Supporting Information

Asymmetric Total Synthesis of Propindilactone G

Lin You, ${ }^{a}$ Xin-Ting Liang, ${ }^{a}$ Ling-Min Xu, ${ }^{a}$ Yue-Fan Wang, ${ }^{a}$ Jia-Jun Zhang, ${ }^{a}$ Qi Su, ${ }^{a}$ Yuanhe Li, ${ }^{a}$ Bo Zhang, ${ }^{a}$ Shou-Liang Yang, ${ }^{a}$ Jia-Hua Chen*, and Zhen Yang*,a,b

${ }^{\text {a }}$ Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
${ }^{\mathrm{b}}$ Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China

Email: jhchen@pku.edu.cn, zyang@pku.edu.cnI: Experimental Procedures and Spectroscopic Data of the Synthesized Compoundspage 2
II: HPLC Traces for Measuring Enantiomeric Excess page 16
III: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds page 17
IV: Comparison of the Spectra of Natural and Synthetic Propindilactone G page 46
V: DFT calculation of the dihydroxylation of 25 and 26 page 50

I: Experimental Procedures and Spectroscopic Data of the Synthesized Compounds

General Procedure. Unless otherwise mentioned, all reactions were carried out under a nitrogen atmosphere under anhydrous conditions and all reagents were purchased from commercial suppliers without further purification. Solvent purification was conducted according to Purification of Laboratory Chemicals (Peerrin, D. D.; Armarego, W. L. and Perrins, D. R., Pergamon Press: Oxford, 1980). Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous materials.

Reactions were monitored by Thin Layer Chromatography on plates (GF254) supplied by Yantai Chemicals (China) visualized by UV or stained with ethanolic solution of phosphomolybdic acid and cerium sulfate, basic solution of KMnO_{4}, and iodine vapor. If not specially mentioned, flash column chromatography was performed using E. Merck silica gel (60, particle size $0.040-0.063 \mathrm{~mm}$). NMR spectra were recorded on Bruker AV400, Bruker AV500 instruments and calibrated by using residual undeuterated chloroform $(\delta \mathrm{H}=7.26 \mathrm{ppm})$ and $\mathrm{CDCl}_{3}(\delta \mathrm{C}=77.0 \mathrm{ppm})$, or undeuterated pyridine $\left(\delta_{\mathrm{H}}=\right.$ $8.71 \mathrm{ppm})$ and pyridine $-\mathrm{d} 5\left(\delta_{\mathrm{C}}=150.1 \mathrm{ppm}\right)$ as internal references. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{b}=$ broad, $\mathrm{td}=$ triple doublet, $\mathrm{dt}=$ double triplet, $\mathrm{dq}=$ double quartet, $\mathrm{m}=$ multiplet. Infrared (IR) spectra were recorded on a Thermo Nicolet Avatar 330 FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization) as ionization method.

Synthesis of compound $\mathbf{8}$:

To a solution of dienophile $\mathbf{1 0}(50 \mathrm{~g}, 390 \mathrm{mmol})$ and catalyst $\mathbf{A}(25 \mathrm{~g}, 39 \mathrm{mmol})$ in toluene $(80 \mathrm{~mL})$ was added a solution of trifluoromethanesulfonic acid ($8.9 \mathrm{~g}, 78 \mathrm{mmol}$) in toluene (160 mL), and the mixture was then cooled to $-10{ }^{\circ} \mathrm{C}$. To this solution was added diene $9106 \mathrm{~g}, 468 \mathrm{mmol}$) slowly during 15 min . and the resultant mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$, and the mixture was then extracted with petroleum ether ($3 \times 250 \mathrm{~mL}$). The combined organic layers were washed with brine (250 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=80: 1$) to give product $\mathbf{8}(121.5 \mathrm{~g}, 88 \%$ yield, 98% e.e.) as yellow oil; $\mathrm{R}_{f}=0.60$ (silica gel, petroleum ether/ethyl acetate $=4: 1$); $[\alpha]_{\mathrm{D}}^{25}=-16.1\left(\mathrm{c}=1.0\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=$ 2944, 2867, 1731, 1673, 1465, 1368, $1204 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.67(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{td}, J=3.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{qd}, J=7.1,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.92(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{tdd}, J=9.0,5.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.29$ ($\mathrm{m}, 3 \mathrm{H}$), $2.15(\mathrm{ddt}, J=17.2,8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.08(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.5,173.8,149.3,99.9,61.0,47.3,39.9,22.8,17.9,14.1,12.6 \mathrm{ppm} ; \mathrm{HRMS}$ (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 355.2299$, found 355.2310 .

Synthesis of compound $\mathbf{8 b}$ for the $e e$ value detection of compound $\mathbf{8}$:

8

8b

To a solution of compound $\mathbf{8}(217 \mathrm{mg}, 0.61 \mathrm{mmol})$ in THF (2 mL) was added lithium aluminum hydride ($1.5 \mathrm{~mL}, 2.4$ $\mathrm{M}, 3.6 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 1 h . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and Rochelle salt $(3 \mathrm{~mL})$, and the mixture was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$. The combined organic layers were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=1: 1,1 \% \mathrm{TEA}$) to give alcohol $8 \mathbf{~ a}$ ($157 \mathrm{mg}, 82 \%$ yield) as colorless oil.

To a solution of alcohol $\mathbf{8 a}(51 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added TEA ($37 \mathrm{mg}, 0.37 \mathrm{mmol}$), $p-\mathrm{BrBzCl}(86$ $\mathrm{mg}, 0.39 \mathrm{mmol}$) and DMAP ($7 \mathrm{mg}, 0.06 \mathrm{mmol}$) at room temperature. After stirring at room temperature for 17 h , the reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2$ $\mathrm{mL})$. The combined organic layers were washed with brine (2 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$, $1 \% \mathrm{TEA}$) to give product $\mathbf{8 b}\left(73 \mathrm{mg}, 67 \%\right.$ yield, 98% e.e.) as colorless oil. $\mathrm{R}_{f}=0.70$ (silica gel, petroleum ether/ethyl acetate $=1: 1) ;[\alpha]_{\mathrm{D}}^{25}=-43.5\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2942,2864,1720,1590,1267,1199,1113,1102,1012$, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{dd}, J=8.5,3.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.30-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.9,148.9,131.8,131.2,131.2,129.1,129.1,128.3,128.3,100.9,67.2,67.1,35.7,34.7,31.9,26.2$, 18.1, 12.8 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 679.1084$, found 679.1080.

Synthesis of compound 11:

To a solution of $\mathrm{AlMe}_{3}(90.0 \mathrm{~mL}, 25 \% \mathrm{w} / \mathrm{w}$ in hexane, 228 mmol) was added methylmagnesium bromide (50.6 mL , $3.0 \mathrm{M}, 152 \mathrm{mmol}$) in a drop-wise manner over 20 min at $0^{\circ} \mathrm{C}$, and the resultant gray suspension was first stirred for an additional 15 min . The formed mixture was first cooled to $-78{ }^{\circ} \mathrm{C}$, and then stirred at the same temperature for 90 min . To this suspension was slowly added a solution of compound $\mathbf{8}(35.9 \mathrm{~g}, 101 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$, and the resultant light-yellow solution was then stirred at the same temperature for another 40 min . The reaction mixture was quenched with a saturated solution of Rochelle salt $(500 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and the mixture was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with saturated solution of Rochelle salt (100 mL) and brine (200 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=15: 1$) to give compound $11 \mathrm{a}(30 \mathrm{~g}, 80 \%$ yield) as colorless oil.

To a solution of compound $11(30.0 \mathrm{~g}, 81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ was added $\mathrm{NaHCO}_{3}(54.4 \mathrm{~g}, 648 \mathrm{mmol})$ and Dess-Martin periodinane $(37.8 \mathrm{~g}, 89.1 \mathrm{mmol})$ at room temperature, and resultant mixture was stirred at the same temperature for 1 h . The reaction mixture was quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(400 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~L})$. The combined organic layers were washed with brine (800 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give the product $11\left(27.6 \mathrm{~g}, 93 \%\right.$ yield) as a colorless oil; $\mathrm{R}_{f}=0.60$ (Silica gel, petroleum ether/ethyl acetate $=4: 1$); $[\alpha]_{\mathrm{D}}^{25}=-17.7\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2949,2866,2339,2358$, 1739, $1733,1716,1204 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.85-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{qd}, J=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.78$ $(\mathrm{m}, 2 \mathrm{H}), 2.45-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 4 \mathrm{H}), 1.95-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.07$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=210.9,174.6,149.0,100.4,60.7,48.3,41.8,32.1,29.1,26.3$, 17.9, 17.7, 14.1, 12.6 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 369.2456$, found 369.2456.

Synthesis of compound 11b:

To a solution of compound $11(27.5 \mathrm{~g}, 74.6 \mathrm{mmol})$ in THF (750 mL) was slowly added methylmagnesium chloride $(37.3 \mathrm{~mL}, 3.0 \mathrm{M}, 112 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$, and the resultant mixture was warmed up $-25{ }^{\circ} \mathrm{C}$, and stirred at the same temperature for 8 h . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(750 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 500 \mathrm{~mL})$. The combined organic layers were washed with brine $(500 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (dichloromethane) to give product $\mathbf{1 1 b}\left(21.2 \mathrm{~g}, 84 \%\right.$ yield) as white solids; $\mathrm{R}_{f}=0.70$ (Silica gel, petroleum ether/ethyl acetate $=4: 1$); $[\alpha]_{\mathrm{D}}^{25}=-50.8\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2970,2867,1739,1365,1230,1217,1205 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.93-4.94(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=10.8,5.2 \mathrm{~Hz} 1 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 1 \mathrm{H})$, $2.16-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=176.1,150.6,102.4,85.7,47.9,41.2,30.5,27.6,23.3,21.1,18.0,12.6 \mathrm{ppm} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 339.2350$, found 339.2342 .

