Electronic Supplementary Information

RAFT polymerization with triphenylstannylcarbodithioates (Sn-RAFT)

Ihor Kulai,^{†,‡} Oleksii Brusylovets,[‡] Zoia Voitenko,[‡] Simon Harrisson,[†] Stéphane Mazières[†] and Mathias Destarac^{†,*}

†IMRCP, UMR 5623, Université de Toulouse, 118, route de Narbonne F-31062 Toulouse, Cedex 9, France.‡Taras Shevchenko National University of Kyiv, Department of Chemistry, 64/13, Volodymyrska Street, City of Kyiv, Ukraine, 01601

	Contents:	
I.	EXPERIMENTAL INFORMATION	2
	A. Matherials and instrumentation	
]	3. Synthesis of triphenylstannylcarbodithioates 1-2	2
	Scheme S1. Synthesis of triphenylstannylcarbodithioates 1-2	3
(C. Polymerization techniques	3
II.	Sn-RAFT AGENTS CHARACTERISATION	4
1	A. Benzyl triphenylstannylcarbodithioate Sn-RAFT 1 NMR spectra	4
	Figure S1. Benzyl triphenylstannylcarbodithioate Sn-RAFT 1 ¹ H NMR spectrum	4
	Figure S2. Benzyl triphenylstannylcarbodithioate Sn-RAFT 1 ¹³ C NMR spectrum	4
	Figure S3. Benzyl triphenylstannylcarbodithioate Sn-RAFT 1 ¹¹⁹ Sn NMR spectrum	5
]	3. 1-Phenylethyl triphenylstannylcarbodithioate Sn-RAFT 2 NMR spectra	5
	Figure S4. 1-Phenylethyl triphenylstannylcarbodithioate Sn-RAFT 2 ¹ H NMR spectrum	5
	Figure S5. 1-Phenylethyl triphenylstannylcarbodithioate Sn-RAFT 2 ¹³ C NMR spectrum	6
	Figure S6. 1-Phenylethyl triphenylstannylcarbodithioate Sn-RAFT 2 ¹¹⁹ Sn NMR spectrum	6
III.	POLYMERIZATION RESULTS	7
	Figure S7. Kinetic plot for the polymerization of NIPAM mediated by Sn-RAFT 1 (Entries 1-4, Table 1).	7
	Figure S8. Evolution of M_n and D during the polymerization of NIPAM mediated by Sn-RAFT 1 (Entries 1-4, Table 1)	7
	Figure S9. Overlay of SEC chromatograms for the polymerization of NIPAM mediated by Sn-RAFT 1 (Entries 1-4, Table 1). 7
	Figure S10. Kinetic plot for the polymerization of TOA mediated by Sn-RAFT 1 (Entries 5-8, Table 1)	7
	Figure S11. Evolution of M_n and D during the polymerization of TOA mediated by Sn-RAFT 1 (Entries 5-8, Table 1)	7
	Figure S12. Overlay of SEC chromatograms for the polymerization of TOA mediated by Sn-RAFT 1 (Entries 5-8, Table 1).	8
	Figure S13. Kinetic plot for the polymerization of TOA mediated by Sn-RAFT 2 (Entries 9-12, Table 1)	8
	Figure S14. Evolution of M_n and D during the polymerization of TOA mediated by Sn-RAFT 2 (Entries 9-12, Table 1)	8
	Figure S15. Overlay of SEC chromatograms for the polymerization of TOA mediated by Sn-RAFT 2 (Entries 9-12, Table 1))8
	Figure S16. Kinetic plot for the chain extension of PTOA-1 7.8K (Entries 13-17, Table 1).	8
	Figure S17. Kinetic plot for the polymerization of MA mediated by Sn-RAFT 2 (Entries 18-21, Table 1)	8
	Figure S18. Kinetic plot for the polymerization of St mediated by Sn-RAFT 1 (Entries 22-25, Table 1)	9
	Figure S19. Evolution of M_n and D during the polymerization of St mediated by Sn-RAFT 1 (Entries 22-25, Table 1)	9
	Figure S20. Overlay of SEC chromatograms for the polymerization of St mediated by Sn-RAFT 1 (Entries 22-25, Table 1)	9
IV.	POLYMERIZATIONS WITH ¹¹⁹ SN NMR MONITORING	9
	Table S1. Polymerization of MA in C ₆ D ₆ with Sn-RAFT 1 initiated with AIBN at 60 °C in NMR tubes.	9
	Table S2. Polymerization of St in C ₆ D ₆ with Sn-RAFT 1 initiated with AIBN at 60 °C in NMR tubes.	9
	Figure S21. Kinetic plot for the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1).	.10
	Figure S22. Determination of Ctr for the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1).	.10
	Figure S23. Evolution of M_n and D during the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1)	.10

