## Supplementary Information

Direct Spectroscopic Detection and EPR Investigation of a Ground State Triplet Phenyl Oxenium Ion
Ming-De Li, ${ }^{\dagger}$ Toshia R. Albright, ${ }^{\dagger}$ Patrick J. Hanway, ${ }^{\dagger}$ Mingyue Liu, ${ }^{\dagger}$ Xin Lan, ${ }^{\dagger}$ Songbo
Li, ${ }^{\dagger}$ Julie Peterson, ${ }^{\dagger}$ Arthur H. Winter* ${ }^{\ddagger}$ and David Lee Phillips* ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong
S.A.R., P. R. China
${ }^{\dagger}$ Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011,
United States

1. fs-TA, ns-TR ${ }^{3}$ and optimized structures for singlet oxenium in water ..... S2-3
2. Synthesis of $m$-Dimethylaminophenylhydroxylamine hydrochloride ..... S3-4
3. NMR and MS spectra ..... S5-10
4. Photolysis NMR study and MS of product ..... S11-13
5. Quantitative product study ..... S14
6. EPR details ..... S15
7. CASSCF computational details ..... S16-19
8. DFT computational details ..... S20-24


Figure 1S. Left bottom is the experimental UV-vis spectrum of precursor recorded in aqueous solution and left top is the computed spectrum of the precursor. Right shows the fs-TA spectra recorded from 0.45 ps to 0.96 ps .

Table 1S. Excited state energies and oscillator strength from TD-DFT (B3LYP/6-311G**) calculations for precursor.

| Excited state | Transition Energy (nm) | Oscillator Strength |
| :--- | :--- | :--- |
| 1 | 330 | 0.0441 |
| 2 | 272 | 0.0748 |
| 3 | 266 | 0.0210 |
| 4 | 244 | 0.2523 |
| 5 | 241 | 0.0480 |



Figure 2S.The fs-TA spectra of species produced in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O} 1: 9$ solution acquired after 266 nm irradiation of the precursor m-dimethylamino phenyloxenium (Top left) LFP from 4.6 ps to 1390 ps .


Figure 3S. Shown are the optimized structure of the adducts of closed-shell singlet $m$-dimethylamino phenyloxenium ion with one water (left), three water molecules (middle) and four water molecules (right) from B3LYP/6-311G(d,p) calculations.

Table 2S. Shown are the transition energy and its corresponding molecular orbital with weight coefficient.

| Transition |
| :---: | :---: | :---: | :---: |
| Energy (nm) | Molecular Orbital




Figure 4S. (Top) Ns- $\mathrm{TR}^{3}$ spectrum (black) obtained at 20 ns in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ 1:1 solution. (Bottom) Shown is the calculated normal Raman spectrum of the singlet m-dimethylamino phenyloxenium ion (red) and m-dimethylamino phenyloxy radical (blue) using MP2/6-311G(d,p) calculation.


Figure 5S. Ns-TR ${ }^{3}$ spectra obtained with various delay times indicated next to the spectra after 266 nm photoexcitation of m-dimethylamino phenyloxenium and using 355 nm as probe wavelength in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ 1:9 solution.


Figure 6 S . Synthetic route for the formation of N-m-dimethylaminophenoxyphthalimide.

## Synthesis of $\boldsymbol{N}$-m-dimethylaminophenoxyphthalimide.

326 mg ( $2 \mathrm{mmol}, 1 \mathrm{eq}$ ) of N -hydroxyphthalimide, $200 \mathrm{mg}(2 \mathrm{mmol}, 1 \mathrm{eq})$ of $\mathrm{CuCl}, 660$ $\mathrm{mg}(4 \mathrm{mmol}, 2 \mathrm{eq})$ of 3 -( $N, N$-dimethylamino) phenylboronic acid, and $\sim 500 \mathrm{mg}$ of $4 \AA$ molecular sieves were combined in a 50 mL round bottom flask. 15 mL of 1,2dichloroethane solvent was added followed by $180 \mu \mathrm{~L}(2.2 \mathrm{mmol}, 1.1 \mathrm{eq})$ of pyridine, resulting in a light brown suspension. The reaction was stirred for 72 hours under ambient temperature and atmosphere. Progress of the reaction was monitored by TLC (72:25 Hexanes:Ethyl Acetate). The reaction mixture turned a teal bluish-green as the reaction proceeded. After 72 hours, the solvent was evaporated under reduced pressure. The crude product was then purified by column chromatography (70:30 Hexanes: Ethyl Acetate). A white solid was collected and dried under high vacuum, to give 277.6 mg ( $60 \%$ yield), of the desired product.


Figure 7S. Synthetic route for the formation of m-Dimethylaminophenylhydroxylamine hydrochloride.

