction Studies S103
9. References. S105

1. General Information

All reactions were carried out under an atmosphere of argon with magnetic stirring. Catalysis reactions were performed in a Schlenk tube (10 mL). As light sources served a 20 W energy saving household white light lamp. The photocatalysts Λ - $\mathbf{I r} \mathbf{O}^{1}$ and Λ-IrS ${ }^{2}$ were synthesized according to our published procedures. Solvents were distilled under nitrogen from calcium hydride $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), sodium/benzophenone (THF), or magnesium turnings/iodine (MeOH). Reagents that were purchased from commercial suppliers were used without further purification. Flash column chromatography was performed with silica gel 60 M from Macherey-Nagel (irregular shaped, 230-400 mesh, pH 6.8 , pore volume: $0.81 \mathrm{~mL} \times \mathrm{g}^{-1}$, mean pore size: $66 \AA$, specific surface: $492 \mathrm{~m}^{2}$ $\times \mathrm{g}^{-1}$, particle size distribution: $0.5 \%<25 \mu \mathrm{~m}$ and $1.7 \%>71 \mu \mathrm{~m}$, water content: 1.6%). ${ }^{1} \mathrm{H}$ NMR and proton decoupled ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Avance 300 (300 MHz) spectrometers at ambient temperature. NMR standards were used as follows: ${ }^{1} \mathrm{H}$ NMR spectroscopy: $\delta=7.26 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right), \delta=5.32 \mathrm{ppm}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy: $\delta=77.0 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$, $\delta=53.8 \mathrm{ppm}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$. IR spectra were recorded on a Bruker Alpha FT-IR spectrophotometer. High-resolution mass spectra were recorded on a Bruker En Apex Ultra 7.0 TFT-MS instrument using ESI or APCI technique. Chiral HPLC chromatography was performed with an Agilent 1200 or Agilent 1260 HPLC system. UV/Vis measurements were taken on a Spectra Max M5 microplate reader in a 10.0 mm quartz cuvette. Optical rotations were measured on a Krüss P8000-T polarimeter with $[\alpha]_{D}{ }^{22}$ values reported in degrees with concentrations reported in $\mathrm{g} / 100 \mathrm{~mL}$.

2. Synthesis of Substrates

2.1 Synthesis of 2-Acyl Imidazoles

2-Acyl imidazoles $\mathbf{1 a - h}, \mathbf{1} \mathbf{j}-\mathbf{I}$ and the corresponding Weinreb amides were synthesized according to our recently published procedures (method A). ${ }^{3}$ 2-Acyl imidazole $\mathbf{2 i}$ was synthesized according to a reported procedure with some modifications (method B). ${ }^{4}$

Method A:

General procedure for method A. To a solution of N-phenylimidazole (1.1 eq) in THF at $-78{ }^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(1.1 \mathrm{eq})$ dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then stirred at room temperature for 30 min . The corresponding Weinreb amide (1.0 eq in THF) was added dropwise to the flask after the reaction was cooled back down to $-78{ }^{\circ} \mathrm{C}$. The overall concentration of Weinreib amide was 0.4 M . The reaction was allowed to warm to room temperature slowly (over a period of 3-4 h) and stirred overnight. The reaction was quenched with $\mathrm{AcOH}(6.0 \mathrm{eq})$ at room temperature and extracted with EtOAc. The organic layer was washed with aqueous saturated NaHCO_{3} and brine. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $($ EtOAc/hexane $=1: 3)$ to produce $\mathbf{1 a - h}, \mathbf{1} \mathbf{j} \mathbf{- l}$.

The experimental data of $\mathbf{1 f}$ and $\mathbf{1 l}$ are shown below. The other 2 -acyl imidazoles ($\mathbf{1 a - e}, \mathbf{1 g}-\mathbf{h}, \mathbf{1} \mathbf{j}-\mathbf{k}$) have been reported previously. ${ }^{3}$

2-(2-Chlorophenyl)-1-(1-phenyl-1H-imidazol-2-yl)ethanone (1f)

Following the general procedure, Weinreb amide S1f ($852 \mathrm{mg}, 4.0 \mathrm{mmol}$) was converted to 2-acyl imidazole $\mathbf{1 f}(890 \mathrm{mg}, 3.0 \mathrm{mmol}$, yield: 75%) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.64-6.99 (m, 12H), 4.69 (s, 2H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.1,142.7,138.2,134.8,133.0,132.2,129.7,129.4,128.9,128.7$,

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3136,3069,3014,2914,1727,1677,1590,1484,1442,1393,1306,1141,1032$, 957, 909, 744, 685, 538, 503, 442.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 297.0789$, found: 297.0789.

1-(1-Phenyl-1H-imidazol-2-yl)hexan-1-one (11)

Following the general procedure, Weinreb amide S11 ($636 \mathrm{mg}, 4.0 \mathrm{mmol}$) was converted to 2-acyl imidazole 11 ($808 \mathrm{mg}, 3.4 \mathrm{mmol}$, yield: 84%) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.11(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.7,143.2,138.5,129.4,128.9,128.6,126.9,125.9,39.2,31.4$, 23.7, 22.4, 13.9.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3109,3062,2954,2928,2863,1683,1596,1496,1446,1404,1306,1040,957$, 910, 761, 691, 554, 515.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 243.1492$, found: 243.1493.

Method B:

Procedure for the preparation of 1i. To a solution of N-phenylimidazole ($864 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (15 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(2.4 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 6.0 mmol) dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , then stirred at room temperature for 30 min . The tert-butyl chloroacetate ($1.3 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added at one portion to the flask after the reaction was cooled back down to $-78^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature slowly (over a period of 3-4 h) and stirred overnight. The reaction was quenched with water at room temperature and extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered,
and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{hexane}=1: 3$) to produce $\mathbf{S 1 i}(960 \mathrm{mg}, 4.4 \mathrm{mmol}$, yield: $73 \%)$ as a white solid. To a mixture of $\mathbf{S 1 i}(880 \mathrm{mg}, 4.0 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(552 \mathrm{mg}, 4.0 \mathrm{mmol})$ in DMF $(8.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added p-cresol ($648 \mathrm{mg}, 6.0 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for overnight. The reaction was quenched with water $(8 \mathrm{~mL})$ at room temperature and extracted with DCM $(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $($ EtOAc/hexane $=1: 3)$ to afford $\mathbf{1 i}(595 \mathrm{mg}, 2.0 \mathrm{mmol}$, yield: $50 \%)$ as a white solid.

1-(1-Phenyl-1H-imidazol-2-yl)-2-(p-tolyloxy)ethanone (1i)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.8,156.0,140.8,137.6,130.5,130.0,129.9,129.0,128.9,127.3$, 125.9, 114.5, 70.1, 20.4.

All spectroscopic data were in agreement with the literature. ${ }^{4}$

2.2 Synthesis of 2-Acyl Pyridines

All 2-acyl pyridines (4a-i) were synthesized according to reported procedures with some modifications. ${ }^{5}$

General procedure for the synthesis of $\mathbf{2}$-acyl pyridines. To a solution of the corresponding 2-pyridinecarbonitrile $\mathbf{S 4}(1.0 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{M})$ at $-15^{\circ} \mathrm{C}$ were added ethylmagnesium bromide or benzylmagnesium bromide ($1.2 \mathrm{eq}, 1.0 \mathrm{M}$ in THF). The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 30 min , then allowed to warm to room temperature and stirred for a further 2.5 h . The mixture was added $2 N \mathrm{HCl}(2.4 \mathrm{eq})$ and stirred at room temperature for 15 min . The reaction was
neutralized with 2 N NaOH to pH 8 and diluted with EtOAc. The organic layer was washed with aqueous saturated NaHCO_{3} and brine (20 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $(E t O A c /$ hexane $=1: 10)$ to obtain the pure compounds 4a-i.

2-Phenyl-1-(pyridin-2-yl)ethanone (4a)

Following the general procedure, 2-pyridinecarbonitrile ($1.5 \mathrm{~mL}, 16.0 \mathrm{mmol}$) was converted to 2-acyl pyridine $\mathbf{4 a}(2.648 \mathrm{~g}, 13.4 \mathrm{mmol}$, yield: 84%) as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{ddd}, J=4.7,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{td}, J=$ 7.7, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (ddd, $J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.07(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1,153.1,148.9,136.9,134.8,129.9,128.4,127.1,126.6,122.3$, 43.9.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3058,3032,2890,1698,1578,1494,1435,1396,1333,1219,991,769,737,697$, 562.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 198.0913$, found: 198.0917.