Figure S24. Overlay of SEC chromatograms for the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1). 10
Figure S25. Overlay of ¹¹⁹ Sn NMR spectra for the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1).
Figure S26. Kinetic plot for the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2)12
Figure S27. Determination of C_{tr} for the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2)12
Figure S28. Evolution of M_n and D during the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2)12
Figure S29. Overlay of SEC chromatograms for the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2).12
Figure S30. Overlay of ¹¹⁹ Sn NMR spectra for the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2)13

I. EXPERIMENTAL INFORMATION

A. Matherials and instrumentation

Materials: THF, toluene, 1,4-dioxane and CS₂ were purified by distillation over CaH₂, followed by passing through the column packed with molecular sieves 4 Å. Degassed solvents were stored over molecular sieves under Ar atmosphere in refrigerator. Li wire (Aldrich, \geq 98%), N,N,N',N'-Tetramethylethylenediamine (TMEDA, Aldrich, \geq 99.5%), triphenyltin chloride (Fluka, 95%), benzyl bromide (Acros, 98%) and (1-bromoethyl)benzene (Aldrich, 97%) were used as received.

The 2,2'-azobis(isobutyronitrile) initiator (AIBN, Fluka, \geq 98%) was recrystallized twice from methanol prior to use. Styrene (St, Aldrich, \geq 98%), methyl acrylate (MA, Acros, 99+%) were purified by passing through a column packed with neutral alumina. *N*-isopropylacrylamide (NIPAM, Aldrich, 97%) was recrystallized three times from a mixture of toluene/n-hexane (v/v = 1/1) prior to use. *N*-tert-octylacrylamide (TOA, Polysciences) was used as received.

Analytical techniques: NMR spectra were recorded using a Bruker AMX 300 spectrometer at 298K. Chemical shifts are expressed in parts per million with residual solvent signals as internal reference (¹H and ¹³C {¹H} NMR). The external chemical shift reference for ¹¹⁹Sn is Me₄Sn. IR spectra were recorded using a Thermo Fischer Nexus 6700 FTIR spectrometer in ATR mode. Melting points were measured with a sealed capillary using the Stuart automatic melting point SMP40 apparatus.

The monomer conversion was determined by ¹H NMR in CDCl₃ and the number-average molar mass (M_n) values and dispersities (D) of the polymer samples were obtained from size-exclusion chromatography analysis. Prior to injection, samples were diluted to a concentration of 5 mg mL⁻¹ and filtered through 0.22 µm Nylon syringe filters (THF eluent) or 0.45 µm PTFE syringe filters (DMF eluent).

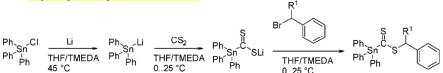
The SEC analyses of PSt, PMA and PTOA were conducted using a Waters 2414 refractive index detector, a mini DAWN TREOS Multi-Angle Light Scattering (MALS) detector (Wyatt Technology) equipped with a set of 2 columns (Shodex KF-802.5 and KF-804) in THF as eluent at a flow rate of 1.0 mL min⁻¹ (35 °C). The column system was calibrated with narrow PSt standards, obtained from Polymer Laboratories, ranging from 580 to 164500 g mol⁻¹. Values of M_n and D for PSt and PMA are reported in PSt equivalents whereas PTOA values are reported using SEC-MALS data (dn/dc = 0.095 mL g⁻¹). Polystyrene calibration was applied for PMA samples with next Mark-Houwink-Sakurada (MHS) parameters: $K_{PSt} = 11.4 \times 10^{-5}$ dL g⁻¹ and $a_{PSt} = 0.716$ for polystyrene [Hutchinson, R. A.; Paquet Jr. D. A.; McMinn, J. H.; Beuermann, S.; Fuller, R. E.; Jackson, C. *Dech. Monog.*, 1995, *131*, 467-492.]; $K_{PMA} = 19.5 \times 10^{-5}$ dL g⁻¹ and $a_{PMA} = 0.660$ for poly(methyl acrylate) [Buback, M.; Kurz, C. H.; Schmaltz, C. *Macromol. Chem. Phys.*, 1998, *199*, 1721-1727].

The SEC analyses of PNIPAM were carried out on a system comprising a Shodex KD-G guard column and three columns: Shodex KD-804 (8 mm × 300 mm, 7 µm), Shodex KD-802.5 (8 mm × 300 mm, 6 µm), Shodex KD-805L (8 mm × 300 mm, 5 µm); coupled with a refractometer (Optilab Rex, Wyatt technology) thermostated at 35 °C, a UV detector (Prostar, Varian) set at 290 nm and a mini DAWN TREOS MALS detector (Wyatt Technology). DMF/LiBr (10 mM) was used as eluent at a flow rate of 1.0 mL min⁻¹ (55 °C). Values of M_n and D are reported using SEC-MALS data, dn/dc = 0.087 mL g⁻¹ [Read, E.; Guinaudeau, A.; Wilson, D. J.; Cadix, A.; Violleau, F.; Destarac, M. *Polym. Chem.*, 2014, *5*, 2202-2207.].