Synthesis of compound 12:

To a solution of compound $\mathbf{1 1 b}$ ($501 \mathrm{mg}, 1.48 \mathrm{mmol}$) in THF (9 ml) was added potassium bis(trimethylsilyl)amide (1.0 M solution in THF, $2.95 \mathrm{ml}, 2.95 \mathrm{mmol}$) in drop-wise manner at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the resultant mixture was stirred at the same temperature for 10 min . After warming up to $0^{\circ} \mathrm{C}$, the reaction mixture was stirred at the same temperature for 30 min , and then cooled back to $-78{ }^{\circ} \mathrm{C}$. To this solution was added $\mathrm{P}(\mathrm{OMe})_{3}(0.35 \mathrm{ml}, 3.0 \mathrm{mmol})$ in one portion, and the resultant mixture was degassed with O_{2} for 3 times, and stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min under oxygen atmosphere, and then stirred $0{ }^{\circ} \mathrm{C}$ for 1 h . After changing the reaction atmosphere from oxygen to nitrogen, the reaction mixture was treated with $\operatorname{TESCl}(0.30 \mathrm{ml}, 1.8 \mathrm{mmol})$, and the formed mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and the mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum (warning: the remaining $\mathrm{P}(\mathrm{OMe})_{3}$ is poisonous), and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=200: 1-120: 1)$ to give product $12\left(626 \mathrm{mg}, 90 \%\right.$ yield) as thick clear colorless oil; $\mathrm{R}_{f}=$ 0.60 (silica gel, petroleum ether/ethyl acetate $=12: 1$); $[\alpha]_{\mathrm{D}}^{25}=+42.3\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2948$, 2892, $2868,1779,1680,1465,1390,1374,1363,1211,1137,1104,1003,904,883,747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=4.85(\mathrm{dt}, J=4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{ddt}, J=17.6,8.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.03(\mathrm{ddd}, J=17.8,3.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 18 \mathrm{H}), 0.93(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.64(\mathrm{q}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.0,146.9,99.6,83.7,49.2,38.7,30.5$, 22.6, 20.7, 18.1, 12.7, 7.1, 6.2 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{Si}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 469.3164$, found 469.3152.

Synthesis of compound 14 :

To a solution of compound $12(17.2 \mathrm{~g}, 36.7 \mathrm{mmol})$ in dry petroleum ether (680 mL) was added potassium tert-butoxide ($41.2 \mathrm{~g}, 367 \mathrm{mmol}$), and the mixture was cooled to $-20^{\circ} \mathrm{C}$. To this solution was added a solution of bromoform ($69.5 \mathrm{~g}, 275 \mathrm{mmol}$) in petroleum ether (220 mL) in a drop-wise manner over 1 h , and the resultant mixture was stirred at $-20^{\circ} \mathrm{C}$ for another 45 min . The reaction mixture was filtered with a short pad of silica gel, and eluted with petroleum ether/ethyl acetate $=4: 1$. The eluent was removed under vacuum to afford unstable red-brown oil.

To a solution of the above oil in acetone (350 mL) was added $\mathrm{CaCO}_{3}(36.7 \mathrm{~g}, 367 \mathrm{mmol})$ and silver perchlorate monohydrate ($20.7 \mathrm{~g}, 91.7 \mathrm{mmol}$), the mixture was stirred at $30{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with TEA $(85 \mathrm{~mL})$, followed by addition of silica gel (85 g), and the solvent in the mixture was removed under vacuum. The residue absorbed on silica gel was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=15: 1$) to give the product $14\left(8.4 \mathrm{~g}, 57 \%\right.$ yield) as a white solid; $\mathrm{R}_{f}=0.50$ (Silica gel, petroleum ether/ethyl acetate $\left.=4: 1\right) ;[\alpha]_{\mathrm{D}}^{25}=+$ 83.5 ($\mathrm{c}=1.0$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=2954,2875,1753,1683,1269,1192,1069,848,749,740,728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 3 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 188.4, 174.3, 143.2, 129.5, 83.4, 78.6, 55.4, 48.9, 30.0, 27.8, 24.9, 6.8, 5.7 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BrO}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}: 403.0935$, found 403.0945.

Synthesis of compound 15:

To a solution of compound $14(29.40 \mathrm{~g}, 72.9 \mathrm{mmol})$ in THF $(750 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.27 \mathrm{~g}, 4.7 \mathrm{mmol})$, copper(I) iodide ($2.85 \mathrm{~g}, 15.0 \mathrm{mmol}$) and diisopropylamine ($30 \mathrm{~mL}, 214 \mathrm{mmol}$), and the resultant mixture was degassed with nitrogen while stirring at room temperature for 40 min . To this mixture was slowly added a solution of ethynyltrimethylsilane ($9 \mathrm{~g}, 91.6 \mathrm{mmol}$) in THF (50 mL) at same temperature over 40 min , and the resultant mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(800 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($3 \times 500 \mathrm{~mL}$). The combined organic layers were washed with Na_{2} EDTA (aq. 500 mL), brine (500 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=15: 1)$ to give product $15\left(26.8 \mathrm{~g}, 88 \%\right.$ yield) as a white solid; $\mathrm{R}_{f}=0.40$ (silica gel, petroleum ether/ethyl acetate $=4: 1$); $[\alpha]_{\mathrm{D}}^{25}=+28.4\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR (neat): $v_{\max }=2947,2358,2329,1769,1673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 3 \mathrm{H})$, $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.71-0.64(\mathrm{~m}, 6 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 192.6, 174.5, 146.6, 130.3, 100.4, 96.4, 83.3, 78.4, 55.3, 49.7, 29.8, 26.6, 24.7, 6.7, 5.6, -0.4 ppm; HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NaO}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 443.2044$, found 443.2046.
Synthesis of compound 7:

To an anhydrous cerium (III) chloride ($44.4 \mathrm{~g}, 180 \mathrm{mmol}$) was added THF $(900 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resultant mixture was stirred at room temperature for 12 h . To this mixture was added fresh Grignard reagent ($72 \mathrm{~mL}, 1.5 \mathrm{M}, 108 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$, and the resultant mixture was stirred at the same temperature for 1 h . After addition of a solution of compound $\mathbf{1 5}$ (25.1 $\mathrm{g}, 60 \mathrm{mmol})$ in THF (300 mL) to the above prepared reaction mixture at $0^{\circ} \mathrm{C}$, the resultant mixture was stirred for 15 min , and quenched with a 10% solution of $\mathrm{AcOH}(250 \mathrm{~mL})$, and the mixture was extracted with EtOAc $(3 \times 500 \mathrm{~mL})$. The combined organic layers were washed with brine (500 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give product $7\left(23.7 \mathrm{~g}, 81 \%\right.$ yield) as a colorless oil; $\mathrm{R}_{f}=0.75$ (Silica gel, petroleum ether/ethyl acetate $\left.=4: 1\right)$; $[\alpha]_{\mathrm{D}}^{25}=-$ 6.3 (c = 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=2957,2880,2361,2341,1772,1064,858,841 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.22(\mathrm{dd}, J=9.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=13.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.28-2.25 (m, 1H), 2.14-1.94 (m, 5H), 1.81-1.77 (m, 1H), $1.74(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})$, $0.79(\mathrm{~m}, 6 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.7,145.4,133.4,131.9,109.8,104.9,93.0,83.3,80.8$, $75.2,55.0,41.9,40.2,31.8,29.6,25.0,24.5,22.4,6.7,5.7,-0.1 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 491.3007, found 491.3003. Synthesis of compound 16:

To a suspension of dry celite ($1 \mathrm{~g}, 10 \mathrm{wt}$) in toluene (5 mL) was added a solution of compound $7(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene (1 mL) and octacarbonyldicobalt ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) at room temperature, and the resultant mixture was first stirred at the same temperature for 12 h under nitrogen atmosphere to form a substrate-Co complex, and then stirred at 110 ${ }^{\circ} \mathrm{C}$ under balloon pressure of CO for 2 days to proceed the Pauson-Khand reaction. The reaction was worked up by filtered of the reaction mixture through a pad of celite, and washed with EtOAc ($3 \times 15 \mathrm{~mL}$). The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=7: 1$) to give product 16 ($71.8 \mathrm{mg}, 67 \%$ yield) as white solids and its diastereomoer ($26.0 \mathrm{mg}, 24 \%$ yield); $\mathrm{R}_{f}=0.35$ (Silica gel, petroleum ether/ethyl acetate $=4: 1$); $[\alpha]_{\mathrm{D}}^{25}=-222.4\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2989,2955,2900,1766,1688$, $1684,1241,1066,845,841 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.57(\mathrm{dd}, J=8.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=$ $12.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{dd}, J=9.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=12.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.6(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$, $0.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.84-0.72(\mathrm{~m}, 6 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=212.2,192.0,174.6,142.5$, 138.1, 124.1, 85.0, 82.5, 75.7, 56.4, 52.6, 45.3, 42.8, 38.2, 34.1, 30.4, 25.5, 24.9, 24.7, 6.9, 5.7, 0.3 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 519.2957$, found 519.2956.