1-(Pyridin-2-yl)propan-1-one (4b)

Following the general procedure, 2-pyridinecarbonitrile ($1.5 \mathrm{~mL}, 16.0 \mathrm{mmol}$) was converted to 2-acyl pyridine $\mathbf{4 b}(1.837 \mathrm{~g}, 13.6 \mathrm{mmol}$, yield: $85 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{ddd}, J=4.7,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{td}, J=$ $7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=7.5,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,153.5,148.9,136.8,126.9,121.7,31.0,7.9$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3057,2977,2938,2881,1696,1580,1459,1353,1222,1093,996,954,756,667$, 617, 568.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 136.0757$, found: 136.0758.

1-(4-Methylpyridin-2-yl)propan-1-one (4c)

Following the general procedure, 4-methyl-2-pyridinecarbonitrile ($733 \mathrm{mg}, 6.2 \mathrm{mmol}$) was converted to 2-acyl pyridine $\mathbf{4 c}(711 \mathrm{mg}, 4.8 \mathrm{mmol}$, yield: 77%) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.00(\mathrm{~m}, 1 \mathrm{H}), 3.23$ (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.8,153.4,148.7,148.1,127.7,122.5,31.1,21.0,8.0$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3052,2976,2936,2879,1696,1599,1457,1408,1345,1266,1165,1032,996$, 972, 841, 801, 672, 577, 526, 481.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 172.0733$, found: 172.0733.

1-(4-Phenylpyridin-2-yl)propan-1-one (4d)

Following the general procedure, 4-phenyl-2-pyridinecarbonitrile ($900 \mathrm{mg}, 5.0 \mathrm{mmol}$) was converted to 2-acyl pyridine $\mathbf{4 d}$ ($847 \mathrm{mg}, 4.0 \mathrm{mmol}$, yield: 80%) as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.38-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.59(\mathrm{~m}, 3 \mathrm{H})$, $7.58-7.39(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.6,154.0,149.4,137.5,129.4,129.2,127.0,124.6,119.6,31.3$, 8.0.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 2975,2933,2898,1696,1589,1543,1501,1454,1402,1342,1282,1196,964$, 760, 683, 609, 449.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 234.0889$, found: 234.0890 .

1-(4-Chloropyridin-2-yl)propan-1-one (4e)

Following the general procedure, 4-chloro-2-pyridinecarbonitrile ($889 \mathrm{mg}, 6.4 \mathrm{mmol}$) was converted to 2 -acyl pyridine $\mathbf{4 e}(898 \mathrm{mg}, 5.3 \mathrm{mmol}$, yield: 83%) as a pale yellow oil.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{dd}, J=5.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=2.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ $(\mathrm{dd}, J=5.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.3,154.7,149.8,145.4,127.0,122.2,31.2,7.8$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3056,2978,2939,2907,2880,1700,1562,1458,1399,1346,1279,1221,1095$, $1022,971,899,841,793,706,487$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NOClNa}[\mathrm{M}+\mathrm{Na}]^{+}: 192.0187$, found: 192.0188.

1-(4-Bromopyridin-2-yl)propan-1-one (4f)

Following the general procedure, 4-bromo-2-pyridinecarbonitrile ($819 \mathrm{mg}, 4.5 \mathrm{mmol}$) was converted to 2-acyl pyridine $\mathbf{4 f}(776 \mathrm{mg}, 3.4 \mathrm{mmol}$, yield: 76%) as a white solid.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59-8.38(\mathrm{~m}, 1 \mathrm{H}), 8.32-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.53(\mathrm{~m}, 1 \mathrm{H}), 3.42-2.92$ $(\mathrm{m}, 2 \mathrm{H}), 1.38-1.11(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 201.2, 154.3, 149.7, 134.0, 130.0, 125.2, 31.2, 7.8.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3051,2976,2937,2907,2879,1699,1554,1455,1392,1344,1215,1082,1020$, $967,899,837,801,777,684,576,478$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NOBrNa}[\mathrm{M}+\mathrm{Na}]^{+}: 235.9681$ and 237.9661 , found: 235.9684 and 237.9664.

1-(5-Bromopyridin-2-yl)propan-1-one (4g)

Following the general procedure, 5-bromo-2-pyridinecarbonitrile ($819 \mathrm{mg}, 4.5 \mathrm{mmol}$) was converted to 2-acyl pyridine $\mathbf{4 g}$ ($796 \mathrm{mg}, 3.5 \mathrm{mmol}$, yield: 78%) as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{dd}, J=2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (dd, $J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.6, 151.7, 150.0, 139.5, 125.0, 122.9, 31.0, 7.8.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3113,2912,2867,1693,1556,1454,1369,1342,1253,1208,1122,1079,997$, 949, 862, 800, 728, 620, 559, 497.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NOBrNa}[\mathrm{M}+\mathrm{Na}]^{+}: 235.9681$ and 237.9661, found: 235.9686 and 237.9666.

1-(4-Propylpyridin-2-yl)propan-1-one (4h)

Following the general procedure, 4-n-propyl-2-pyridinecarbonitrile ($819 \mathrm{mg}, 4.0 \mathrm{mmol}$) was converted to 2-acyl pyridine $\mathbf{4 h}(572 \mathrm{mg}, 3.2 \mathrm{mmol}$, yield: 80%) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=4.9$,
$1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.9,153.4,152.6,148.7,127.1,121.8,37.3,31.2,23.3,13.6,8.0$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3051,2965,2934,2872,1697,1598,1460,1412,1347,1254,1164,1023,993$, 862, 833, 801, 492.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 200.1046$, found: 200.1046.

1-(Isoquinolin-3-yl)-2-phenylethanone (4i)

Following the general procedure, isoquinoline-3-carbonitrile ($363 \mathrm{mg}, 2.4 \mathrm{mmol}$) was converted to 2-acyl pyridine $\mathbf{4 i}$ ($248 \mathrm{mg}, 1.0 \mathrm{mmol}$, yield: 42\%) as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.17-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.67(\mathrm{~m}, 2 \mathrm{H})$, 7.49-7.17 (m, 5H), 4.69 (s, 2H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.3,151.8,147.4,135.6,135.1,130.9,130.2,130.0,129.4,128.6$, $128.4,127.5,126.6,121.0,44.7$.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3083,3027,2924,1683,1618,1584,1489,1448,1381,1264,1222,1115,1030$, $945,902,834,755,719,686,557,481$.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 248.1070$, found: 248.1070.

3. Iridium-Catalyzed Photoredox Reactions

General procedure A: $\boldsymbol{\alpha}$-trichloromethylation of 2-acyl imidazoles. A dried 10 mL Schlenk tube was charged with the catalyst Λ - $\mathbf{I r S}$ (2 or $4 \mathrm{~mol} \%$), $\mathrm{NaHCO}_{3}(18.5 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1 \mathrm{eq}$) and the corresponding 2-acyl imidazole 1a-l ($0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$). The tube was purged with argon and $\mathrm{MeOH} / \mathrm{THF}(4: 1,0.5 \mathrm{~mL})$ was added via syringe, followed by bromotrichloromethane ($118.0 \mu \mathrm{~L}$, $1.2 \mathrm{mmol}, 6.0$ eq). The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the mixture was thoroughly degassed, the vial was sealed and positioned approximately 5 cm from a 20 W white light energy saving lamp. The reaction was stirred at room temperature for the indicated time (monitored by TLC) under nitrogen atmosphere. Afterwards, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 mL), the inorganic salt was removed by centrifugation. The combined organic layers were concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc/hexane $=1: 15$ to $1: 10$) to afford the products 2a-l. Racemic samples were obtained by carrying out the reactions with rac-IrS. The enantiomeric excess was determined by chiral HPLC analysis.

Exemplary reaction setup:

General procedure B: $\boldsymbol{\alpha}$-trichloromethylation of 2-acyl pyridines. A dried 10 mL Schlenk tube was charged with the catalyst Λ-IrS ($4 \mathrm{~mol} \%$) and the corresponding 2 -acyl pyridine $\mathbf{4 a - i}$ (0.2 $\mathrm{mmol}, 1.0 \mathrm{eq})$. The tube was purged with nitrogen and $\mathrm{MeOH} / \mathrm{MeCN}(1: 1,0.5 \mathrm{~mL})$ was added via syringe, followed by 2,6-lutidine ($25.0 \mu \mathrm{~L}, 0.22 \mathrm{mmol}, 1.1 \mathrm{eq}$) and bromotrichloromethane (118.0 $\mu \mathrm{L}, 1.2 \mathrm{mmol}, 6.0$ eq). The reaction mixture was degassed via freeze-pump-thaw for three cycles. After the mixture was thoroughly degassed, the vial was sealed and positioned approximately 5 cm from a 20 W white light energy saving lamp. The reaction was stirred at $40^{\circ} \mathrm{C}$ (silicone oil bath) for the indicated time (monitored by TLC) under nitrogen atmosphere. Afterwards, the mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $(E t O A c /$ hexane $=1: 30$ to $1: 15)$ to afford the products $\mathbf{5 a} \mathbf{a}$. Racemic samples were obtained by carrying out the reactions with rac-IrS. The enantiomeric excess was determined by chiral HPLC analysis.