The dn/dc value for PTOA was measured using a PSS DnDc-2010 differential refractometer ($\lambda = 620$ nm, 35 °C) for polymer sample with M_n about 10 kDa. Polymer was purified by precipitation with ethanol, filtered off and dried in vacuo. Series of polymer solutions in THF with concentrations 0.5 – 10 mg mL⁻¹ were used.

All the syntheses were carried out using standard Schlenk and high vacuum line techniques under an argon atmosphere.

B. Synthesis of triphenylstannylecarbodithioates 1-2


A solution of triphenyltin chloride (2.32 g, 6 mmol) and TMEDA (1 mL, 6.67 mmol) in 20 mL of THF was stirred with Li wire (84 mg, 12 mmol) at 45 °C until it had totally dissolved. Then CS_2 (1.08 mL, 18 mmol) was added dropwise at 0 °C and stirred for 30 min at room temperature. The resulting brown-red solution was slowly added to 7.5 mmol of the corresponding alkyl bromide at 0-10 °C. After stirring for an additional 2 h at room temperature the solvent was evaporated. The residue was quickly chromatographed over silica gel using first petroleum ether as eluent to remove impurities and then diethyl ether to collect the pink fraction. Recrystallization from pentane led to crystalline products.

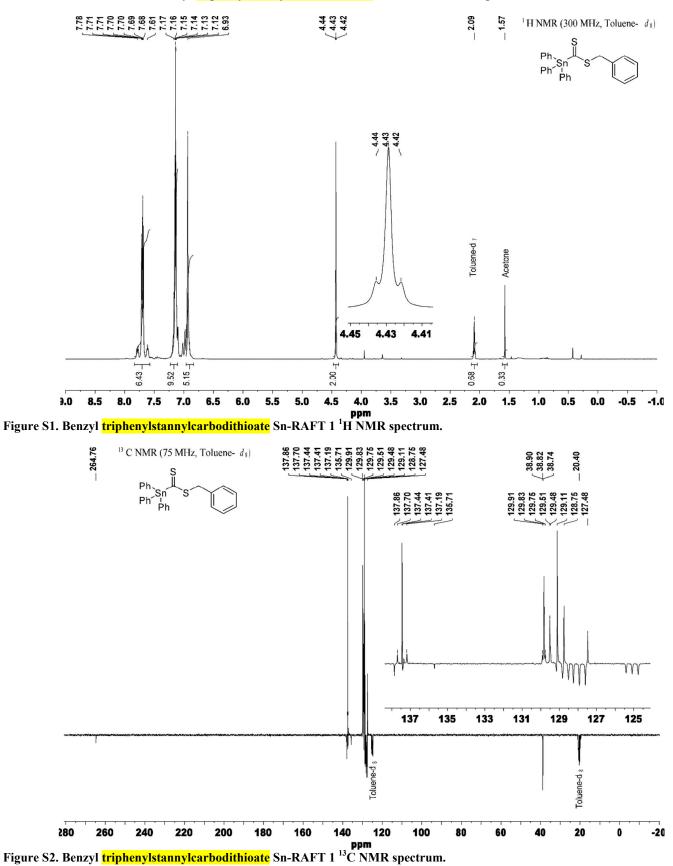
Benzyl triphenylstannylcarbodithioate 1 (2.26 g, 73%). Pink crystals, mp 94-96 °C (lit. 96 °C[Kunze, U.; Tischer, R. Chem. Ber., 1987, 120, 1099-1104]); ¹H NMR (300.13 MHz, toluened₈, 298K): δ = 4.43 (t, ⁴J_{Sn,H} = 4.2 Hz, 2H, CH₂C₆H₅), 6.93 (m, 5H, CH₂C₆H₅), 7.09-7.19 (m, 9H, m-, p-(C₆H₅)₃Sn), 7.57-7.81 (m, ³J_{Sn,H} = 50.7 Hz, 6H, o-(C₆H₅)₃Sn); ¹³C{¹H} NMR (75.47 MHz, toluene-d₈, 298K) δ = 38.8 (t, ⁴J_{Sn,C} = 12.4 Hz, CH₂C₆H₅), 127.5 (s, m-CH₂C₆H₅), 128.8 (s, p-CH₂C₆H₅), 129.1 (t, ³J_{Sn,C} = 55.9 Hz, m-(C₆H₅)₃Sn), 135.7 (s, ipso-CH₂C₆H₅), 137.4 (t, ²J_{Sn,C} = 38.6 Hz, o-(C₆H₅)₃Sn), 137.9 (s, ipso-(C₆H₅)₃Sn), 264.8 ppm (s, CS₂); ¹¹⁹Sn{¹H} NMR (98.2 MHz, toluene-d₈, 298K, external Me₄Sn) δ = -191.0 ppm; IR: 1046.6 cm⁻¹ (C=S); Figures S1-S3.