Synthesis of compound 17a:

To a solution of compound $16(50 \mathrm{mg}, 0.096 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added tetrabutylammonium fluoride trihydrate $(45.6 \mathrm{mg}, 0.145 \mathrm{mmol})$, and the resultant mixture was stirred at room temperature for 30 min . The reaction was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with brine (5 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) to give the product $17 \mathrm{a}(35 \mathrm{mg}, 90 \%)$ as a white solid; $\mathrm{R}_{f}=0.55$ (silica gel, petroleum ether/ethyl acetate $=1: 3$); $[\alpha]_{D}^{25}=-216.0(\mathrm{c}$ $=1.0$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=3411,2946,2274,1768,1660,1557,1362,1258,1250,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=5.63(\mathrm{dd}, J=9.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{br} . J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{br} . J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=13.2,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.2(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $212.3,191.4,176.1,140.9,138.6,125.2,85.1,80.1,76.9,54.9,52.5,45.4,42.8,38.0,33.9,30.4,25.3,24.7,24.4,0.2 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 405.2092$, found 405.2095 . CCDC 1407538 contains the supplementary crystallographic data for compound $\mathbf{1 7 a}$ and is available free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Synthesis of compound 17:

To a solution of compound $16(12.47 \mathrm{~g}, 24 \mathrm{mmol})$ in a mixed solvent of THF (75 mL), MeOH (67.5 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(7.5 \mathrm{~mL})$ was added silver (I) fluoride ($30.5 \mathrm{~g}, 240 \mathrm{mmol}$), and the resultant mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 days. The
reaction was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$, and the mixture was first filtered through a pad of celite, and then washed with EtOAc $(3 \times 100 \mathrm{~mL})$, and the filtrate was finally extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine (200 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane $=2: 2: 1$) to give product $17\left(6.8 \mathrm{~g}, 85 \%\right.$ yield) as a white solid; $\mathrm{R}_{f}=0.40$ (silica gel, petroleum ether/ethyl acetate $=1: 3$); $[\alpha]_{\mathrm{D}}^{25}=-363.7\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2989,2900,1766,1701,1685,1670,1419$, 1263, 1066, 1058, 760, 754, $680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.96(\mathrm{dd}, J=9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}$, $1 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=13.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H})$, $2.22(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 1 \mathrm{H}), 2.02-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=207.8,184.9,175.4,140.2,127.7,127.7,85.5,80.4,75.6,54.7,52.2,43.4,42.9,37.5,32.7,30.1,25.8$, 25.4, 24.5 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 333.1696$, found 333.1692.

Synthesis of compound 18:

To a solution of compound $17(6.8 \mathrm{~g}, 20.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350 \mathrm{~mL})$ was added triethylamine ($17.2 \mathrm{~mL}, 122.8$ mmol), and the mixture was stirred at room temperature for 10 min , followed by addition of Pearlman catalyst ($4.8 \mathrm{~g}, 20 \%$ $\mathrm{w} / \mathrm{w}, 0.7 \mathrm{wt}$), and the resultant mixture was first degassed with hydrogen, and then stirred at room temperature for 1 h . After the substrate $\mathbf{1 7}$ was converted completely to $\mathbf{1 7 b}$ monitored by TLC, the reaction mixture was stirred overnight under nitrogen. The reaction was quenched by filtration of the mixture through a pad of celite, and washed with EtOAc ($3 \times$ 150 mL). The filtrate was concentrated under vacuum, and the residue was purified by flash column chromatography on silica gel (ethyl acetate/dichloromethane $=1: 1$) to give product 18 (6.5 g , quant.) as white solid; data for $\mathbf{1 7 b}$: $\mathrm{R}_{f}=0.35$ (silica gel, petroleum ether/ethyl acetate $=1: 3) ;[\alpha]_{\mathrm{D}}^{25}=+3.2\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\text {max }}=2953,2359,2340,1763$, $1751,1457,1275,1083,1035,761,751,708,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.50(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~d}$, $J=22.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=22.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=12.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.22(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.27$ $(\mathrm{s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=214.8,177.2,138.0,135.2,84.0,80.1,73.3,56.8,55.7,43.5$, $40.4,40.1,36.9,31.6,29.9,26.3,26.0,24.8,24.4,1.0,-0.03 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 357.1672, found 357.1673. Data for 18: $\mathrm{R}_{f}=0.42$ (Silica gel, petroleum ether/ethyl acetate $=1: 3$); $[\alpha]_{\mathrm{D}}^{25}=-99.4(\mathrm{c}=1.0$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=2977,2918,1762,1700,1684,1662,1653,1571,1275,1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.77(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.40(\mathrm{~m}, 5 \mathrm{H}), 2.34(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.20$ $(\mathrm{m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=208.1,180.9,178.1,139.4,129.1,121.9,84.6,78.9,54.4,51.8,40.3,40.3,34.0,33.0,29.9,28.6,25.3,24.3$, 23.8 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 317.1747$, found 317.1754.

Synthesis of compound 19:

To a stirred solution of compound $18(6.5 \mathrm{~g}, 20.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added 3-chloroperbenzoic acid $(7.8 \mathrm{~g}, 70 \%, 51.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the resultant mixture was stirred at room temperature for 2 days. The reaction mixture
was quenched with a saturated solution of $\mathrm{NaHSO}_{3}(150 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$, and resultant mixture was stirred for 1 h . The mixture was extracted with EtOAc $(3 \times 150 \mathrm{~mL})$, and the combined organic layers were washed with brine (150 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=1.5: 1$) to give product $19(4.2 \mathrm{~g}, 62 \%$ yield, 73% b.r.s.m. yield) as a white solid; $\mathrm{R}_{f}=0.45$ (silica gel, petroleum ether/ethyl acetate $=1: 3$); $[\alpha]_{\mathrm{D}}^{25}=+18.8\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=3452,2927,1761,1704,1700,1271,727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.18(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{br}, 1 \mathrm{H})$, $2.63(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.11-2.04 (m, 2H), 1.87-1.57 (m, 4H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=207.1$, 181.7, 175.3, 129.8, 84.4, 78.0, 64.9, 61.3, 54.7, 50.7, 40.6, 37.9, 30.3, 29.4, 29.2, 28.8, 24.6, 24.3, 22.4 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 333.1696$, found 333.1697.

Synthesis of compound 19b:

To a solution of compound $\mathbf{1 9}(4.2 \mathrm{~g}, 12.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(126 \mathrm{~mL})$ was added 4-(dimethylamino)pyridine (926 mg , $7.6 \mathrm{mmol})$, triethylamine ($17.6 \mathrm{~mL}, 126.4 \mathrm{mmol}$) and acetic anhydride ($3.9 \mathrm{~g}, 37.9 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the resultant mixture was stirred at room temperature overnight. The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(150$ $\mathrm{mL})$, and the mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) to give product $\mathbf{1 9 b}\left(4.3 \mathrm{~g}, 91 \%\right.$ yield) as white solid; R_{f} $=0.50$ (Silica gel, petroleum ether/ethyl acetate $=1: 3$); $[\alpha]_{\mathrm{D}}^{25}=-11.9\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=2976$, 2956, $2872,1773,1740,1734,1707,1700,1696,1279,1243,1229,734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.18(\mathrm{~s}, 1 \mathrm{H}), 2.93$ (dd, $J=16.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=17.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.2,182.3,173.0,169.8,129.9,84.8,82.7,62.3,59.7,51.3,49.2$, $40.6,37.8,29.6,29.4,29.0,27.4,25.0,24.8,21.5,20.9 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 375.1802$, found 375.1798 .

Synthesis of compound 20:

To a solution of compound $\mathbf{1 9 b}(4.3 \mathrm{~g}, 11.5 \mathrm{mmol})$ in THF (200 mL) was slowly added lithium bis(trimethylsilyl)amide ($28.6 \mathrm{~mL}, 1 \mathrm{M}, 28.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ for 2 h , and the reaction mixture was then warmed up to -40 ${ }^{\circ} \mathrm{C}$, and the mixture was then stirred at the same temperature for 12 h . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$, and the formed mixture was then extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=1: 1$) to give product 20 [3.3 g, 76% yield; 84% yield (brsm)] as white solid; $\mathrm{R}_{f}=0.32$ (silica gel, petroleum ether/ethyl acetate $=1: 3$); $[\alpha]_{\mathrm{D}}^{25}=-52.5(\mathrm{c}=$ 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=3374,2969,2931,1780,1772,1700,1684,1675,1669,1247,1089,1021,1025,981 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.14(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{br}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $208.0,183.0,172.2,128.9,107.9,97.2,87.2,62.7,57.9,52.2,50.8,42.0,40.9,36.1,31.5,29.6,29.5,29.2,26.1,24.7,23.6$ ppm; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 375.1802$, found 375.1795 .