Exemplary reaction setup:

(R)-3,3,3-Trichloro-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)propan-1-one (2a)

Starting from 2-acyl imidazole $\mathbf{1 a}(52.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give 2a as a white solid ($58.3 \mathrm{mg}, 0.154 \mathrm{mmol}$, yield: 77%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=99.7 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=13.0$ $\min) .[\alpha]_{D}^{22}=-206.4^{\circ}\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.76-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.19$ (m, 4H), $6.58(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 183.5,142.8,138.5,132.5,132.1,130.5,129.6,129.5,129.4,128.9$, 128.8, 126.1, 98.9, 67.7.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 1686,1592,1494,1448,1392,1304,1153,1062,1032,958,914,871,760,740$, 691, 634, 547.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 400.9997$ and 402.9969 , found: 401.0000 and 402.9971.

(R)-3,3,3-Trichloro-1-(1-phenyl-1H-imidazol-2-yl)-2-(m-tolyl)propan-1-one (2b)

Starting from 2-acyl imidazole 1b $(55.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give $\mathbf{2 b}$ as a white solid ($71.0 \mathrm{mg}, 0.181 \mathrm{mmol}$, yield: 91%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=99.0 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=11.2$ $\min) .[\alpha]_{\mathrm{D}}{ }^{22}=-229.4^{\circ}\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.66-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 183.5,142.8,138.7,138.5,132.6,132.3,130.5,130.4,129.5,129.3$, 129.1, 128.9, 128.6, 126.1, 98.9, 67.8, 21.6.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3125,3064,2966,2919,2856,1685,1594,1492,1447,1393,1306,1145,1050$,

HRMS (ESI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 393.0323$ and 395.0295 , found: 393.0326 and 395.0295.
(R)-3,3,3-Trichloro-1-(1-phenyl-1H-imidazol-2-yl)-2-(o-tolyl)propan-1-one (2c)

Starting from 2-acyl imidazole 1c ($55.2 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A to give 2c as a white solid ($64.3 \mathrm{mg}, 0.164 \mathrm{mmol}$, yield: 82%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee > 99.9\% (HPLC: OD-H, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=8.7 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=9.9 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}^{22}=-270.8^{\circ}\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, J=5.2,1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 183.8,143.0,140.6,138.5,131.7,131.2,130.5,130.4,129.6,129.5$, $129.3,128.9,126.1,126.0,99.6,63.0,20.9$.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3118,3061,2978,1691,1596,1494,1449,1393,1307,1057,960,916,872,725$, 693, 635, 543.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 393.0323$ and 395.0295 , found: 393.0326 and 395.0296.
(R)-3,3,3-Trichloro-2-(4-methoxyphenyl)-1-(1-phenyl-1H-imidazol-2-yl)propan-1-one (2d)

Starting from 2-acyl imidazole 1d ($58.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A to give $\mathbf{2 d}$ as a white solid ($73.1 \mathrm{mg}, 0.179 \mathrm{mmol}$, yield: 90%). Enantiomeric excess established by HPLC analysis using a Chiralpak IC column, ee $=99.4 \%$ (HPLC: IC, 254 nm , hexane/isopropanol $=95: 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=8.1 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=-236.4^{\circ}$
(c 0.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.92$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 183.8,160.9,142.8,138.6,133.3,130.5,129.5,129.4,128.8,126.2$, 124.4, 114.2, 99.4, 67.1, 55.7.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3135,2967,2927,2842,1687,1602,1505,1451,1392,1308,1254,1179,1072$, 1024, 952, 767, 723, 627, 535.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 431.0091$ and 433.0064 , found: 431.0094 and 433.0065.

(R)-3,3,3-Trichloro-2-(4-chlorophenyl)-1-(1-phenyl-1H-imidazol-2-yl)propan-1-one (2e)

Starting from 2-acyl imidazole $\mathbf{1 e}(59.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give 2 e as a white solid ($56.2 \mathrm{mg}, 0.136 \mathrm{mmol}$, yield: 68%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=99.4 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=10.5$ $\min) .[\alpha]_{\mathrm{D}}{ }^{22}=-222.8^{\circ}\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.32-7.20 (m, 4H), 6.58 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 183.2, 142.7, 138.5, 135.9, 133.4, 131.2, 130.7, 129.6, 129.5, 129.1, 129.0, 126.2, 98.5, 66.9.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 2965,2927,2880,1691,1594,1492,1448,1394,1307,1092,1062,957,764$, 717, 691, 645, 543, 438.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 434.9596,436.9568$ and 438.9541, found: 434.9597, 436.9567 and 438.9539.

(R)-3,3,3-Trichloro-2-(2-chlorophenyl)-1-(1-phenyl-1H-imidazol-2-yl)propan-1-one (2f)

Starting from 2-acyl imidazole $\mathbf{1 f}(59.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give $\mathbf{2 f}$ as a white solid ($68.0 \mathrm{mg}, 0.165 \mathrm{mmol}$, yield: 83%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=99.6 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=13.6$ $\min) .[\alpha]_{\mathrm{D}}^{22}=-269.6^{\circ}\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.92(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.15(\mathrm{~m}$, 7H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 183.1,142.9,138.5,137.5,132.2,130.9,130.83,130.78,130.5$, 129.6, 129.4, 129.2, 126.9, 126.2, 98.8, 62.2.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3132,3090,3037,2852,1686,1591,1486,1443,1395,1301,1147,1051,961$, 863, 759, 716, 687, 630, 540.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 434.9596,436.9568$ and 438.9541 , found: 434.9595, 436.9566 and 438.9537.
(R)-3,3,3-Trichloro-2-(naphthalen-2-yl)-1-(1-phenyl-1H-imidazol-2-yl)propan-1-one (2g)

Starting from 2-acyl imidazole $\mathbf{1 g}(62.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give $\mathbf{2 g}$ as a white solid ($61.2 \mathrm{mg}, 0.143 \mathrm{mmol}$, yield: 71%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=99.2 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=10.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=13.6$ $\min) .[\alpha]_{\mathrm{D}}^{22}=-279.2^{\circ}\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.19(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.46(\mathrm{~m}, 5 \mathrm{H})$, 7.33-7.22 (m, 3H), $7.21(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 183.4,142.8,138.5,133.8,133.4,131.8,130.5,129.9,129.5,129.4$, 129.2, 128.9, 128.7, 128.3, 128.0, 127.4, 126.8, 126.2, 99.0, 67.8.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 2969,2927,2884,1686,1596,1498,1449,1392,1306,1152,1056,950,817$, 761, 724, 690, 477.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 451.0142$ and 453.0116 , found: 451.0143 and 453.0114.

(R)-3,3,3-Trichloro-1-(1-phenyl-1H-imidazol-2-yl)-2-(thiophen-3-yl)propan-1-one (2h)

Starting from 2-acyl imidazole $\mathbf{1 h}(53.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give $\mathbf{2 h}$ as a white solid ($48.0 \mathrm{mg}, 0.125 \mathrm{mmol}$, yield: 62%). Enantiomeric excess established by HPLC analysis using a Chiralpak AD-H column, ee $=96 \%$ (HPLC: AD-H, 254 nm , hexane/isopropanol $=95: 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=8.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=11.2 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}^{22}=-158.8^{\circ}\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.62(\mathrm{dd}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{qd}, J=5.0$, $2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 183.4,142.8,138.6,132.7,130.6,130.2,129.6,129.4,129.1,128.4$, 126.2, 125.6, 98.7, 63.3.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3144,3107,3067,2847,1686,1491,1444,1394,1302,1148,1062,966,761$, 713, 671, 532.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{OSNa}[\mathrm{M}+\mathrm{Na}]^{+}: 406.9550$ and 408.9521 , found: 406.9552 and 408.9523.

(R)-3,3,3-Trichloro-1-(1-phenyl-1H-imidazol-2-yl)-2-(p-tolyloxy)propan-1-one (2i)

Starting from 2-acyl imidazole $\mathbf{1 i}(58.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give $2 \mathbf{i}$ as a colorless oil ($52.1 \mathrm{mg}, 0.128 \mathrm{mmol}$, yield: 64%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=92 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=97: 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=8.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=9.7 \mathrm{~min}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{22}=-92.8^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.25 (m, 2H), 7.10 (br s, 4H), 6.93 ($\mathrm{s}, 1 \mathrm{H}$), 2.28 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 181.6,155.6,143.3,137.9,133.0,131.2,130.55,129.60,129.5$, 129.0, 126.0, 116.7, 96.5, 83.4, 20.7.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3121,3036,2924,2862,1698,1598,1503,1447,1398,1303,1218,1060,946$, 901, 809, 766, 727, 689, 580, 521.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 431.0091$ and 433.0064 , found: 431.0092 and 433.0062.