1-Phenylethyl triphenylstannylcarbodithioate **2** (1.79 g, 56%). Pink crystals, mp 93-95 °C; ¹H NMR (300.13 MHz,

Scheme S1. Synthesis of triphenylstannylcarbodithioates 1-2.

toluene-*d*₈, 298K): δ = 1.44 (*d*, ³*J*_{H,H} = 7.1 Hz, 3H, CH(C<u>H</u>₃)C₆H₅), 5.84 (*m*, ³*J*_{H,H} = 7.1 Hz, ⁴*J*_{Sn,H} = 7.3 Hz, 1H, C<u>H</u>(CH₃)C₆H₅), 5.94 (*m*, ³*J*_{H,H} = 7.1 Hz, ⁴*J*_{Sn,H} = 7.3 Hz, 1H, C<u>H</u>(CH₃)C₆H₅), 6.90-7.08 (*m*, 5H, CH(CH₃)C₆<u>H</u>₅), 7.09-7.19 (*m*, 9H, *m*-, *p*-(C₆<u>H</u>₅)₃Sn), 7.57-7.81 (*m*, ³*J*_{Sn,H} = 51.9 Hz, 6H, *o*-(C₆<u>H</u>₅)₃Sn); ¹³C{¹H} NMR (75.47 MHz, toluene-*d*₈, 298K) δ = 20.0 (*s*, CH(<u>C</u>H₃)C₆H₅), 46.3 (*t*, ⁴*J*_{Sn,C} = 13.3 Hz, <u>C</u>H(CH₃)C₆H₅), 127.6 (*s*, *p*-CH(CH₃)<u>C</u>₆H₅), 128.0 (*s*, *o*-CH(CH₃)<u>C</u>₆H₅), 128.8 (*s*, *m*-CH(CH₃)<u>C</u>₆H₅), 129.1 (*t*, ³*J*_{Sn,C} = 54.3 Hz, *m*-(<u>C</u>₆H₅)₃Sn), 129.8 (*t*, ⁴*J*_{Sn,C} = 12.1 Hz, *p*-(<u>C</u>₆H₅)₃Sn), 137.4 (*t*, ²*J*_{Sn,C} = 38.6 Hz, *o*-(<u>C</u>₆H₅)₃Sn), 138.0 (*s*, *ipso*-(<u>C</u>₆H₅)₃Sn), 141.3 (*s*, *ipso*-CH(CH₃)<u>C</u>₆H₅), 264.0 ppm (*s*, <u>C</u>S₂); ¹¹⁹Sn{¹H</sup> NMR (98.2 MHz, toluene-*d*₈, 298K, external Me₄Sn) δ = -192.7 ppm; IR: 1040.5 cm⁻¹ (C=S); Figures S4-S6.

Sn-RAFT 1: $R^1 = H$; Sn-RAFT 2: $R^1 = CH_3$.


C. Polymerization techniques

RAFT polymerization: typical procedure. AIBN (1.3 mg (0.008 mmol), **Sn-RAFT 1** (48.1 mg, 0.093 mmol), TOA (1.81 g, 9.87 mmol) and 1,4-dioxane (2.62 g, 29.7 mmol) were stirred together until dissolution. The solution was divided into 4×2 mL glass tubes and degassed with three freeze-pump-thaw cycles before being flame-sealed under vacuum. The tubes were placed in a dry bath maintained at 60 °C. At given intervals, the tubes were quenched by freezing in liquid N₂.

Preparation of PNTOA-1 7.8K macro-RAFT agent: AIBN (3.7 mg (0.023 mmol), **Sn-RAFT 1** (57.1 mg, 0.11 mmol), TOA (1.065 g, 132 mmol) and 1,4-dioxane (3.11 g, 801 mmol) were mixed in a Schlenk tube, degassed with three freeze-pump-thaw cycles and heated during 7 h at 60 °C. Reaction was quenched by freezing in liquid N₂. Polymer was precipitated with ethanol, filtered off and dried in vacuo. Monomer conversion 83%, Mn = 7.77 kDa, D = 1.09 (Table 1, entry 13). **PNTOA-1 7.8K chain extension:** AIBN (0.8 mg (0.005 mmol), **PNTOA-1 7.8K** (0.4 g, 0.052 mmol), TOA (1.5 g, 8.18 mmol) and 1,4-dioxane (4.37 g, 49.6 mmol) were stirred together. The solution was divided into 2 mL glass tubes and degassed with three freeze-pump-thaw cycles before being flame-sealed under vacuum. The tubes were placed in a dry bath maintained at 60 °C. At given intervals, the tubes were quenched by freezing in liquid N₂.

RAFT polymerization in NMR tubes: typical procedure. AIBN (11.6 mg, 0.071 mmol), **Sn-RAFT 1** (181.8 mg, 0.352 mmol), MA (2.42 g, 28.1 mmol) and benzene- d_6 (7.11 g, 84.5 mmol) were stirred together in a Schlenk tube. The solution was degassed with three freeze-pump-thaw cycles. NMR tubes were filled with 0.8 mL of solution under Ar atmosphere, sealed with rubber septa and immersed in an oil bath maintained at 60 °C. At given intervals, the tubes were quenched by freezing in liquid N₂ and analyzed by NMR.