Synthesis of compound 21:

To a solution of compound $\mathbf{2 0}(3.3 \mathrm{~g}, 8.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(450 \mathrm{~mL})$ was added Martin sulfurane dehydrating agent $(10.8 \mathrm{~g}, 16.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the resultant mixture was stirred at room temperature overnight. The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(450 \mathrm{~mL})$, and the formed mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine (200 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica gel (dichloromethane/ethyl acetate $=15: 1$) to give product $21\left(2.6 \mathrm{~g}, 83 \%\right.$ yield) as white solid; $\mathrm{R}_{f}=0.47$ (Silica gel, petroleum ether/ethyl acetate $\left.=1: 3\right) ;[\alpha]_{\mathrm{D}}^{25}=-$ 53.4 ($\mathrm{c}=1.0$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\text {max }}=2970,2929,1761,1709,1695,1653,1650,1166,885 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.21(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=$ $17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{br}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46$ $(\mathrm{s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.2,187.0,182.3,173.4,130.6,100.5,88.0,86.6,61.8,51.0$, $41.0,40.5,31.0,29.3,28.4,26.6,25.3,24.9,20.8 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 357.1696$, found 357.1700. CCDC 1407537 contains the supplementary crystallographic data for compound 21 and is available free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Synthesis of compound 6:

To a solution of tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct ($29.0 \mathrm{mg}, 0.028 \mathrm{mmol}$) in dioxane (1.0 $\mathrm{mL})$ was added ${ }^{n} \mathrm{Bu}_{3} \mathrm{P}(113.4 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w}$ in hexane, 0.056 mmol$)$ and a mixture solution of formic acid ($64.0 \mathrm{mg}, 1.4$ $\mathrm{mmol})$ and Hunig's base ($72.0 \mathrm{mg}, 0.56 \mathrm{mmol}$) in dioxane $(0.5 \mathrm{~mL})$, and stirred at room temperature for 10 min . To this mixture was added a solution of compound $21(100.0 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dioxane $(4 \mathrm{~mL})$ at the same temperature. Then the mixture was stirred at $45^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was filtered through a pad of celite and washed with EtOAc $(3 \times 10 \mathrm{~mL})$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to give the product $6(56.2 \mathrm{mg}, 56 \%$ yield) as a white solid and diastereoisomer $\mathbf{6 a}(22.0 \mathrm{mg}, 22 \%$ yield) as a white solid.

To a solution of $\mathbf{6 a}(22.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in toluene was added 1,8-Diazabicyclo[5.4.0]undec-7-ene ($91 \mathrm{mg}, 0.6 \mathrm{mmol}$) and stirred for 10 h at $110{ }^{\circ} \mathrm{C}$. The reaction mixture was directly purified by a flash column chromatography on silica gel
(petroleum ether/ethyl acetate $=3: 1$) to give the product $\mathbf{6}\left(9.0 \mathrm{mg}, 41 \%\right.$ yield) as a white solid. Data for $\mathbf{6}: \mathrm{R}_{f}=0.25$ (Silica gel, petroleum ether/ethyl acetate $=1: 3) ;[\alpha]_{D}^{25}=+42.0\left(\mathrm{c}=0.54\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat): $v_{\max }=3588,2959,2929,2853$, 2365, 2323, 1779, 1691, 1230, 1200, 1063, $906 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.80(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J$ $=4.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=5.1,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=13.3,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.95,(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.63-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=207.6,188.1,173.4$, 127.3, 98.8, 84.6, 80.8, 75.4, 59.9, 52.2, 50.3, 45.2, 42.8, 38.2, 35.2, 34.8, 28.3, 26.7, 25.3, 24.6, 21.8 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 361.2010$, found 361.2006. Data for $\mathbf{6 a}: \mathrm{R}_{f}=0.20$ (Silica gel, petroleum ether/ethyl acetate $=1: 3$); $[\alpha]_{\mathrm{D}}^{25}=+14.5\left(\mathrm{c}=0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=3588,2967,2871,2336,1769,1689,1192,1055,905$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.91(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=$ $18.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=13.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=18.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=13.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1,96(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.6,186.6,174.0,130.5,97.9,84.8,79.9,74.5,54.4,54.3,47.6,44.5,42.5,35.3,33.9$, 31.1, 28.8, 28.3, 26.4, 23.1, 21.5 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 361.2010$, found 361.2003.

Synthesis of compound 22:

TIPSOTf, NEt $_{3}$

To a solution of compound $6(54 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added TEA ($\left.63.0 \mu \mathrm{~L}, 0.45 \mathrm{mmol}\right)$ and triisopropylsilyl trifluoromethanesulfonate ($60 \mu \mathrm{~L}, 0.225 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the resultant mixture stirred at room temperature for 1 h . The reaction mixture was worked up by removal of the solvent under vacuum and the residue was dissolved in $\mathrm{MeCN}(10 \mathrm{~mL})$, followed by addition of triisopropyl(((1E)-penta-1,3-dien-1-yl)oxy)silanes ($100 \mathrm{mg}, 0.45$ mmol). To this solution was slowly added a solution formed by mixing ammonium cerium(IV) nitrate ($373 \mathrm{mg}, 0.68 \mathrm{mmol}$) in $\operatorname{MeCN}(10 \mathrm{~mL})$ with 2,6-di-tert-butylpyridine $(0.33 \mathrm{~mL}, 1.5 \mathrm{mmol})$ at $-50^{\circ} \mathrm{C}$, and the result mixture was first warmed to $-30^{\circ} \mathrm{C}$, and then stirred at the same temperature for 30 min . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, and the formed mixture was then extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=1: 1$) to give the mixed compound 22 (60.9 mg , $92 \%, d r=1.98: 1.98: 1.1: 1$) as two pairs of diastereoisomers; $\mathrm{R}_{f}=0.42$ (silica gel, dichloromethane /acetone $=5: 1$); $[\alpha]_{\mathrm{D}}^{25}=$ $+10.5\left(\mathrm{c}=0.25\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\text {max }}=3564,2971,2929,2867,2341,1772,1685,1378,1059,910,931 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.70-9.39(\mathrm{~m}, 2 \mathrm{H}), 9.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=15.6,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=15.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=15.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=15.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-5.99(\mathrm{~m}, 4 \mathrm{H})$, $5.89-5.77(\mathrm{~m}, 4 \mathrm{H}), 4.28-4.15(\mathrm{~m}, 4 \mathrm{H}), 3.54-3.32(\mathrm{~m}, 4 \mathrm{H}), 3.04-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.63(\mathrm{~m}, 8 \mathrm{H}), 2.51-2.23(\mathrm{~m}, 16 \mathrm{H})$, $2.21-1.71(\mathrm{~m}, 36 \mathrm{H}), 1.62(\mathrm{~s}, 12 \mathrm{H}), 1.39-1.17(\mathrm{~m}, 24 \mathrm{H}), 1.13(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=208.0,207.1$, 194.4, 194.2, 187.8, 187.1, 173.4, 162.4, 161.5, 132.0, 131.3, 131.2, 126.9, 126.7, 126.5, 98.8, 98.7, 98.7, 84.6, 84.6, 80.8, $75.4,75.4,62.8,61.7,60.0,59.9,59.9,50.3,47.0,46.8,46.1,45.9,45.0,44.9,37.9,35.9,35.7,35.5,35.3,35.2,35.1,30.0$, 29.0, 28.3, 28.3, 27.3, 26.7, 26.6, 26.3, 25.2, 25.2, 21.9, 21.8, 21.8, 21.8, 20.0, 17.4, 16.4 ppm; HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 443.2428$, found 443.2434.

Synthesis of compounds of 23, 24, 25 and 26:

To a solution of 18 -crown-6 ($460 \mathrm{mg}, 1.74 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ was added potassium bis(trimethylsilyl)amide $(0.57 \mathrm{~mL}, 0.91 \mathrm{M}, 0.522 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at the same temperature for 10 min . To this mixture was added a solution of ethyl 2-(diphenoxyphosphoryl)propanoate ($174.5 \mathrm{mg}, 0.522 \mathrm{mmol}$) in THF (1.74 mL) at $78{ }^{\circ} \mathrm{C}$, and resulting mixture was then stirred at the same temperature for 10 min . followed by addition of a solution of compound $22(77 \mathrm{mg}, 0.174 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 1.5 h . The reaction mixture was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and the formed mixture was then extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give product $23(14.7 \mathrm{mg}, 16 \%$ yield), $24(13.7 \mathrm{mg}, 15 \%)$, and $\mathbf{2 5}$ and $26(55.0 \mathrm{mg}, 60 \%$ yield) as a inseparable mixture; Data for 23: $\mathrm{R}_{f}=0.75$ (Silica gel, dichloromethane /acetone $=5: 1$); $[\alpha]_{\mathrm{D}}^{25}=+15.1(\mathrm{c}=0.3$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=3556,2982,2925,2878,2353,1767,1693,1621,1445,1373,1231,1172,1143,920,731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.10(\mathrm{dd}, J=15.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=15.2,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~h}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.68(\mathrm{~m}$, $2 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.82-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.6,185.3,173.4,167.7,145.9,140.6,126.6,126.3,124.8,98.8,84.6,80.8,74.8$, $64.5,60.2,59.9,49.8,46.9,45.1,38.0,35.6,35.2,34.8,29.7,28.4,26.7,25.2,21.8,20.7,19.0,14.3 \mathrm{ppm} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 527.3003$, found 527.3009. Data for 24: $\mathrm{R}_{f}=0.74$ (Silica gel, dichloromethane /acetone $=$ 5:1); $[\alpha]_{\mathrm{D}}^{25}=+12.7\left(\mathrm{c}=0.3\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $v_{\max }=3551,2953,2920,2854,2334,1769,1678,1603,1450,1369$, $1238,1113,1172,921,741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.12(\mathrm{dd}, J=15.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=3.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H})$, 2.88-2.78 (m, 1H), 2.72-2.69 (m, 2H), 2.47-2.33 (m, 2H), $2.28(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.03-1.97 (m, $1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, ~ J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.33-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.5,185.9,173.3,167.8,145.2$, $140.9,127.0,126.8,124.2,98.8,84.6,80.8,75.0,64.6,60.1,59.9,50.0,47.1,45.2,37.9,35.6,35.4,35.2,28.4,26.7,25.2$, 21.8, 21.7, 21.2, 20.6, 14.3 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 527.3003$, found 527.3013. Data for the mixture of 25 and 26: $\mathrm{R}_{f}=0.77$ (Silica gel, dichloromethane /acetone $=5: 1$); $[\alpha]_{\mathrm{D}}^{25}=+43.5$ ($\mathrm{c}=0.5$ in $\mathrm{CH}_{2} \mathrm{Cl}_{3}$); IR (neat): $v_{\max }=3564,2975,2929,2867,2345,1772,1685,1606,1453,1362,1221,1188,1158,914,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.10(\mathrm{dd}, J=15.3,11.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=15.3,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 6 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.73$ $(\mathrm{m}, 2 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.02(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.74(\mathrm{~m}, 16 \mathrm{H}), 1.66-1.54$ $(\mathrm{m}, 6 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 24 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.0,208.6,187.2,186.8,173.4,173.4$, $167.8,167.7,146.1,144.2,140.9,127.3,126.9,126.9,125.9,124.6,124.4,98.7,84.6,84.5,80.8,75.4,67.1,63.1,62.5$, $60.1,60.0,59.9,59.9,50.2,46.4,45.9,45.1,45.0,38.0,36.0,35.9,35.2,35.1,30.1,29.7,28.9,28.3,28.3,27.1,26.7,26.7$,
26.1, 25.2, 21.9, 21.8, 21.0, 20.7, 20.6, 17.4, 14.3, 12.6 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 527.3003$, found 527.3010.
${ }^{1} \mathrm{H}$ NMR Assignments of Compound 23 and 24^{a}