(R)-3,3,3-Trichloro-2-methyl-1-(1-phenyl-1H-imidazol-2-yl)propan-1-one (2j)

Starting from 2-acyl imidazole $\mathbf{1 j}$ ($40.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure A to give $\mathbf{2 j}$ as a white solid ($46.0 \mathrm{mg}, 0.146 \mathrm{mmol}$, yield: 73%). Enantiomeric excess established by HPLC analysis using a Chiralpak IC column, ee $=98.8 \%$ (HPLC: IC, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=9.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=8.2 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=+25.2^{\circ}(\mathrm{c}$ $0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.49-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.12(\mathrm{~m}, 4 \mathrm{H}), 5.30(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 186.6,142.9,138.6,130.5,129.5,129.3,128.9,126.2,100.5,58.3$, 16.0.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3154,3122,3065,2961,2930,1688,1591,1492,1449,1399,1299,1151,1078$, 1012, 953,905, 831, 767, 687, 601, 532.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 338.9829$ and 340.9801, found: 338.9830 and 340.9800 .

(R)-1-(1-Phenyl-1H-imidazol-2-yl)-2-(trichloromethyl)butan-1-one (2k)

Starting from 2-acyl imidazole $\mathbf{1 k}(42.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give $\mathbf{2 k}$ as a white solid ($63.3 \mathrm{mg}, 0.192 \mathrm{mmol}$, yield: 96%). Enantiomeric excess established by HPLC analysis using a Chiralpak IC column, ee $=99.4 \%$ (HPLC: IC, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=7.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=6.3 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=-1.6^{\circ}(c$ $0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.23$ (dd, $J=8.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-1.92(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.6,144.0,138.1,130.3,129.2,128.9,128.1,125.6,99.2,63.9$, 24.3, 11.6.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3120,3059,2971,2878,1735,1686,1495,1448,1399,1308,1201,1148,1113$, 1073, 1031, 961, 762, 684.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 352.9986$ and 354.9957, found: 352.9986 and 354.9958 .
(R)-1-(1-Phenyl-1H-imidazol-2-yl)-2-(trichloromethyl)hexan-1-one (21)

Starting from 2-acyl imidazole $11(48.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure A to give 21 as a colorless oil ($54.4 \mathrm{mg}, 0.152 \mathrm{mmol}$, yield: 76%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=98.8 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=6.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=6.8 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{22}=-28.0^{\circ}\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.58-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.36(\mathrm{dd}, J=10.3,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 186.9,144.3,138.7,130.6,129.5,129.3,128.9,126.2,100.0,62.6$, 31.2, 29.5, 23.0, 13.9.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3113,3064,2957,2930,2865,1688,1596,1497,1448,1399,1310,1039,905$, 854, 761, 685, 547.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 381.0299$ and 383.0271, found: 381.0298 and 383.0269.

(R)-3,3,3-Trichloro-2-phenyl-1-(pyridin-2-yl)propan-1-one (5a)

Starting from 2-acyl pyridine $\mathbf{4 a}(39.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure B to give 5a as a white solid ($52.0 \mathrm{mg}, 0.166 \mathrm{mmol}$, yield: 83%). Enantiomeric excess established by HPLC analysis using a Chiralpak IC column, ee $=99.6 \%$ (HPLC: IC, 254 nm , hexane/isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=9.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=7.6 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=-85.0^{\circ}(c 0.3$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.64(\mathrm{ddd}, J=4.7,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dt}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.84 (td, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}$, $3 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 194.3,152.6,149.4,137.7,132.4,129.5,128.7,128.2,123.2$, 99.3 , 65.8 .

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3057,2949,1704,1580,1436,1324,1248,1213,1067,992,893,871,809,742$, 699, 616, 560.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 335.9720$ and 337.9692 , found: 335.9722 and 337.9692.

(R)-3,3,3-Trichloro-2-methyl-1-(pyridin-2-yl)propan-1-one (5b)

Starting from 2-acyl pyridine $\mathbf{4 b}$ ($27.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) according to the general procedure B to give $\mathbf{5 b}$ as a colorless oil ($33.6 \mathrm{mg}, 0.134 \mathrm{mmol}$, yield: 67%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=95 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=$

99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=7.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=6.7 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=+40.3^{\circ}(c 0.4$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{ddd}, J=4.7,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dt}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.1, 152.3, 149.0, 137.3, 127.7, 122.7, 100.0, 55.5, 15.7.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3288,3170,3130,3061,2957,2924,1701,1578,1443,1333,1213,968,923$, 810, 768, 741, 665, 582, 408.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 273.9564$ and 275.9535, found: 273.9565 and 275.9535.

(R)-3,3,3-Trichloro-2-methyl-1-(4-methylpyridin-2-yl)propan-1-one (5c)

Starting from 2-acyl pyridine $\mathbf{4 c}(29.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure B to give $\mathbf{5 c}$ as a colorless oil ($34.2 \mathrm{mg}, 0.129 \mathrm{mmol}$, yield: 65%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=93 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=$ 99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=7.5 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=+43.1^{\circ}(c$ $0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58-8.32(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{ddd}, J=4.9,1.7,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,152.2,148.8,128.6,123.5,100.0,55.5,21.1,15.7$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3112,3055,2989,2952,2878,1702,1598,1497,1451,1400,1317,1158,1019$, 981, 934, 842, 817, 771, 727, 671, 584, 514, 427.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 287.9720$ and 289.9691, found: 287.9722 and 289.9693.

(R)-3,3,3-Trichloro-2-methyl-1-(4-phenylpyridin-2-yl)propan-1-one (5d)

Starting from 2-acyl pyridine $\mathbf{4 d}(42.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure B to give 5d as a white solid ($46.5 \mathrm{mg}, 0.142 \mathrm{mmol}$, yield: 71%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=94 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=$ 99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=14.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=10.0 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=+48.7^{\circ}(c$ $0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{dd}, J=5.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (dd, $J=5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dt}, J=8.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.31(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.2,152.9,149.9,149.5,137.2,129.6,129.3,127.1,125.4,120.5$, 100.0, 55.6, 15.7.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3062,3034,2962,2927,1699,1591,1455,1401,1324,1262,1188,1087,1027$, 984, 930, 825, 768, 707, 667, 578, 507, 428.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 349.9877$ and 351.9849, found: 349.9879 and 351.9849 .

(R)-3,3,3-Trichloro-1-(4-chloropyridin-2-yl)-2-methylpropan-1-one (5e)

Starting from 2-acyl pyridine $\mathbf{4 e}(33.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure B to give $\mathbf{5 e}$ as a colorless oil ($46.0 \mathrm{mg}, 0.161 \mathrm{mmol}$, yield: 81%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=95 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=$ 99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=9.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=6.7 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=+44.4^{\circ}(c 0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=5.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 196.0,153.5,149.9,145.9,127.8,123.1,99.6,55.7,15.6$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3083,3057,2992,2952,2879,1709,1562,1454,1395,1322,1214,1094,993$, 930, 829, 777, 700, 666, 583, 517, 425.

HRMS (ESI, m/z) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 285.9355,287.9325$ and 289.9297, found: 285.9356, 287.9327 and 289.9297.

(R)-1-(4-Bromopyridin-2-yl)-3,3,3-trichloro-2-methylpropan-1-one (5f)

Starting from 2-acyl pyridine $\mathbf{4 f}(42.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure B to give 5f as a colorless oil ($44.8 \mathrm{mg}, 0.136 \mathrm{mmol}$, yield: 68%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=92 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=$ 99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=10.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=6.8 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}^{22}=+36.9^{\circ}(c$ $0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=1.9,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=$ $5.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.9,153.2,149.7,134.4,130.8,126.2,99.6,55.7,15.6$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3091,3055,2991,2961,2879,1707,1555,1453,1386,1326,1205,1086,989$, 931, 829, 778, 674, 581, 509, 425.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrCl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 329.8849,331.8825,333.8798$ and 335.8771, found: 329.8852, 331.8827, 333.8800 and 335.8773.
(R)-1-(5-Bromopyridin-2-yl)-3,3,3-trichloro-2-methylpropan-1-one (5g)

Starting from 2-acyl pyridine $\mathbf{4 g}(42.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure B to give $\mathbf{5 g}$ as a colorless oil ($60.1 \mathrm{mg}, 0.182 \mathrm{mmol}$, yield: 91%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=96 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=$

99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=10.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=8.5 \mathrm{~min}\right) \cdot[\alpha]_{\mathrm{D}}^{22}=+24.8^{\circ}(c$ $0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.91(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.3$, 150.5, 150.2, 140.1, 126.1, 123.9, 99.7, 55.4, 15.6.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3053,2983,2942,2879,1703,1560,1453,1370,1329,1208,1086,1006,967$, 826, 777, 676, 625, 583.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrCl}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 329.8849,331.8825,333.8798$ and 335.8771, found: 329.8853, 331.8828, 333.8803 and 335.8774.