II. Sn-RAFT AGENTS CHARACTERISATION

A. Benzyl triphenylstannylcarbodithioate Sn-RAFT 1 NMR spectra

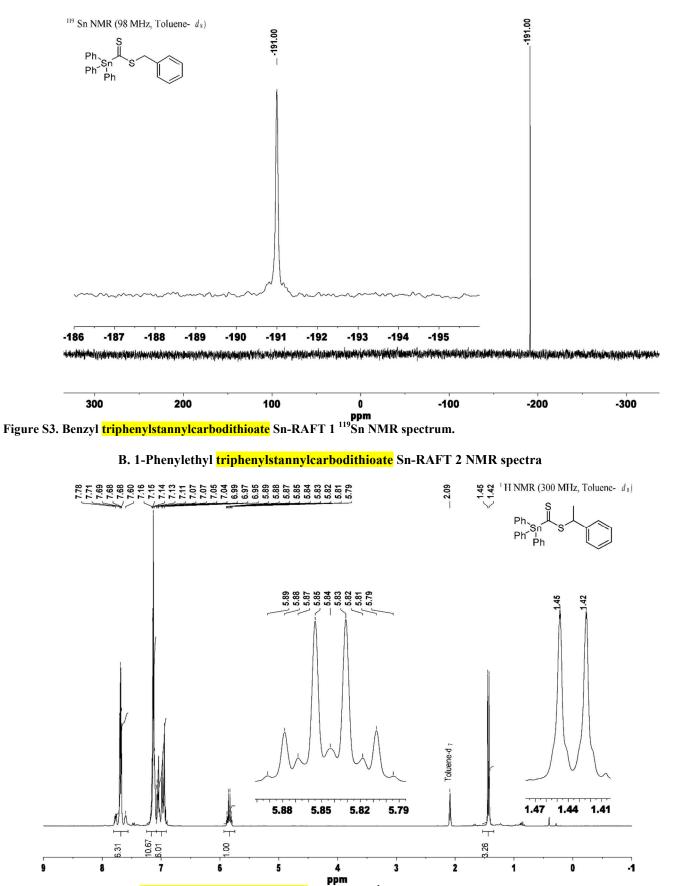
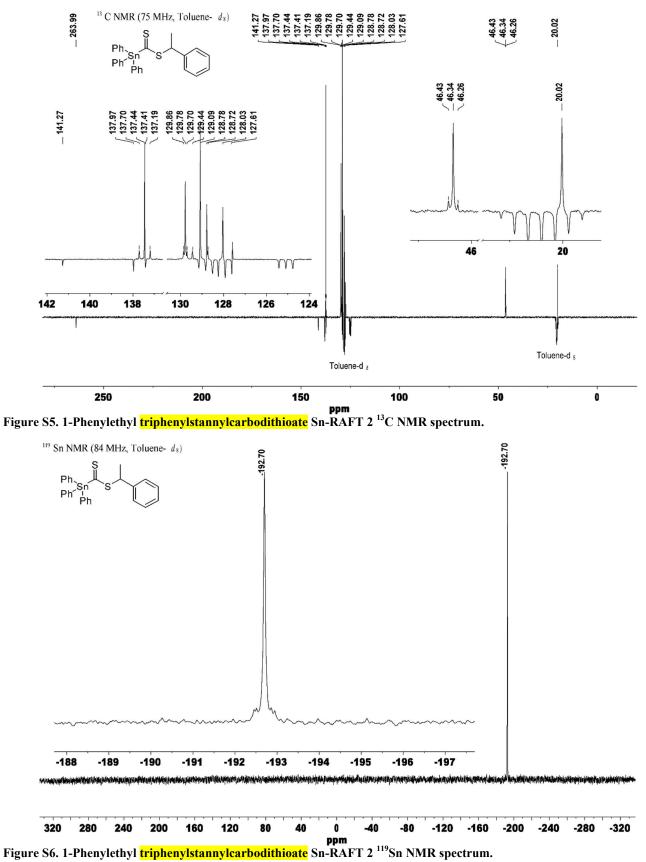



Figure S4. 1-Phenylethyl triphenylstannylcarbodithioate Sn-RAFT 2 ¹H NMR spectrum.

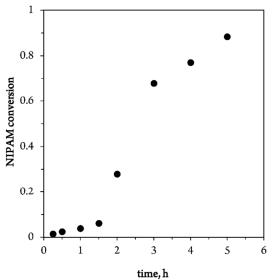
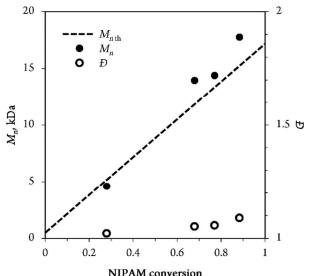



Figure S7. Kinetic plot for the polymerization of NIPAM mediated by Sn-RAFT 1 (Entries 1-4, Table 1).