	$\mathbf{2 3}$	
No.	[ppm, mult, $J(\mathrm{~Hz})]$ 500 MHz	$\mathbf{2 4}$
	$4.17(\mathrm{~d}, 4.5)$	$\delta \mathrm{H}[\mathrm{ppm}, \mathrm{mult}, J(\mathrm{~Hz})]$
1β	$2.70(\mathrm{~s})$	500 MHz
2α	$2.71(\mathrm{~d}, 4.8)$	$2.17(\mathrm{~d}, 4.8)$
2β	$2.38-2.41(\mathrm{~m})$	$2.69(\mathrm{~s})$
5α	$1.83-1.91(\mathrm{~m})$	$2.71(\mathrm{~d}, 4.8)$
6	$1.99-2.04(\mathrm{~m})$	$2.38-2.41(\mathrm{~m})$
7α	$1.77-1.83(\mathrm{~m})^{b}$	$1.84-1.90(\mathrm{~m})$
7β	$2.35-2.38(\mathrm{~m})$	$1.97-2.02(\mathrm{~m})$
8β	$1.77-1.83(\mathrm{~m})^{b}$	$1.78-1.83(\mathrm{~m})^{b}$
11α	$1.50-1.58(\mathrm{~m})$	$2.35-2.37(\mathrm{~m})$
11β	$1.92-1.97(\mathrm{~m})^{b}$	$1.78-1.83(\mathrm{~m})^{b}$
12α	$1.71-1.77(\mathrm{~m})^{b}$	$1.52-1.63(\mathrm{~m})$
12β	$5.81(\mathrm{~s})$	$1.91-1.96(\mathrm{~m})^{b}$
15	$2.21(\mathrm{~d}, 7.8)$	$1.76-1.80(\mathrm{~m})^{b}$
17α	$1.18(\mathrm{~s})$	$5.79(\mathrm{~s})$
18	$2.06(\mathrm{~d}, 15.1) \mathrm{ABd}$	$2.28(\mathrm{~d}, 4.4)$
19α	$1.86(\mathrm{~d}, 15.5) \mathrm{ABd}$	$1.19(\mathrm{~s})$
19β	$2.77-2.87(\mathrm{~m})$	$2.06(\mathrm{~d}, 15.1) \mathrm{ABd}$
20	$1.34(\mathrm{~d}, 6.3)^{b}$	$1.87(\mathrm{~d}, 15.2) \mathrm{ABd}$
21	$5.90(\mathrm{dd}, 15.3,8.3)$	$2.77-2.89(\mathrm{~m})$
22	$7.10(\mathrm{dd}, 15.3,11.1)$	$1.29(\mathrm{~d}, 7.1)^{b}$
23	$6.39(\mathrm{~d}, 11.1)$	$6.14(\mathrm{dd}, 15.3,8.1)$
24	$1.95(\mathrm{~s})$	$7.12(\mathrm{dd}, 15.3,11.0)$
27	$1.12(\mathrm{~s})$	$6.41(\mathrm{~d}, 11.1)$
29	$1.35(\mathrm{~s})$	$1.93(\mathrm{~s})$
30	$4.22(\mathrm{q}, 7.1)$	$1.12(\mathrm{~s})$
31	$1.32(\mathrm{t}, 7.0)^{b}$	$1.34(\mathrm{~s})$
32		$4.21(\mathrm{q}, 7.1)$
	$1.32(\mathrm{t}, 7.0)^{b}$	

[^0]| No. | 23 | 24 |
| :---: | :---: | :---: |
| | $\delta \mathrm{C}(\mathrm{ppm}) 126 \mathrm{MHz}$ | $\delta \mathrm{C}(\mathrm{ppm}) 126 \mathrm{MHz}$ |
| 1 | 80.8 | 80.8 |
| 2 | 35.2 | 35.2 |
| 3 | 173.4 | 173.4 |
| 4 | 84.6 | 84.6 |
| 5 | 59.9 | 59.9 |
| 6 | 26.7 | 26.7 |
| 7 | 25.2 | 25.2 |
| 8 | 49.8 | 50.0 |
| 9 | 74.8 | 75.0 |
| 10 | 98.8 | 98.8 |
| 11 | 38.0 | 37.9 |
| 12 | 34.9 | 35.4 |
| 13 | 46.9 | 47.1 |
| 14 | 185.3 | 186.0 |
| 15 | 126.6 | 127.0 |
| 16 | 207.6 | 207.5 |
| 17 | 64.5 | 64.6 |
| 18 | 21.7 | 21.7 |
| 19 | 45.1 | 45.2 |
| 20 | 35.6 | 35.6 |
| 21 | 18.9 | 21.2 |
| 22 | 145.9 | 145.2 |
| 23 | 126.3 | 126.8 |
| 24 | 140.5 | 140.9 |
| 25 | 124.8 | 124.3 |
| 26 | 167.7 | 167.8 |
| 27 | 20.7 | 20.6 |
| 29 | 21.8 | 21.8 |
| 30 | 28.4 | 28.4 |
| 31 | 60.2 | 60.0 |
| 32 | 14.3 | 14.3 |

${ }^{a}$ Data were determined at 125 MHz in CDCl_{3} with δ in ppm.
Structure of compound $\mathbf{2 3}$ and $\mathbf{2 4}$ was confirmed by NMR spectrums and shielding effect.

Selected HMBC correlations of 23 and 24.

24

Selected NOESY correlations of 23 and 24.

Shielding effect of 23 and 24.

Synthesis of compound 1:

To a solution of mixed compound 25 and $26(5 \mathrm{mg}, 0.0095 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ and water $(0.5 \mathrm{~mL})$ was added NMO ($2.2 \mathrm{mg}, 0.019 \mathrm{mmol}$) and osmium tetroxide $(0.17 \mathrm{mg}, 0.00067 \mathrm{mmol})$ at $4{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at 4 ${ }^{\circ} \mathrm{C}$ for 3 d . The reaction mixture was quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$, and the mixture was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$. The combined organic layers were washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by a flash column chromatography on silica gel (petroleum ether/ethyl acetate $=1: 4)$ to give the propindilactone G $1(2.5 \mathrm{mg}, 81 \%$ yield based on the amount of substrate of $\mathbf{2 5}$ in the mixture of $\mathbf{2 5 / 2 6}$) as a white solid; $\mathrm{R}_{f}=0.15$ (Silica gel, Dichloromethane $/$ Acetone $=8: 1$); $[\alpha]_{\mathrm{D}}^{25}=+$ 39.0 (c = 0.15 in MeOH); IR (neat): $v_{\max }=3427,2975,2917,2361,1743,1681,1615,1378,1067,914 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.11-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=18.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.63(\mathrm{~m}, 1 \mathrm{H})$, $2.47-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{Abd}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{Abd}, J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.59-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=211.0,191.0,175.2,175.2,149.3,130.2,127.4,99.4,84.8,82.4,81.9,75.8,72.4,60.2,57.9,50.3,45.8$, $45.8,38.2,36.6,36.2,29.2,28.5,28.0,26.9,26.7,22.6,14.3,10.9 \mathrm{ppm}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$: 515.2639, found 515.2641. CCDC 1411952 contains the supplementary crystallographic data for propindilactone G and is available free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Circular Dichroism Spectra (CD) were measured on a MOS $450 \mathrm{AF} / \mathrm{CD}$ (Biologic, France) at room temperature, using 1 mm quartz cuvettes for the UV region (195 nm to 400 nm). Band width and scan speed were set as 0.5 nm and 30 $\mathrm{nm} / \mathrm{min}$. Sample was dissolved to a final concentration of $0.45 \mathrm{mg} / \mathrm{mL}$ in MeOH .