(R)-3,3,3-Trichloro-2-methyl-1-(4-propylpyridin-2-yl)propan-1-one (5h)

Starting from 2-acyl pyridine $\mathbf{4 h}(35.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure B to give $\mathbf{5 h}$ as a colorless oil ($39.3 \mathrm{mg}, 0.134 \mathrm{mmol}$, yield: 67%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=94 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=$ 99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=7.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=6.0 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=+44.3^{\circ}(c 0.4$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.66(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{dq}, J=14.8,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,153.2,152.3,148.8,127.9,122.8,100.1,55.6,37.3,23.3,15.7$, 13.6.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 2961,2934,2871,1706,1597,1414,1324,1159,1003,934,825,779,731,669$, 580, 428.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 316.0033, 318.0005 and 319.9977, found: 316.0034, 318.0005 and 319.9977.

(R)-3,3,3-Trichloro-1-(isoquinolin-3-yl)-2-phenylpropan-1-one (5i)

Starting from 2-acyl pyridine $\mathbf{4 i}(49.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ according to the general procedure B to give $\mathbf{5 i}$ as a white solid ($52.3 \mathrm{mg}, 0.144 \mathrm{mmol}$, yield: 72%). Enantiomeric excess established by HPLC analysis using a Chiralpak OD-H column, ee $=90 \%$ (HPLC: OD-H, 254 nm , hexane/isopropanol $=$ 98:2, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=7.5 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{22}=-102.0^{\circ}(c$ $0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.10-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.64(\mathrm{~m}, 4 \mathrm{H})$, 7.47-7.25 (m, 3H), 7.01 (s, 1H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 194.5,152.3,146.8,136.0,132.6,132.5,131.7,130.9,130.5,129.5$, 129.1, 128.7, 128.0, 122.3, 99.5, 66.5 .

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3058,2947,2855,1963,1694,1490,1444,1384,1309,1245,1161,1124,1060$, 939, 908, 864, 737, 697, 622, 562, 485.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 385.9877,387.9849$ and 389.9823, found: 385.9878, 387.9849 and 389.9820.

4. Enantioselectivities as Determined by Chiral HPLC

Enantiomeric purities of the reaction products were determined with a Daicel Chiralpak AD-H, OD-H or IC $(250 \times 4.6 \mathrm{~mm})$ HPLC column on an Agilent 1200 or 1260 Series HPLC System using hexane/isopropanol as a mobile phase. The column temperature was $25^{\circ} \mathrm{C}$ and UV-absorption was measured at 254 nm .

Figure S1. HPLC traces of rac-2a (reference) and (R)-2a.

Figure S2. HPLC traces of rac-2b (reference) and $(R) \mathbf{- 2 b}$.

Figure S3. HPLC traces of rac-2c (reference) and (R)-2c.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	8.168		0.2278	6603.23242	483.07080	99.6880
2	11.210	MM	0.2973	20.66391	1.15835	0.3120

Figure S4. HPLC traces of $\mathrm{rac}-\mathbf{2 d}$ (reference) and (R)-2d.

Figure S5. HPLC traces of rac-2e (reference) and (R)-2e.

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	* s	[mAU]	\%
1	12.474		0.3260		1118	3.68	0-1	0.1695
2	13.658	BB	0.3646	4246	32178	177	8749	99.8305

Figure S6. HPLC traces of rac - $\mathbf{2 f}$ (reference) and (R)-2f.

Figure S7. HPLC traces of $\mathrm{rac-2g}$ (reference) and $(R) \mathbf{- 2 g}$.

Figure S8. HPLC traces of $\mathrm{rac}-\mathbf{2 h}$ (reference) and (R)-2h.

Figure S9. HPLC traces of rac-2i (reference) and (R)-2i.

1	8.212 BB	0.1818	2500.74487	209.02557	99.4247
2	9.358 MM	0.3440	14.47021	$7.01170 \mathrm{e}-1$	0.5753

Figure S11. HPLC traces of rac-2k (reference) and (R)-2k.

Figure S12. HPLC traces of rac-2l (reference) and (R)-2l.

Figure S13. HPLC traces of rac-5a (reference) and (R)-5a.

1	6.697 BB	0.1129	1221.17432	166.82132	97.4850
2	7.803 MM	0.1663	31.50538	3.15839	2.5150

Figure S14. HPLC traces of rac-5b (reference) and (R)-5b.

Figure S15. HPLC traces of rac-5c (reference) and (R)-5c.

Figure S16. HPLC traces of rac-5d (reference) and (R)-5d.

Figure S17. HPLC traces of rac-5e (reference) and (R)-5e.

Figure S18. HPLC traces of rac-5f (reference) and (R)-5f.

Figure S19. HPLC traces of rac-5g (reference) and (R)-5g.

Figure S20. HPLC traces of rac-5h (reference) and (R)-5h.

Figure S21. HPLC traces of rac-5i (reference) and (R)-5i.

5. Mechanistic Experiments

5.1 Control Experiments for Table 1

a) Formation of the brominated product:

The control experiments were performed according the general catalysis procedure with 0.2 mmol 2-acylimidazole 1a. No trichloromethylated product 2a was observed in the dark. The conversion of the photochemical process was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of aliquots from the reaction mixture taken out of the reaction system via syringe at different times. The NMR spectra shown below demonstrate that no detectable brominated product $\mathbf{3}$ was formed in this photoredox reaction.

Figure S22. ${ }^{1} \mathrm{H}$ NMR (300 MHz , in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectra of 1a, 2a, 3 (as references) and the crude product from the photolysis. Conversion was inferred by integration ratio (signals H^{1} and H^{3}).
b) Effect of aerobic conditions:

c) Effect of different Brønsted bases:

2-Bromo-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethanone (3)

White solid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.55-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.13(\mathrm{~m}, 7 \mathrm{H}), 6.90(\mathrm{~s}$, 1H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 182.3,141.1,138.4,136.3,130.6,130.0,129.5,129.4,129.1,129.0$, 126.2, 50.2.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 1686,1591,1492,1446,1394,1304,1148,1064,1028,955,914,867,741,690$, 633, 547.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 341.0284$ and 343.0265 , found: 341.0297 and

3,3-Dichloro-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)prop-2-en-1-one (S5)

White solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 7.47-7.36 (m, 5H), 7.34-7.24 (m, 4H), 7.24-7.15 (m, 3H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 181.6, 142.1, 140.5, 138.2, 134.4, 131.6, 130.0, 129.6, 129.4, 129.3, 129.2, 129.0, 128.4, 126.1, 122.7.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 1669,1597,1494,1446,1389,1301,1252,1203,1150,1073,1029,996,937$, 913, 839, 802, 756, 692, 643, 576, 536.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 343.0399$ and 345.0373, found: 343.0414 and 345.0388.

5.2 Discussion of Competition between Bromination and Trichloromethylation

As shown in Table 1, the bromination product is the only observed product in the dark, whereas upon photolysis with visible light only the trichlormethylation product is observed. The following control experiments were performed to gain insight into the reason for not observing any brominated product in the presence of light.

Comparison of initial rates for the dark reaction and photoreaction:

The comparision experiments were performed according the general catalysis procedure with 0.2 mmol 2-acylimidazole 1a. The conversion was determined by ${ }^{1} \mathrm{H}$-NMR analysis of aliquots from the reaction mixture. Outcome: The overall rate of the photoreaction is slightly faster compared to
the bromination reaction in the dark.

Considering a possible transformation of the bromination product:

Standard Condition

The reactions were performed with 0.2 mmol 2 -acylimidazole 1a. In a first experiment, the reaction mixture was run in the dark until the brominated product $\mathbf{3}$ was formed with 71% conversion as monitored by ${ }^{1} \mathrm{H}$ NMR. Then, the reaction was run for a further 10 hours under 20 W CFL. As a result, the trichloromethylation was not observed in significant amounts by ${ }^{1} \mathrm{H}-\mathrm{NMR}(<10 \%)$ and product 3 was partially decomposed under irradiation. In a second experiment, the isolated bromination compound $\mathbf{3}$ was photolyzed under the standard reaction conditions. As a result, no trichloromethylation product or starting compound could be detected.