NIPAM conversion Figure S8. Evolution of M_n and \mathcal{D} during the polymerization of NIPAM mediated by Sn-RAFT 1 (Entries 1-4, Table 1).

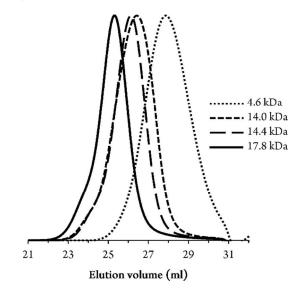


Figure S9. Overlay of SEC chromatograms for the polymerization of NIPAM mediated by Sn-RAFT 1 (Entries 1-4, Table 1).

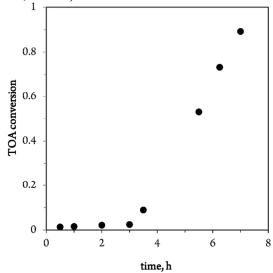
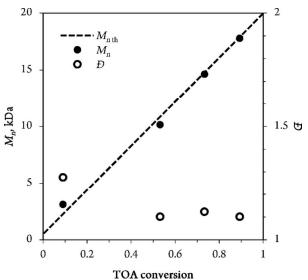



Figure S10. Kinetic plot for the polymerization of TOA mediated by Sn-RAFT 1 (Entries 5-8, Table 1).

TOA conversion Figure S11. Evolution of M_n and D during the polymerization of TOA mediated by Sn-RAFT 1 (Entries 5-8, Table 1).

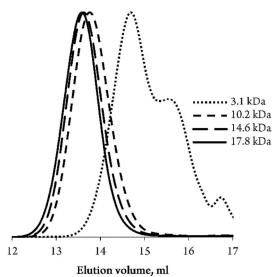


Figure S12. Overlay of SEC chromatograms for the polymerization of TOA mediated by Sn-RAFT 1 (Entries 5-8, Table 1).

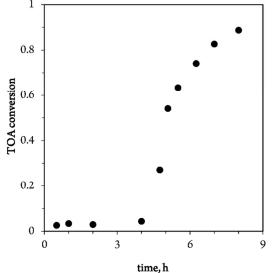
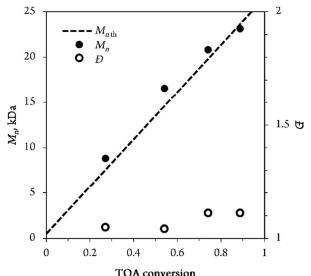



Figure S13. Kinetic plot for the polymerization of TOA mediated by Sn-RAFT 2 (Entries 9-12, Table 1).

TOA conversion Figure S14. Evolution of M_n and \mathcal{P} during the polymerization of TOA mediated by Sn-RAFT 2 (Entries 9-12, Table 1).

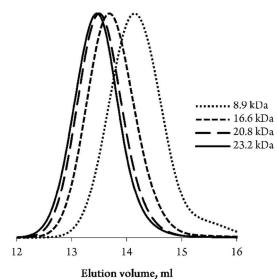


Figure S15. Overlay of SEC chromatograms for the polymerization of TOA mediated by Sn-RAFT 2 (Entries 9-12, Table 1).

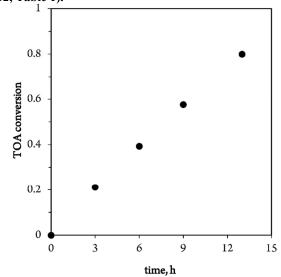


Figure S16. Kinetic plot for the chain extension of PTOA-1 7.8K (Entries 13-17, Table 1).

Figure S17. Kinetic plot for the polymerization of MA mediated by Sn-RAFT 2 (Entries 18-21, Table 1).

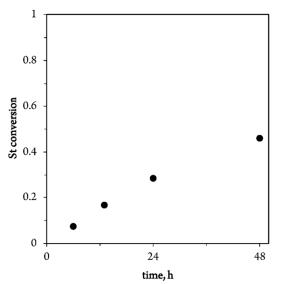
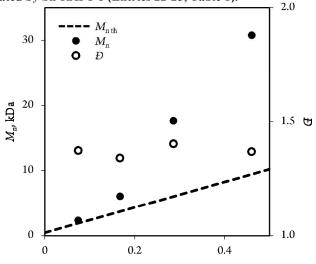



Figure S18. Kinetic plot for the polymerization of St mediated by Sn-RAFT 1 (Entries 22-25, Table 1).

St conversion Figure S19. Evolution of M_n and \mathcal{D} during the polymerization of St mediated by Sn-RAFT 1 (Entries 22-25, Table 1).