CD spectrum of Natural propindilactone G

CD spectrum of synthetic revised propindilactone G (1)

II HPLC Traces for Measuring Enantiomeric Excess

A racemic sample of compound $\mathbf{8 b}$ was obtained through (D/L)-Hayashi catalyst promoted Diels-Alder reaction, followed by reduction and protection reaction. The racemic and optically active $\mathbf{8 b}$ were analyzed with HPLC (CHIRALPAK AD-H column, ${ }^{i} \mathrm{PrOH}$: hexane $=3: 97,0.3 \mathrm{~mL} / \mathrm{min}$) and a 245 nm UV detector to determine the retention time and enantiomeric excess. For compound $\mathbf{8 b}$, e.e. $=98 \%$.

III ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

${ }^{1} \mathrm{H}$ NMR spectrum
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

IV Comparison of the Spectra of Natural and Synthetic Propindilactone G

Comparison of ${ }^{1}$ H NMR data for Propindilactone G

	Listed* No $[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	Natural (Spectrum) $\delta \mathrm{H}[\mathrm{ppm}$, mult, $\mathrm{J}(\mathrm{Hz})]$	Synthetic $\delta \mathrm{H}[\mathrm{ppm}$, mult, $\mathrm{J}(\mathrm{Hz})]$	Err $(\mathrm{Natural}-$ Synthetic)
500 MHz	500 MHz	400 MHz	$\Delta \delta(\mathrm{ppm})$	
1β	$4.33(\mathrm{~d}, 4.5)$	$4.25(\mathrm{~d}, 4.5)$	$4.25(\mathrm{~d}, 5.0)$	0
2α	$2.79(\mathrm{~d}, 17.5)$	$2.75(\mathrm{~d}, 17.5)$	$2.75(\mathrm{~d}, 18.0)$	0
2β	$3.09(\mathrm{dd}, 4.5,17.5)$	$3.01(\mathrm{dd}, 4.5,17.5)$	$3.01(\mathrm{dd}, 5.1,18.0)$	0
5α	$2.49(\mathrm{dd}, 4.0,13.5)$	$2.45(\mathrm{dd}, 4.0,13.5)$	$2.46(\mathrm{dd}, 3.9,13.5)$	-0.01
6α	$1.63-1.71$	$1.55-1.63$	$1.59-1.63$	-
6β	$1.40(\mathrm{~m})$	$1.32-1.34$	$1.33-1.38$	-
7α	$2.00(\mathrm{~m})$	$1.92(\mathrm{~m})$	$1.92-1.97$	-
7β	$1.90(\mathrm{~m})$	$1.88(\mathrm{~m})$	$1.88-1.92$	-
8β	$2.54-2.59$	$2.46-2.51$	$2.47-2.52$	-
11α	$1.91-1.99$	$1.83-1.91$	$1.85-1.96$	-
11β	$1.68-1.74$	$1.60-1.66$	$1.63-1.69$	-
12α	$2.42(\mathrm{~m})$	$2.34(\mathrm{~m})$	$2.34-2.43$	-
12 b	$1.67-1.72$	$1.61-1.64$	$1.61-1.64$	-
15α	$6.11(\mathrm{~s})$	$6.07(\mathrm{~s})$	$6.08(\mathrm{~d}, 1.1)$	-0.01
17	$3.40(\mathrm{brs})$	$3.38(\mathrm{~s})$	$3.39(\mathrm{~d}, 1.3)$	-0.01
18	$1.28(\mathrm{~s})$	$1.24(\mathrm{~s})$	$1.24(\mathrm{~s})$	0
19α	$2.32(\mathrm{ABd}, 15.5)$	$2.20(\mathrm{ABd}, 15.5)$	$2.22(\mathrm{ABd}, 15.3)$	-0.02
19β	$2.16(\mathrm{ABd}, 15.5)$	$2.10(\mathrm{ABd}, 15.5)$	$2.08(\mathrm{ABd}, 15.3)$	-0.02
20	$2.60(\mathrm{~m})$	$2.55-2.6$	$2.55-2.63$	-
21	$1.27(\mathrm{~d}, 7.5)$	$1.25(\mathrm{~d}, 7.5)$	$1.26(\mathrm{~d}, 6.7)$	-0.01
22	$4.74(\mathrm{~d}, 9.0)$	$4.72(\mathrm{~d}, 9.0)$	$4.71(\mathrm{~d}, 8.3)$	0.01
23	$5.29(\mathrm{brs})$	$5.26(\mathrm{brs})$	$5.26(\mathrm{~d}, 8.3)$	0
24	$7.17(\mathrm{brs})$	$7.12(\mathrm{brs})$	$7.11-7.12$	-
27	$1.86(\mathrm{~s})$	$1.83(\mathrm{~s})$	$1.83(\mathrm{~s})$	0
29	$1.14(\mathrm{~s})$	$1.09(\mathrm{~s})$	$1.09(\mathrm{~s})$	0
30	$1.31(\mathrm{~s})$	$1.28(\mathrm{~s})$	$1.29(\mathrm{~s})$	-0.01

* The chemical shift values listed in the isolation paper (J. Nat. Prod. 2008, 71, 1228.) don't match the ${ }^{1}$ H NMR spectrum attached in its supporting information (shown below). We therefore utilized the data derived from the ${ }^{1} \mathrm{H}$ NMR spectrum of the isolation paper for the comparison purpose.

The highlighted peaks indicate the inconsistency of the chemical shift values listed in the isolation paper with the ${ }^{1} H$ NMR spectrum provided in the supporting information.

Peaks	Listed	Spectrum	Synthetic
a	$7.17(\mathrm{brs})$	$7.12(\mathrm{brs})$	$7.11-7.12$
b	$6.11(\mathrm{~s})$	$6.07(\mathrm{~s})$	$6.08(\mathrm{~d})$
c	$5.29(\mathrm{brs})$	$5.26(\mathrm{brs})$	$5.26(\mathrm{~d})$
d	$4.33(\mathrm{~d})$	$4.25(\mathrm{~d})$	$4.25(\mathrm{~d})$
e	$3.40(\mathrm{brs})$	$3.38(\mathrm{~s})$	$3.39(\mathrm{~d})$
f / g	$2.79(\mathrm{~d})$	$2.75(\mathrm{~d})$	$2.75(\mathrm{~d})$
h	$1.14(\mathrm{~s})$	$1.09(\mathrm{~s})$	$1.09(\mathrm{~s})$

Comparison of ${ }^{13} \mathbf{C}$ NMR data for Propindilactone G

No	Natural $\delta \mathrm{C}(\mathrm{ppm}) 126 \mathrm{MHz}$	Synthetic $\delta \mathrm{C}(\mathrm{ppm}) 126 \mathrm{MHz}$	Err (Natural-Synthetic) $\Delta \delta(\mathrm{ppm})$
1	81.8	81.9	-0.1
2	36.1	36.2	-0.1
3	175.3	175.2	0.1
4	84.7	84.8	-0.1
5	60.1	60.2	-0.1
6	26.5	26.7	-0.2
7	26.8	26.9	-0.1
8	50.1	50.3	-0.2
9	75.7	75.8	-0.1
10	99.4	99.4	0
11	38.0	38.2	-0.2
12	28.4	28.5	-0.1
13	45.7	45.8	-0.1
14	191.1	191.0	0.1
15	127.2	127.4	-0.2
16	211.2	211.0	0.2
17	57.8	57.9	-0.1
18	27.9	28.0	-0.1
19	45.6	45.8	-0.2
20	36.5	36.6	-0.1
21	14.1	14.3	-0.2
22	72.2	72.4	-0.2
23	82.3	82.4	-0.1
24	149.3	149.3	0
25	130.1	130.2	-0.1
26	175.3	175.2	0.1
27	10.8	10.9	-0.1
29	22.5	22.6	-0.1
30	29.0	29.2	-0.2

DFT calculation for the djhydroxylation of substrates $\mathbf{2 5}$ and 26.

1. Complete Reference for Gaussian 09

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.

2. Absolute Calculation Energies, Enthalpies, and Free Energies

All the DFT calculations were carried out with the GAUSSIAN 09 series of programs. DFT method B3-LYP ${ }^{1}$ with $3-21 G(d)$ basis set (lanl2dz basis set for Os) was used for geometry optimizations. Harmonic frequency calculations were performed for all stationary points to confirm them as a local minima or transition structures and to derive the thermochemical corrections for the enthalpies and free energies. M11-L functional, recently proposed by Truhlar group, which could give more accurate energy information, is used to calculate single point energies. The larger basis set $6-311 \mathrm{G}(\mathrm{d})$ (SDD basis set for Os) is used in the single point energy calculations.
25

$26 \xrightarrow[\Delta \mathrm{G}=-21.8 \mathrm{kcal} / \mathrm{mol}]{\mathrm{OsO}_{4}}$

Figure S1. Calculated Gibbs free energy for the formation of 25-Os.