Proposed mechanism for the competition between bromination and trichloromethylation:

Based on the above control experiments, the following plausible mechanism is proposed which can explain why the bromination reaction is not able to compete with the trichloromethylation in the presence of light. Accordingly, both catalytic cycles run through the intermediate iridium enolate complex II. The bromination product is formed through the reaction of II with the electrophile BrCCl_{3}, whereas the CCl_{3}-product is formed through the reaction of II with a reductively formed trichloromethyl radical. Since the radical addition must be a very fast process that is almost diffusion controlled, the bromination reaction with the weak electrophile BrCCl_{3} will not be able to compete so that all enolate intermediate II only reacts with the trichloromethyl radical. Note that although the enolate reaction steps of the two catalytic cycles differ strongly, this is not the case for the overall reaction cycle which is in large parts dominated by slow ligand exchange processes.

IV'

Figure S23. Plausible mechanism for explaining the suppressed bromination and exclusive formation of the trichloromethylated product in the presence of visible light.

5.3 Synthesis of the Proposed Intermediate Complexes I and II

Intermediate I

The racemic complex I was obtained by reacting substrate $\mathbf{1 a}(31.4 \mathrm{mg}, 0.12 \mathrm{mmol})$ with racemic $\Delta / \Lambda-\mathbf{I r S}(95.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at room temperature overnight in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. Afterwards, the mixture was concentrated under vacuum. The residue black solid was washed by $\mathrm{Et}_{2} \mathrm{O}(4 \times 1 \mathrm{~mL})$, the yellow solid was obtained (110.0 mg , yield: 97%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.98(\mathrm{dd}, J=8.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{ddd}, J=11.8,7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.75(\mathrm{tt}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dddd}, J=9.3,8.2,4.7,3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{dtd}, J=8.8,7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$, 0.99 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 196.4,183.2,179.9,152.9,152.6,149.8,149.1,147.3,146.8,141.9$, $140.0,137.4,134.8,134.1,133.2,132.7$, 131.93, 131.88, 131.86, 129.9, 129.22, 129.18, 128.9, $128.5,128.4,126.9,126.6,125.2,124.8,124.1,123.8,123.6,123.5,115.4,114.9,45.8,35.5,35.2$, 31.8, 31.5.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3214,3060,2962,2868,1578,1503,1444,1404,1360,1289,1245,1161,1113$, 1025, 994, 838, 760, 731, 694, 554, 455.

Intermediate II

To a mixture of catalyst Δ / Λ-IrS $(95.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(16.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added substrate $\mathbf{1 a}(52.4 \mathrm{mg}, 0.20 \mathrm{mmol})$. The reaction mixture was concentrated after around 12 hours. The residue was purified by flash chromatography on activated basic aluminum oxide (EtOAc / hexane= 1:10) to afford the enolate complex II as a red solid (89.8 $\mathrm{mg}, 0.091 \mathrm{mmol}$, yield: 91%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.29$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J$ $=8.5,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.64-6.53(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}$, $9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 181.4,179.8,155.8,154.6,154.3,152.4,151.4,151.3,149.6,142.4$, $142.1,139.9,138.3,135.2,134.5,130.6,130.4,129.7,129.1,128.9,127.5,127.4,127.3,126.1$,

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3112,3049,2956,2903,2864,1584,1492,1462,1421,1378,1285,1243,1196$, $1156,1096,1018,991,926,909,868,810,781,760,733,692,666,502,466$.

5.4 Luminescence Quenching Experiments (Figure 5)

Emission intensities were recorded on a Spectra Max M5 microplate reader in a 10.0 mm quartz cuvette. The methyl imidazole derivatives were used due to higher stability of the enolate complex. ${ }^{2 \mathrm{a}}$ Catalyst Δ / Λ-IrS solutions were excited at $\lambda_{\max }=420 \mathrm{~nm}$ and the emission was measured at 550 nm (emission maximum). The complex $\mathbf{I}(N=\mathrm{Me})$ solutions were excited at $\lambda_{\max }=$ 420 nm and the emission measured at 550 nm (emission maximum). The enolate complex II ($N=$ Me) solutions were excited at $\lambda_{\max }=440 \mathrm{~nm}$ and the emission measured at 550 nm (emission maximum). The concentration of iridium complex (IrS and intermediate complex I and II) was 0.2 mM in $\mathrm{MeOH} / \mathrm{THF}(4: 1)$. The concentration of the quencher $\left(\mathrm{BrCCl}_{3}\right)$ stock solution was 200 mM in $\mathrm{MeOH} / \mathrm{THF}$ (4:1). For each quenching experiment, $5 \mu \mathrm{~L}$ of this stock solution were titrated to a solution (1 mL) of iridium complex in a screw-top 10.0 mm quartz cuvette. The addition of $5 \mu \mathrm{~L}$ stock solution refers to an increase of the quencher concentration of 1 mM . After degassing with an argon stream for 5 minutes, the emission intensity was collected. See Figure 5 for the obtained Stern-Volmer plots.

5.5 Trapping Experiments with Electron Rich Alkenes

Adding two equivalents of the 1-phenyl-1-(trimethylsilyloxy)ethene (S6) into the reaction mixture caused a complete inhibition of the formation of $\mathbf{2 b}$. Instead, the compound $\mathbf{S 7}$ was isolated in a yield of 53\%. Apparently, reductively generated trichloromethyl radicals are trapped effectively by the enolether S6, which seems reasonable considering that the steady-state concentration of the enolate intermediate complex II cannot exceed the amount of added iridium catalyst ($2 \mathrm{~mol} \%$
catalyst loading) and is therefore much lower compared to $\mathbf{S 6}$. The product $\mathbf{S 7}$ can be rationalized as being the HCl elimination product of the initial CCl_{3} product which is not stable under the basic conditions.

3,3-Dichloro-1-phenylprop-2-en-1-one (S7)

Colorless oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.94-7.78 (m, 2H), 7.58-7.49 (m, 1H), 7.48-7.35 (m, 2H), 7.19 (s, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.6,137.0,135.4,133.7,128.8,128.5,124.1$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 1668,1595,1563,1447,1318,1293,1265,1216,1181,1011,935,843,794,769$, 690, 624, 491.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 222.9688$ and 224.9659 , found: 222.9688 and 224.9659 .

5.6 Trapping Experiment with TEMPO

When two equivalents of TEMPO was added to the reaction after irradiation for 23 h , the trichloromethylation product $\mathbf{2 b}$ could not be detected. The corresponding alkoxyamine adduct of the 2 -acyl imidazole 1b was formed in 40% yield. It was confirmed that the generation of the oxyaminated product did not occur under dark conditions.

1-(1-Phenyl-1H-imidazol-2-yl)-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)-2-(m-tolyl)ethanone (S8)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.47-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.97$ $(\mathrm{m}, 3 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 6 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 189.3$, 142.9, 138.6, 138.37, 138.35, 130.2, 129.3, 129.0, 128.9, $128.7,128.4,127.6,125.9,125.8,90.0,60.2,60.0,40.6,34.1,33.6,21.6,20.3,17.6$.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3139,2969,2926,1688,1496,1493,1448,1398,1303,1252,1140,1062,1012$, 959, 916, 862, 762, 693, 632, 546, 442.

HRMS (APCI, m / z) calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 454.2465$, found:454.2468.

5.7 Coordination Strength Comparison of 2-Acylimidazoles and 2-Acylpyridines

In order to evaluate the differences in coordinative strength between 2 -acylimidazole 1a and the 2-acylpyridine 4a, a competition experiment was deviced and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. The result demonstrates that the binding constant of the pyridine substrate exceeds the binding constant of the imidazole substrate by around one order of magnitude.

Reaction 1 (serves as a reference): 1a (0.2 mmol) plus Rac-IrS ($0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$)
Reaction 2 (serves as a reference): 4a (0.2 mmol) plus Rac-IrS ($0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$)
Reaction 3 (competition reaction): 1a $(0.1 \mathrm{mmol})$, $\mathbf{4 a}(0.1 \mathrm{mmol})$ plus Rac-IrS $(0.01 \mathrm{mmol}, 10$ $\mathrm{mol} \%$)

- Signals of $t \mathrm{Bu}$ in complex I-a.
- Signals of $t \mathrm{Bu}$ in complex I-b.
\bullet Signals of released $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR (300 MHz , in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectra of reactions 1-3. Conversion was inferred by area integration ratio (signals ' \bullet ' and ' \square ').

5.8 Quantum Yield Measurement

The quantum yield was measured by standard ferrioxalate actinometry. A 6 W blue LED lamp (420 nm) was used as the light source. The measured method was designed according to a published procedures with slight modifications. ${ }^{6}$

The solutions were prepared and stored in the dark:
Potassium ferrioxalate solution ($\mathbf{0 . 1 5} \mathbf{M}$): 736.9 mg of potassium ferrioxalate hydrate was dissolved in 10 mL of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Buffered solution of phenanthroline: 50 mg of 1,10 -phenanthroline and 11.25 g of sodium acetate were dissolved in 50 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

a) Measurement of light intensity at $\mathbf{4 2 0} \mathbf{~ n m}$

1 mL of the ferrioxalate solution was added to a quartz cuvette $(1=10 \mathrm{~mm})$. The actinometry
solution was irradiated with 6 W blue LED lamp ($420 \mathrm{~nm} \pm 10 \mathrm{~nm}$) for 90.0 seconds. After irradiation, $175 \mu \mathrm{~L}$ of the phenanthroline solution was added to the cuvette. The solution was kept in dark for 30 min to make sure the complete coordination. The absorbance of the actinometry solution was monitored at 510 nm . The absorbance of a non-irradiated (in dark) sample was also measured at 510 nm .