Table S1. Polymerization of MA in C₆D₆ with Sn-RAFT 1 initiated with AIBN at 60 °C in NMR tubes.

t	MA conv.	1 conv.	$M_{n \text{ th}}$	M_n	Ð	[MA]	[1]	ln[MA]	ln[1]
(h)	(%)	(%)	(kDa)	(kDa)	M_w/M_n	mМ	mМ		
0.5	0.8	31.5	0.73	N/A	N/A	8284.4	60.2	9.022	4.097
1	3.3	55	1.01	N/A	N/A	8075.7	39.5	8.997	3.677
1.5	6.2	68	1.26	0.95	1.27	7833.5	28.1	8.966	3.336
2	11.1	86	1.57	1.31	1.32	7424.3	12.3	8.913	2.509
3	23.1	98.5	2.44	2.78	1.42	6422.1	1.3	8.768	0.276
3.5	29.4	99	2.95	3.50	1.42				
4	42.8	99.5	4.04	4.29	1.29				
6	63.0	100	5.67	5.71	1.38				
8	77.5	100	6.86	8.88	1.38				

*[MA]₀ = 8.35 M, [1]₀ = 87.8 mM, [AIBN]₀ = 10.3 mM; Conversions and concentrations of Sn-RAFT 1 and MA were determined using ¹¹⁹Sn and ¹H NMR respectively. M_n and D were determined by SEC.

Table S2. Polymerization of St in C₆D₆ with Sn-RAFT 1 initiated with AIBN at 60 °C in NMR tubes.

t	St conv.	1 conv.	$M_{n \text{ th}}$	M_n	Ð	[St]	[1]	ln[St]	ln[1]
(h)	(%)	(%)	(kDa)	(kDa)	M_{w}/M_{n}	mM	mM	mpstj	[1]
1	1.6	21	1.06	N/A	N/A	6783.5	79.2	8.822	4.373
2	2.4	39.5	0.95	N/A	N/A	6728.3	60.7	8.814	4.106
4	4.4	55.5	1.08	1.02	1.32	6590.5	44.6	8.793	3.799

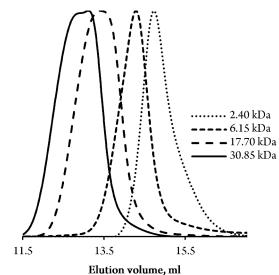


Figure S20. Overlay of SEC chromatograms for the polymerization of St mediated by Sn-RAFT 1 (Entries 22-25, Table 1).

6	7.9	66	1.37	1.35	1.35
8	11.3	77	1.57	1.55	1.37
15	24.0	92	2.38	2.24	1.40
24	34.8	95	3.14	3.68	1.44
39	51.5	99.5	4.22	5.64	1.39
54	60.0	100	4.81	7.15	1.38

*[St]₀ = 6.89 M, [1]₀ = 100.3 mM, [AIBN]₀ = 10.2 mM; Conversions and concentrations of Sn-RAFT 1 and MA were determined using ¹¹⁹Sn and ¹H NMR respectively. M_n and D were determined by SEC.

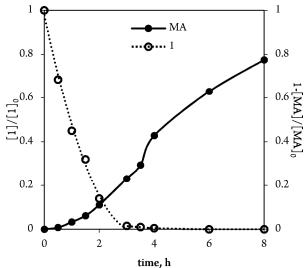


Figure S21. Kinetic plot for the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1).

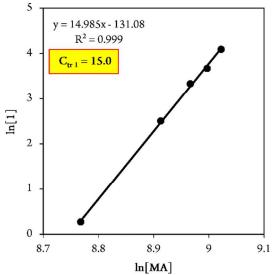


Figure S22. Determination of Ctr for the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1).

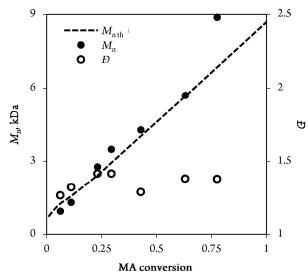


Figure S23. Evolution of M_n and \overline{D} during the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1).

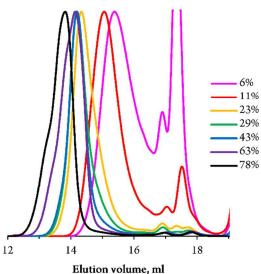


Figure S24. Overlay of SEC chromatograms for the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1).