Geometry	$\mathrm{E}_{(\text {elec-B3LYP) }}{ }^{1}$	$\mathrm{G}_{\text {(corr-B3LYP) }}{ }^{2}$	$\mathrm{H}_{\text {(corr-B3LYP) }}{ }^{3}$	$\mathrm{E}_{(\text {M11-L) }}{ }^{4}$	IF^{5}
$\mathbf{2 5}$	-1723.706215	0.620761	0.729543	-1733.112994	-
$\mathbf{2 5 - O s}$	-2114.080595	0.632078	0.752308	-2124.821976	-
$\mathbf{2 6}$	-1723.703338	0.619913	0.729256	-1733.111083	-
$\mathbf{2 6 - O s}$	-2114.075080	0.631141	0.752065	-2124.817572	-
$\mathbf{O s O}_{\mathbf{4}}$	-390.302010	-0.015308	0.018571	-391.645222	-

${ }^{1}$ The electronic energy calculated by B3LYP in gas phase. ${ }^{2}$ The thermal correction to Gibbs free energy calculated by B3LYP in gas phase. ${ }^{3}$ The thermal correction to enthalpy calculated by B3LYP in gas phase. ${ }^{4}$ The electronic energy calculated by M11-L in n,n-DiMethylAcetamide (DMA) solvent. ${ }^{5}$ The B3LYP calculated imaginary frequencies for the transition states.

3: Optimized geometries for all the compounds

Substrate 25

C	6.26217200	1.48636100	-0.69062400
C	6.43840500	2.65588600	0.26299800
C	5.81893600	2.17486700	1.57165400
C	5.01881900	0.69615400	-0.17417600
C	3.71098200	1.14356100	-0.82392600

C	2.38252700	0.57996000	-0.23017400
C	1.25668100	1.58256100	-0.59655700
C	-0.10654000	1.11910100	-0.05183200
C	-0.50842700	-0.25770400	-0.64530500
C	-1.73865000	-0.96403700	0.02880000
C	-1.15384900	-2.20288500	0.73875200
C	0.28187200	-2.25936500	0.41402000
C	0.65443100	-1.21029100	-0.34025600
C	2.04251800	-0.84135000	-0.80620400
C	3.08020400	-1.89081900	-0.36626300
C	4.47852800	-1.73292300	-1.01131000
C	5.42642100	-0.79964200	-0.23954900
C	6.90193400	-0.78795400	-0.78298000
C	7.81648500	-1.73693900	-0.00621500
C	7.01570800	-1.01022600	-2.29940800
C	-0.76221900	-0.15169900	-2.17216000
C	-2.70633700	-0.14999100	0.95267800
C	-2.19432400	0.01932100	2.41027700
C	-4.02584600	-0.89060400	0.99688300
C	-5.20855500	-0.37526700	0.62059000
C	-7.95496000	0.58540300	-0.20978200
C	-7.68287700	-0.76509800	0.32500500
C	-6.43513400	-1.15027900	0.68525600
C	-8.87138500	-1.69552200	0.44887700
O	7.38529200	0.58379700	-0.46996800
O	4.95687700	1.08819600	1.27876800
O	5.93903400	2.59749500	2.69897300
O	2.40367200	0.44538000	1.21659000
O	-1.79229200	-2.98357200	1.45975400
O	-9.30533400	0.72405400	-0.49990400
H	6.15127700	1.77456300	-1.74136600
H	7.49074500	2.90136900	0.40650400
H	5.89518500	3.54601100	-0.07505300
H	3.74605800	0.91431900	-1.89457600
H	3.67333900	2.23761500	-0.72743300
H	1.51418300	2.54261600	-0.13227700
H	1.22898500	1.72864600	-1.68249800
H	-0.87998700	1.86624100	-0.26402900
H	0.01445700	1.02000900	1.02829300
H	-2.36326500	-1.35527900	-0.78678100
H	0.91966800	-3.04179200	0.79543200
H	2.03352500	-0.76011300	-1.90333900
H	3.15073400	-1.82355000	0.72483800
H	2.69481200	-2.88346000	-0.62458400

H	4.37258100	-1.40379400	-2.05204800
H	4.95766300	-2.72034300	-1.04167200
H	5.46626900	-1.13095900	0.80306700
H	7.80824800	-1.46202400	1.05226200
H	8.84182900	-1.65944200	-0.38057300
H	7.47487100	-2.77152300	-0.11649300
H	8.05002400	-0.81629600	-2.59853500
H	6.36301200	-0.33038200	-2.85709000
H	6.75569000	-2.03779500	-2.56905100
H	-0.98712100	-1.14144400	-2.58463600
H	0.10077600	0.25384600	-2.70761700
H	-1.62030000	0.50528400	-2.35650000
H	-2.86622000	0.83819700	0.50377900
H	-1.22511800	0.52228100	2.44138200
H	-2.09763100	-0.96197400	2.88126900
H	-2.91515500	0.61349100	2.98131400
H	-3.94094600	-1.91372300	1.35976200
H	-5.29406900	0.63864100	0.24923300
H	-6.32464800	-2.16409600	1.06920400
H	-8.55802100	-2.66306700	0.85158200
H	-9.34433600	-1.85075400	-0.52666200
H	-9.63290100	-1.26439400	1.10734300
H	3.29294000	0.75852400	1.55621100
O	-7.16389800	1.51598500	-0.40500800
C	-9.70463700	2.04338300	-1.04276500
H	-9.46282100	2.82025900	-0.31167800
H	-9.13271500	2.24564600	-1.95283900
C	-11.20319400	1.93976200	-1.30698000
H	-11.73200100	1.71193300	-0.37735700
H	-11.58278200	2.88403200	-1.71090600
H	-11.40177700	1.13964300	-2.02546000

25-Os

C	7.55232600	0.09061900	-1.28547600
C	7.63103300	1.14328300	-2.37750800
C	6.82500600	2.31614700	-1.82797700
C	6.21942400	0.36561800	-0.52268800
C	5.03074700	-0.40962300	-1.08635500
C	3.61444400	-0.04556800	-0.54102400
C	2.58660000	-0.46052400	-1.62582900
C	1.14453200	-0.14528500	-1.18888100
C	0.77687300	-0.90582900	0.11344400
C	-0.54788200	-0.45065100	0.81246200
C	-0.11144700	0.28310500	2.08864400

C	1.34721100	0.11727900	2.20817600
C	1.85175900	-0.52830800	1.14040700
C	3.30030000	-0.78900500	0.80726100
C	4.23145500	-0.32062600	1.94121600
C	5.71076400	-0.75434000	1.79410600
C	6.57017400	0.23028700	0.98256000
C	8.11233100	-0.07687200	1.00632000
C	8.85679000	0.76036300	2.04821100
C	8.45814400	-1.56924000	1.13292800
C	0.71553600	-2.43781500	-0.12944700
C	-1.62232000	0.31904900	-0.00583900
C	-1.39901200	1.85275900	-0.06361400
C	-3.00861300	0.05686900	0.63079800
C	-4.16671000	0.37913800	-0.30843100
C	-5.53738900	3.05308900	-0.08585100
C	-6.07829300	1.81489400	0.54314100
C	-5.45571100	0.63252900	0.41355600
C	-7.36765900	1.96514900	1.32138200
O	8.59407100	0.40618600	-0.31622400
O	5.97780600	1.82709700	-0.80264700
O	6.80419000	3.47914600	-2.16150900
O	3.44066700	1.37340700	-0.27919800
O	-0.87333700	0.89934800	2.85036600
O	-3.15877000	-1.41843200	0.94595600
O	-4.34982600	-0.84495600	-1.18108400
O	-6.37622700	4.11543600	0.14882600
H	7.60804800	-0.94093500	-1.64857100
H	8.66016600	1.44490000	-2.57268700
H	7.16359200	0.80237200	-3.30870300
H	5.20089800	-1.48227100	-0.94283200
H	5.02264400	-0.22465300	-2.16953100
H	2.81724000	0.11764100	-2.52933500
H	2.70954200	-1.52332100	-1.86408200
H	0.44000700	-0.39846600	-1.98977100
H	1.10792200	0.92956400	-0.99808900
H	-1.04524200	-1.36265400	1.16600400
H	1.90256500	0.52552700	3.03855800
H	3.43372900	-1.86634200	0.63091900
H	4.15634700	0.77165400	1.97582600
H	3.84785300	-0.72095200	2.88651700
H	5.76316700	-1.76228500	1.36585000
H	6.15224200	-0.81494300	2.79747200
H	6.43057000	1.23281900	1.39955500
H	8.68561700	1.82214200	1.85004800

H	9.93126800	0.56163500	1.98963800
H	8.50431200	0.51637900	3.05583800
H	9.53386600	-1.68628800	0.97185200
H	7.93114800	-2.17255300	0.38635300
H	8.20552100	-1.95091400	2.12621000
H	0.58660900	-2.96068700	0.82527700
H	1.62130400	-2.81965100	-0.60927500
H	-0.14458300	-2.67563500	-0.76656000
H	-1.64699300	-0.09247200	-1.02448400
H	-0.48979200	2.08621600	-0.62141200
H	-1.29555900	2.23836800	0.95299200
H	-2.24085000	2.36648900	-0.53744700
H	-3.05697400	0.54500200	1.60577100
H	-3.93879800	1.18754500	-0.99655900
H	-5.89320100	-0.24102800	0.89319600
H	-7.68093500	1.00152600	1.73156200
H	-8.15877400	2.35514500	0.67352500
H	-7.23959900	2.67985600	2.14053200
H	4.28500900	1.85189300	-0.52907700
Os	-3.84791300	-2.52245200	-0.44147000
O	-2.51732700	-3.24696800	-1.28523400
O	-5.27736800	-3.36729900	0.05123100
O	-4.49681600	3.18418700	-0.74476800
C	-5.94479100	5.42013800	-0.42403700
H	-4.93258600	5.63944600	-0.07495700
H	-5.92210900	5.33393500	-1.51373400
C	-6.96963500	6.43812800	0.06112600
H	-6.97642600	6.47229400	1.15392500
H	-6.72118200	7.43235300	-0.32396900
H	-7.96862100	6.16195600	-0.28702600