The moles of Fe^{2+} formed was determined using Beer's Law:

$$
\text { moles } \mathrm{Fe}^{2+}=\frac{V_{1} \times V_{3} \times \Delta A(510 \mathrm{~nm})}{10^{3} \times V_{2} \times l \times \varepsilon(510 \mathrm{~nm})}
$$

Where $V_{l}(1 \mathrm{~mL})$ is the irradiated volume, $V_{2}(1 \mathrm{~mL})$ is the aliquot of the irradiated solution taken for the determination of the ferrous ions. $V_{3}(1.175 \mathrm{~mL})$ is the final volume after complexation with phenanthroline (all in mL), 1 is the path length $(1 \mathrm{~cm})$, and $\Delta A(510 \mathrm{~nm})$ is the optical difference in absorbance between the irradiated and non-irradiated solutions, $\varepsilon(510 \mathrm{~nm})$ is the molar absorptivity of $\mathrm{Fe}(\mathrm{phen}) 3^{2+}\left(11100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.

The photon flux can be calculated as:

$$
\text { photon flux }\left(\text { einstein } \mathrm{s}^{-1}\right)=\frac{\text { moles } F e^{2+}}{\Phi \cdot t \cdot f}
$$

Where Φ is the quantum yield for the ferrioxalate actinometer (1.05 for a 0.15 solution at 412 nm ; 1.04 for a 0.15 solution at $422 \mathrm{~nm} ; 1.03$ for a 0.15 solution at 433 nm$),{ }^{7} t$ is the irradiated time (90.0 s), and f is the fraction of light absorbed at $\lambda=420 \mathrm{~nm}\left(\mathrm{f}=1-10^{-\mathrm{A}}\right.$, A is the absorbance of above ferrioxalate solution at 420 nm is >3, indicating f is >0.999).

The calculations were done as follows:
$\Delta A(510 \mathrm{~nm})$ was calculated (average of three cycles) to be 0.860 .

$$
\begin{gathered}
\text { moles } \mathrm{Fe}^{2+}=\frac{1 \mathrm{~mL} \times 1.175 \mathrm{~mL} \times 0.860}{10^{3} \times 1 \mathrm{~mL} \times 1 \mathrm{~cm} \times 11100 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}}=9.103 \times 10^{-8} \mathrm{~mol} \\
\text { photon flux }=\frac{9.103 \times 10^{-8} \mathrm{~mol}}{1.04 \times 90 \mathrm{~s} \times 1.0}=9.72 \times 10^{-10} \text { einstein } / \mathrm{s}
\end{gathered}
$$

b) Measurement of quantum yield:

Model reaction:

A screw-top cuvette $(10.0 \mathrm{~mm})$ was charged with the catalyst rac-IrS ($2 \mathrm{~mol} \%$), 2-acyl imidazole 1a ($0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{NaHCO}_{3}(0.22 \mathrm{mmol}, 1.1 \mathrm{eq}), 0.5 \mathrm{~mL} \mathrm{MeOH} / \mathrm{THF}(4: 1,0.4 \mathrm{M})$, bromotrichloromethane ($1.2 \mathrm{mmol}, 6.0 \mathrm{eq}$) and a small magnetic stir bar. The cuvette was degassed with an argon stream for 10 min . After the mixture was thoroughly degassed, the vial was sealed and positioned approximately 8 cm from a 6 W blue lamp. The reaction mixture was stirred and irradiated for $10800 \mathrm{~s}(3 \mathrm{~h})$. After irradiation, the reaction mixture was passed through a short silica gel column. The yield of product formed was measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ with trimethyl(phenyl)silane as internal standard.

Experiment 1: Rac-IrS ($3.8 \mathrm{mg}, 0.004 \mathrm{mmol}$), 2-acyl imidazole 1a ($52.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), NaHCO_{3} $(18.5 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{MeOH} / \mathrm{THF}(4: 1,0.4 \mathrm{M}, 0.5 \mathrm{~mL})$, bromotrichloromethane ($118.0 \mu \mathrm{~L}, 1.2$ mmol). After irradiation for 10800 s , the product $\mathbf{2 a}$ was formed in 26.8% yield. The quantum yield calculation as following:

$$
\Phi=\frac{\text { moles of product formed }}{\text { einsteinsof light absorbed }}=\frac{0.2 \times 10^{-3} \times 0.268 \mathrm{~mol}}{9.72 \times 10^{-10} \text { einstein } \cdot \mathrm{s}^{-1} \times 10800 \mathrm{~s}}=5.1
$$

Experiment 2: Rac-IrS ($3.8 \mathrm{mg}, 0.004 \mathrm{mmol}$), 2-acyl imidazole 1a ($52.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), NaHCO_{3} $(18.4 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{MeOH} / \mathrm{THF}(4: 1,0.4 \mathrm{M}, 0.5 \mathrm{~mL})$, bromotrichloromethane ($118.0 \mu \mathrm{~L}, 1.2$ mmol). After irradiation for 10800 s , the product 2a was formed in 28.5% yield. The quantum yield calculation as following:

$$
\Phi=\frac{\text { moles of product formed }}{\text { einsteinsof light absorbed }}=\frac{0.2 \times 10^{-3} \times 0.285 \mathrm{~mol}}{9.72 \times 10^{-10} \text { einstein } \cdot \mathrm{s}^{-1} \times 10800 \mathrm{~s}}=5.4
$$

The output wavelength of the used 6 w blue LED ($420 \mathrm{~nm} \pm 10 \mathrm{~nm}$).

6. Attempted Transformation of 2-Acyl Imidazole Products

To a solution of rac-2a ($151.2 \mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added $4 \AA \mathrm{MS}(200 \mathrm{mg}, 50$ $\mathrm{mg} / 0.1 \mathrm{mmol}$ of $\mathbf{2 a}$) under nitrogen atmosphere. The suspension was stirred vigorously under a positive pressure of nitrogen for 2 h at room temperature, then methyl trifluoromethansulfonate (88 $\mu \mathrm{L}, 0.8 \mathrm{mmol}$) was added at room temperature. After being stirred at room temperature for 6 h , $\mathrm{MeOH}(0.32 \mathrm{~mL}, 8.0 \mathrm{mmol})$ and $\mathrm{DBU}(90 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ were added to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 60 min , the solvent was evaporated and the residue was purified by flash chromatography on silica gel (EtOAc/hexane $=1: 50)$ to give $\mathbf{S 5}(50.2 \mathrm{mg}, 0.15 \mathrm{mmol}$, yield: 37%) as a white solid and $\mathbf{S 8}(40.0 \mathrm{mg}, 0.17 \mathrm{mmol}$, yield: 43%) as a colorlss oil.

Methyl 3,3-dichloro-2-phenylacrylate (S8)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.57-7.23(\mathrm{~m}, 5 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 165.8,134.5,134.3,129.4,129.0,129.0,127.5,53.2$.
IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3059,3027,2952,2844,1729,1599,1490,1435,1272,1211,1073,1034,954$, 881, 839, 706, 589.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 252.9794$ and 254.9765 , found: 252.9799 and 254.9766.

To a solution of rac-2l ($107.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ was added $4 \AA \mathrm{MS}(150 \mathrm{mg}, 50$ $\mathrm{mg} / 0.1 \mathrm{mmol}$ of $\mathbf{2 1}$) under nitrogen atmosphere. The suspension was stirred vigorously under a
positive pressure of nitrogen for 2 h at room temperature, then methyl trifluoromethansulfonate (98 $\mu \mathrm{L}, 0.9 \mathrm{mmol}$) was added at room temperature. After being stirred at room temperature for 16 h , $\mathrm{BnOH}(0.31 \mathrm{~mL}, 3.0 \mathrm{mmol})$ and $\mathrm{DBU}(90 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ were added to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 60 min , the solvent was evaporated and the residue was purified by flash chromatography on silica gel (EtOAc/hexane $=1: 50)$ to give $\mathbf{S 9}(62.1 \mathrm{mg}, 0.22 \mathrm{mmol}$, yield: 72%) as a colorlss oil.

Benzyl 2-(dichloromethylene)hexanoate (S9)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.52-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 2.66-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.20(\mathrm{~m}$, $4 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 165.9,135.9,134.3,129.0,128.9,128.8,128.6,67.8,32.8,29.8$, 22.6, 13.9.