	l l	
	8h 77.5%	
denailyer-en-glass-held-lp-d-weilindergaselses-fal-enderes-relations-generative-glasses-glasses-glasses-septimpet	here in many any another and a second as a	Manapa
	6h 63%	
Internetic and a second of the	commissional mission and particular and the second of the second second second second second second second second	Anno
	4h 42.8%	
have for and an investigation and a second as subscription of the second and an indicated and an and an and an	สสราวทรานการสานแรงเป็นการสานแรงสานไปเป็นเป็นเหมูสร้างการสุดภูษิประเทศแห่งแห่งแห่งแห่งแห่งแห่งแห่งเหม	Annes
	3.5h 29.4%	
Monumental contraction of the co	and a second and a s	mham
	3h 23.1%	
han waa ala aha aha aha aha aha aha aha aha a		uhan
๛๚๚๚๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	2h 11.1%	
⋬⋵ ⋗∊⋎⋺⋌⋫⋏⋑∊⋤∊⋠⋬⋛⋬⋑∊⋹⋬⋎⋗⋼⋺⋺⋺⋌⋪⋐∊⋎⋬⋤⋠⋑⋐⋎⋧⋑⋐⋓⋐⋳⋑⋬⋬⋺⋑⋺⋎⋳∊⋖∊ [⋏] ⋺⋏⋛ [⋏] ⋐⋨⋐⋑⋸⋛⋐⋎⋳∊⋖⋎⋽⋎⋳⋐⋖⋳∊⋎⋳⋎∊⋎∊⋛⋳⋐⋳∊⋹⋑⋎⋏⋳⋎⋏⋖⋏⋨⋐⋎⋖⋎⋎⋎		an and the state
	90' 6.2%	
ᡏᠧᡣᠧᡊᠣᡄᠧᠧᠧ᠆ᡁᡄ᠘᠙ᡁᢋᡁᡁᠣᡊᡎᡊᡀᡘᡀᠧᢙ ᡛᠧ᠋᠆ᠯᡉᠧᠣᡂᠯ᠆ᡏᡣᢑᡮ᠕᠆ᡁ᠆ᡣᠬᠣᢤᡅᡊ᠇ᠧᡂᠥᡡ᠆ᢁᡔᡢ᠆ᡔᠬ᠇ᡇ᠆ᡔᠥ᠆ᡔᡇᡧᠥᡟᡣᠬᡂ		mlanur
	60' 3.3%	
~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M-	mlum
	30' 0.8%	
	0' 0%	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		h
-60 -70 -80 -90 -100 -110 -1	120 -130 -140 -150 -160 -170 -180 - ppm	190

Figure S25. Overlay of ¹¹⁹Sn NMR spectra for the polymerization of MA mediated by Sn-RAFT 1 in NMR tubes (Table S1).

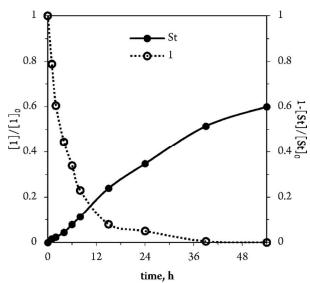



Figure S26. Kinetic plot for the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2).

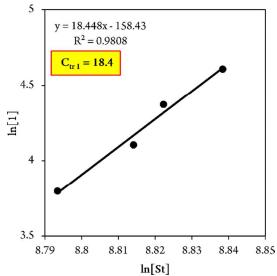
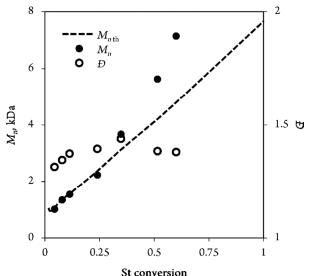




Figure S27. Determination of  $C_{tr}$  for the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2).



St conversion Figure S28. Evolution of  $M_n$  and D during the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2).

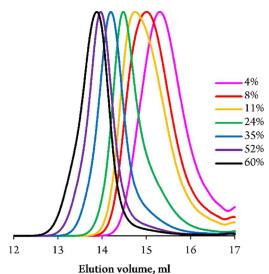



Figure S29. Overlay of SEC chromatograms for the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2).

	54h 60%	A
her you want to be a superior of the second s	unary yrstyddysg Pennik Angelen fer Wares Philosophias an	444
	39h 51.5%	
www.elevel.com/www.elevel.com/www.		\~
	24h 34.8%	
faffelstresselffelentetelsteffelenenenenteteffeleterstreffel ^f erforenenenenteteffele	๚ๅ฿ฃ๛ฦ๚๚๚ๅ฿๛๛๚๛๚๛๚๛๚๚๚๛๛๛๛๚๚๚๛ๅ๚๚๚๛๚๛๚๚๚๚๚๚๚๚๚	WW
	15h 24%	
hertmanninethammathystastasanapartantantaparta ^{nt} hys ^t aydaytaspa	eya-eyherheyneyheyrauphaningvanadannyhadannadannyhanadannyherandanadan antan antan antan antan antan antan antan Oli 11000	, m.M
	8h11.3%	1
	6h 7.9%	ī
men mandel we consider the construction of the		hum
	4h 4.4%	
		hm
	2h 2.4%	
ĸġţĸĸŊĸĸġĊĬġĸţĸĸĊĸĸĸĸĸġĸĸĸŊĸŎĊŎŎĸŎŎĸŎĸŎĸŎĸŎĸŎĸŎĸ		۰
	1h 1.6%	
************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h
	Oh 0%	and a state
-60 -70 -80 -90	-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ppm	-

Figure S30. Overlay of ¹¹⁹Sn NMR spectra for the polymerization of St mediated by Sn-RAFT 1 in NMR tubes (Table S2).