Substrate 26

C	6.54143000	1.12633400	-0.53867700
C	6.77603500	2.32985700	0.35733500
C	6.04678900	1.97814400	1.65098900
C	5.19153300	0.50405600	-0.07059500
C	3.97457100	1.07094000	-0.79624800
C	2.57220200	0.64144500	-0.26083600
C	1.56826200	1.75828600	-0.64460700
C	0.12553400	1.42119800	-0.21908300
C	-0.37433800	0.10867700	-0.89592000
C	-1.71154000	-0.46421600	-0.29119700
C	-1.22458800	-1.55867100	0.70390600
C	0.19184800	-1.81943600	0.40046800

C	0.67568900	-0.93047500	-0.48037900
C	2.11360400	-0.72710700	-0.88475500
C	3.00187400	-1.88815100	-0.40042100
C	4.45736700	-1.86524700	-0.92612000
C	5.42130400	-1.02984400	-0.06326500
C	6.94173300	-1.20555300	-0.43522600
C	7.66281500	-2.17346300	0.50533500
C	7.19626200	-1.56034000	-1.90930200
C	-0.47856300	0.24160500	-2.43390400
C	-2.76143600	0.54128100	0.28785800
C	-3.94399200	-0.23078200	0.85336300
C	-5.23681500	-0.03864800	0.53392700
C	-8.19970200	0.22268100	-0.00862300
C	-7.61983700	-0.76351800	0.92604100
C	-6.28400400	-0.84441400	1.13812400
C	-8.59710000	-1.67660100	1.63674400
O	7.53947700	0.13082800	-0.16868300
O	5.10550300	0.95840400	1.36397700
O	6.14718400	2.44908800	2.76105300
O	2.52766800	0.46527800	1.18014500
O	-1.88461100	-2.11946000	1.58990500
O	-9.58268900	0.10113600	-0.03925700
H	6.53946600	1.35041200	-1.61072400
H	7.83744800	2.48712000	0.54947500
H	6.33706900	3.24453500	-0.05775200
H	4.04102900	0.82250800	-1.86112400
H	4.04099500	2.16454300	-0.71319100
H	1.88527100	2.67019400	-0.12336400
H	1.62436900	1.94996400	-1.72300500
H	-0.53154700	2.26143200	-0.46021500
H	0.13699900	1.27198100	0.86544300
H	-2.21814000	-1.01523800	-1.09895900
H	0.74523700	-2.58844600	0.91687200
H	2.17577800	-0.63321600	-1.97775500
H	2.99922300	-1.84720600	0.69363800
H	2.53437500	-2.82949700	-0.71172500
H	4.47620500	-1.52696300	-1.96911500
H	4.83635100	-2.89548200	-0.92311500
H	5.30109100	-1.33501600	0.98097700
H	7.56186100	-1.82077100	1.53557300
H	8.72665600	-2.21682600	0.25256300
H	7.23598000	-3.17836600	0.42059900
H	8.27282800	-1.50152700	-2.09434600
H	6.69245800	-0.86253200	-2.58629900

H	6.85285100	-2.57306400	-2.13779100
H	-0.76101400	-0.72222000	-2.87217700
H	0.46863500	0.55476200	-2.88255500
H	-1.24200000	0.97804600	-2.70104800
H	-5.94152400	-1.60006300	1.84437900
H	-8.06363700	-2.36371500	2.29996400
H	-9.17999000	-2.25756200	0.91415400
H	-9.31144300	-1.09309200	2.22726300
H	3.40732100	0.75145200	1.56571200
O	-7.62197800	1.06859500	-0.70254600
C	-10.28124400	1.04265200	-0.94461400
H	-10.06877200	2.06839500	-0.62957600
H	-9.89849200	0.91501000	-1.96114900
C	-11.76209800	0.69500000	-0.83126800
H	-12.09536600	0.81201700	0.20361200
H	-12.35619900	1.35304200	-1.47388500
H	-11.92662200	-0.34262700	-1.13466500
C	-3.22188600	1.57148600	-0.76833700
H	-3.69417400	1.06088200	-1.61483400
H	-3.95531200	2.25706900	-0.33188400
H	-2.38688400	2.16597600	-1.14197000
H	-2.28270000	1.07405900	1.12330300
H	-5.56278900	0.71166400	-0.17233100
H	-3.66758700	-1.01562200	1.55000200
H			

26-Os

C	-6.78279000	-0.71649700	-0.76775400
C	-6.63882100	-2.22793800	-0.71669200
C	-5.67206100	-2.48249500	0.43580000
C	-5.46912300	-0.13847700	-0.14917000
C	-4.40256400	0.16375500	-1.20157800
C	-2.96873400	0.52058100	-0.70281900
C	-1.99236400	0.24632900	-1.87622100
C	-0.54075200	0.58661200	-1.49955500
C	-0.37955700	2.07631800	-1.11058600
C	0.97998300	2.43662200	-0.41543500
C	0.65008500	2.52086000	1.08959600
C	-0.81612600	2.51555800	1.20667100
C	-1.39893300	2.29146100	0.01487200
C	-2.85597600	2.03100500	-0.26775700
C	-3.73664100	2.33620100	0.95740500
C	-5.25669900	2.35314600	0.66222000
C	-5.93332600	0.98197700	0.82060600
C	-7.49687200	1.00865300	0.68124900

C	-8.20279700	1.13416200	2.03268800
C	-8.02029200	2.04498600	-0.32625600
C	-0.61530000	3.01374500	-2.31857700
C	2.31126300	1.69289700	-0.75502000
C	2.69739600	0.58271300	0.24995400
C	3.91554400	-0.25039000	-0.17070900
C	6.81438100	0.62743600	0.15803300
C	6.09107500	-0.19330600	1.16669300
C	4.81379000	-0.56632000	0.98906100
C	6.88120800	-0.59788800	2.39341300
O	-7.82864000	-0.35153300	0.17991900
O	-4.96503900	-1.28059500	0.69267100
O	-5.44305300	-3.49382400	1.05878200
O	-2.54028000	-0.27993400	0.43089500
O	1.48529700	2.59766300	2.00379600
O	8.13142000	0.78122900	0.51822500
H	-6.96543700	-0.31675100	-1.77076800
H	-7.59552700	-2.71445800	-0.52594600
H	-6.19892300	-2.62957300	-1.63680500
H	-4.76194100	0.96831700	-1.85273300
H	-4.31131800	-0.73921300	-1.82105900
H	-2.04184800	-0.82572300	-2.10157800
H	-2.32085300	0.79970800	-2.76470400
H	0.13389300	0.32147800	-2.32138100
H	-0.28410100	-0.00227900	-0.62263500
H	1.16026500	3.48748700	-0.69075400
H	-1.31158000	2.60924400	2.16063400
H	-3.17341100	2.64575300	-1.12198900
H	-3.49968300	1.57743000	1.71155600
H	-3.44648400	3.31531300	1.35522600
H	-5.43450900	2.76068200	-0.34020900
H	-5.74317100	3.03588700	1.37136500
H	-5.70501300	0.59902300	1.82050200
H	-7.89881100	0.30560800	2.67849300
H	-9.28735400	1.08991900	1.89368100
H	-7.94445000	2.08391000	2.51253900
H	-9.08793300	1.86435100	-0.48248900
H	-7.51165800	1.96239300	-1.29268900
H	-7.88449900	3.06325500	0.04940500
H	-0.57650700	4.06273700	-2.00291100
H	-1.58386200	2.83450200	-2.79394300
H	0.16617500	2.84799300	-3.07007100
H	4.34083300	-1.17055700	1.76206300
H	6.26076000	-1.19414400	3.06746400

H	7.24292400	0.28674300	2.92725800
H	7.75983200	-1.18168100	2.10219500
H	-3.29970000	-0.86891600	0.71424600
O	6.36827300	1.13156400	-0.88266600
C	8.96884100	1.58317400	-0.41472000
H	8.96450000	1.09916200	-1.39488300
H	8.52525600	2.57675400	-0.51986400
C	10.35635600	1.62203100	0.21419600
H	10.74697600	0.60690700	0.32529600
H	11.03887900	2.19843300	-0.41860200
H	10.30828300	2.08860400	1.20184900
C	3.45091200	2.75246500	-0.71860000
H	3.43087900	3.23473900	0.26532400
H	4.44129200	2.32133800	-0.88454400
H	3.27126500	3.51353400	-1.48591700
H	2.23817000	1.25047600	-1.75667900
H	4.47320600	0.18426200	-0.99548900
H	2.82518300	1.04252000	1.23093200
O	1.54898800	-0.37549400	0.44962000
Os	1.67461500	-2.14379800	-0.23291100
O	3.43102600	-1.59019800	-0.68302500
O	0.68586900	-2.29044500	-1.64885500
O	1.72147100	-3.31878200	1.03736200
H			

OsO_{4}

Os	0.00000000	0.00000000	0.00000000
O	-1.00314000	-1.00314000	1.00314000
O	1.00314000	1.00314000	1.00314000
O	-1.00314000	1.00314000	-1.00314000
O	1.00314000	-1.00314000	-1.00314000

[^0]: ${ }^{a}$ Data were determined at 500 MHz in CDCl_{3} with δ in ppm and J in $\mathrm{Hz} .{ }^{b}$ Overlapped.