IR (film): $v\left(\mathrm{~cm}^{-1}\right) 3066,3033,2958,2929,2866,1725,1588,1496,1455,1374,1267,1203,1135$, 946, 907, 741, 695.

HRMS (ESI, m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 309.0420$ and 311.0391 , found: 309.0422 and 311.0395.

7. NMR Spectra

Figure S25. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 f}$.

ì
${ }_{\text {(1i) }}$
$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

Figure S26. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 i}$.

Figure S27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 11 .

Figure S28. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{4 a}$.

Figure S29. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{4 b}$.

$\stackrel{\infty}{\stackrel{\infty}{\sim}} \stackrel{\text { N }}{\sim}$

Me
$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \quad \mathrm{ppm}$

Figure S30. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{4 c}$.

Figure S31. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{4 d}$.

— $^{154.64}$

- $^{149.84}$
$\mathbf{~}^{145.39}$

— $^{126.95}$
-122.17

$\stackrel{\stackrel{N}{4}}{\stackrel{\infty}{\sim}} \stackrel{\stackrel{\infty}{\sim}}{\stackrel{\sim}{\sim}}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

Figure S32. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{4 e}$.

$\left.\begin{array}{llllllllllllllllll} & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50\end{array}\right) 40$

Figure S33. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{4 f}$.

Figure S34. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{4 g}$.

Figure S35. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{4 h}$.

Figure S37. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of 2a.

(2b)

Figure S38. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 b}$.

$\begin{gathered} \stackrel{+}{\infty} \\ \dot{m} \\ \infty \\ \stackrel{\infty}{\infty} \end{gathered}$	 Nons	$\begin{aligned} & \text { m} \\ & \dot{0} \\ & \dot{\circ} \\ & \mid \end{aligned}$	

Figure S40. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of 2d.

-98.53

-66.90

$\begin{array}{r}54.56 \\ 54.20 \\ 53.84 \\ 53.48 \\ 53.12\end{array}$

Figure S41. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 e}$.

Figure $\mathbf{S 4 2} .{ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 f}$.

Figure S43. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 g}$.

$\begin{array}{llllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

Figure S44. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 h}$.

д゙

Figure S45. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 i}$.

Figure S46. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 j}$.

Figure S47. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 k}$.

Figure S48. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{2 I}$.

Figure S49. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{5 a}$.

-55.45
-15.69
$\begin{array}{llllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

Figure S50. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{5 b}$.

Figure S52. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{5 d}$.

(5e)

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- |$\quad \mathrm{ppm}$

Figure S53. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{5 e}$.

Figure S54. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{5 f}$.

Figure S55. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{5 g}$.

Figure S56. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{5 h}$.

Figure S57. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{5 i}$.

Figure S58. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{3}$.

-181.63

$\|$

(S7)

Figure S60. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{S 7}$.

$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \quad \mathrm{ppm}$

Figure S61. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{S 8}$.

Figure S62. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of intermediate \mathbf{I}.

Intermediate II

Figure S63. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectrum of intermediate II.

Figure S64. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{S 8}$.

Figure S65. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{S 9}$.

8. Single-Crystal X-Ray Diffraction Studies

Single crystals of (R)-2a (3hnb) suitable for X-ray diffraction were obtained by slow diffusion from a solution of (R)-2a (30 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ layered with n-hexane $(2.5 \mathrm{~mL})$ at room temperature for several days in a glass tube.

X-ray data were collected with a Bruker 3 circuit D8 Quest diffractometer with MoKa radiation (microfocus tube with multilayer optics) and Photon 100 CMOS detector at 110 K. Scaling and absorption correction was performed by using the SADABS 8 software package of Bruker. Structures were solved using direct methods in SHELXS or SHELXT ${ }^{9}$ and refined using the full matrix least squares procedure in SHELXL-2014 ${ }^{10}$. The hydrogen atoms were placed in calculated positions and refined as riding on their respective C atom, and $\operatorname{Uiso}(\mathrm{H})$ was set at $1.2 \mathrm{Ueq}\left(\mathrm{Csp}^{2}\right)$ and $1.5 \mathrm{Ueq}\left(\mathrm{Csp}^{3}\right)$. The absolute configurations of compound (R) - $\mathbf{2 a}$ (3hnb) has been determined. Crystal data and details of the structure determination are presented in the Supplementary Table S1.

Figure S66. Crystal structure of (R)-2a. ORTEP drawing with 50% probability thermal ellipsoids. The structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number 1413726.

Table S1. Crystal data and structure refinement for test_0m.
Crystal data

Identification code
Habitus, colour
Crystal size
Crystal system
Space group
Unit cell dimensions

Volume
Cell determination
Empirical formula
Moiety formula
Formula weight
Density (calculated)
Absorption coefficient
F(000)
Data collection:
Diffractometer type
Wavelength
Temperature
Theta range for data collection
Index ranges
Data collection software
Cell refinement software
Data reduction software
Solution and refinement:
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Observed reflections
Reflections used for refinement
Absorption correction
Max. and min. transmission
Flack parameter (absolute struct.)
Largest diff. peak and hole
Solution
Refinement
Treatment of hydrogen atoms
Programs used

Data / restraints / parameters
Goodness-of-fit on F^{2}
R index (all data)
R index conventional [I $>2 \operatorname{sigma}(\mathrm{I})]$
test_0m (3hnb)
plate, colourless
$0.35 \times 0.23 \times 0.05 \mathrm{~mm}^{3}$
Orthorhombic

$\mathrm{P} 2 \mathbf{1 2 1 2 1}^{2}$	$\mathrm{Z}=4$
$\mathrm{a}=8.5247(3) \AA$	$\alpha=90^{\circ}$
$\mathrm{b}=9.7490(4) \AA$	$\beta=90^{\circ}$
$\mathrm{c}=20.5673(7) \AA$	$\gamma=90^{\circ}$

1709.29(11) \AA^{3}

9868 peaks with Theta 2.3 to 29.6°.
$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}$
$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}$
379.65
$1.475 \mathrm{Mg} / \mathrm{m}^{3}$
$0.543 \mathrm{~mm}^{-1}$
776

Bruker D8 QUEST area detector
0.71073 A

110(2) K
2.312 to 29.602°.
$-11<=h<=11,-10<=k<=13,-28<=1<=28$
BRUKER APEX2 2014.9-0 ${ }^{11}$
BRUKER SAINT ${ }^{12}$
SAINT V8.34A (Bruker AXS Inc., 2013) ${ }^{12}$

16634
$4796[\mathrm{R}($ int $)=0.0228]$
99.8 \%

4638[I>2sigma(I)]
4796
Numerical ${ }^{8}$
0.97 and 0.79
0.039(11)
0.281 and -0.206 e. \AA^{-3}

Direct methods ${ }^{13}$
Full-matrix least-squares on $\mathrm{F}^{2} 13$
Located, isotropic refinement
XT V2014/1 (Bruker AXS Inc., 2014) ${ }^{13,9}$
SHELXL-2014/7 (Sheldrick, 2014) ${ }^{13,10}$
DIAMOND (Crystal Impact) ${ }^{14}$
4796 / 0 / 269
1.068
$\mathrm{wR} 2=0.0583$
$\mathrm{R} 1=0.0233$

9. References

1. Huo, H.; Fu, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2014, 136, 2990-2993.
2. (a) Huo, H. H.; Shen, X. D.; Wang, C. Y.; Zhang, L. L.; Rose, P.; Chen, L. A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Nature 2014, 515, 100-103. (b) Shen, X.; Huo, H.; Wang, C.; Zhang, B.; Harms, K.; Meggers, E. Chem. Eur. J. 2015, 21, 9720-9726.
3. Wang, C.; Zheng, Y.; Huo, H.; Rose, P.; Zhang, L.; Harms, K.; Hilt, G.; Meggers, E. Chem. Eur. J. 2015, 21, 7355-7359.
4. Yang, D.; Li, D.; Wang, L.; Zhao, D.; Wang, R. J. Org. Chem. 2015, 80, 4336-4348.
5. Easmon, J.; Purstinger, G.; Thies, K. S.; Heinisch, G.; Hofmann, J. J. Med. Chem. 2006, 49, 6343-6350.
6. Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, DOI: 10.1039/C5SC02185E.
7. Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry (Second Edition), New York, 1993.
8. SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
9. Sheldrick, G. M. SHELXT, Universität Göttingen, Göttingen, Germany, 2014.
10. Sheldrick, G. M. SHELXL, Universität Göttingen, Göttingen, Germany, 2014.
11. APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
12. SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2013.
13. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
14. Brandenburg, K. Diamond - Crystal and Molecular Structure Visualization, Crystal Impact-Dr. H. Putz \& Dr. K. Brandenburg GbR, Bonn, Germany, 2014.