## Synthesis of $\boldsymbol{m}$-Dimethylaminophenylhydroxylamine hydrochloride.

$277.6 \mathrm{mg}(0.98 \mathrm{mmol}, 1 \mathrm{eq})$ of N -m-dimethylaminophenoxyphthalimide was added to a flask containing 100 mL of $10 \% \mathrm{MeOH}$ in $\mathrm{CHCl}_{3}$ and $0.48 \mathrm{~mL}(9.8 \mathrm{mmol}, 10 \mathrm{eq})$ of hydrazine monohydrate. A colorless solution was formed, which yielded a white precipitate (phthalazine) over time. The reaction was allowed to stir overnight (12 hours) at room temperature. The white precipitate was filtered off and the filtrate was then purified by column chromatography ( $75: 25$ Hexanes:Ethyl Acetate). The resulting clear oil was dissolved in ether $(5-10 \mathrm{~mL})$ and then $\mathrm{HCl}^{*} \mathrm{OEt}_{2}(\sim 0.3 \mathrm{~mL})$ was added until white precipitate no longer formed upon addition. The white solid was collected and dried under high vacuum to yield 162 mg of the desired salt ( $87 \%$ yield). The product was reasonably stable stored in the freezer in the dark.
NOCOO 066 T-
sblz-
เ16ะ-




|  | Formula (M) | Score (MFG | Mass | Mass (MFG) | m/z (Calc) | Diff (ppm) | DBE | m/2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | C16 H14 N2 O3 | 99.98 | 282.10052 | 282.10044 | 283.1077 | -0.29 | 11 | 283.1078 |





| Formula (M) |  | Score (MFG | Mass | Mass (MFG) | m/z (Calc) | Diff (ppm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | C 8 H 13 N 2 O | 99.33 | 153.10245 | 153.10279 | 153.1022 | 2.22 |





Quantitative Product Studies. Photolysis studies were performed as follows: addition of 10 mg of $m$-Dimethylaminophenylhydroxylamine hydrochloride and $5-10 \mathrm{mg}$ of sodium acetate trihydrate (internal standard) to 0.8 mL of deuterium oxide and placed in a quartz NMR tube. An initial ${ }^{1} \mathrm{H}$ NMR was taken with a $90^{\circ}$ angle and a relaxation delay of 60 seconds. The solution was then degassed for 30 minutes (under argon) and photolyzed for 1 hour in a Rayonet photoreactor fitted with 254 nm bulbs. After photolysis was complete, an NMR spectrum was taken with the previous parameters.

Thermolysis studies were performed as follows: addition of 10 mg of m Dimethylaminophenylhydroxylamine hydrochloride and $5-10 \mathrm{mg}$ of sodium acetate trihydrate (internal standard) in 0.8 mL of deuterium oxide. An initial ${ }^{1} \mathrm{H}$ NMR was taken with a $90^{\circ}$ angle and a relaxation delay of 60 seconds. The solution was degassed for 30 minutes (under argon). The NMR tube was then heated at $80^{\circ} \mathrm{C}$ for 1 hour in a water bath. After thermolysis was complete, an NMR spectrum was taken with the previous parameters.

## Photolysis Results

$46 \%$ conversion of starting material to product resulted in a $89 \%$ mass balance of 3dimethylaminophenol and $11 \%$ was unaccounted for asan insoluble precipitate.

## Thermolysis Results

Thermolysis studies yielded an insoluble black tar that was not investigated further.


Simulated Values
Gxx 2.00 G
Gyy 2.00 G
Gzz 1.98 G
D 280.00 G
E/D 0.075 G
Linewidths
X 15
Y 26
Z 90

## Experimental Parameters

Centerfield 2500 G
Sweepwidth 4000 G
Power
1.984 mW

ConvTime $\quad 327.68 \mathrm{~ms}$
Gain
50 dB
ModAmp
1.000 G

ModFreq $\quad 100.00 \mathrm{KHz}$
Resolution 4096
SweepTime 1342.18 s
TimeConstant 1.28 ms

## CASSCF Computations

CASSCF and MRMP2 calculations were performed using the GAMESS software package using the $6-31 \mathrm{G}(\mathrm{d})$ basis set and a $(8,8)$ pi active space.
m-Dimethylaminophenylhydroxylamine hydrochloride Singlet
CASMRMP/6-31G(d)//CASSCF/6-31G(d) $(8,8)$ active space
CASMRMP Energy $=-439.1083353290$ a.u.
MCSCF Energy = -437.869215811 a.u.

| Atomic | Atomic | Coordinates (Angstroms) |  |  |  |
| :---: | :---: | ---: | ---: | ---: | :---: |
| Number | Type | X | Y | Z |  |
| 6 | C | 1.712234139 | -1.906748501 | 0.207353310 |  |
| 6 | C | 0.666777466 | -2.716956289 | -0.112506262 |  |
| 6 | C | -0.636530067 | -2.091825338 | -0.421707101 |  |
| 6 | C | -0.762140395 | -0.625577952 | -0.366094688 |  |
| 6 | C | 0.348372065 | 0.213256496 | -0.010802191 |  |
| 6 | C | 1.577692618 | -0.484646812 | 0.256412043 |  |
| 1 | H | 2.677645650 | -2.316489990 | 0.434238385 |  |
| 1 | H | 0.737564023 | -3.785715696 | -0.154840530 |  |
| 1 | H | -1.726850145 | -0.230609801 | -0.607536294 |  |
| 1 | H | 2.451261098 | 0.080893261 | 0.508443158 |  |
| 7 | N | 0.251291150 | 1.523466971 | 0.060926812 |  |
| 6 | C | 1.410542887 | 2.352991403 | 0.426081835 |  |
| 1 | H | 2.201876493 | 2.240389636 | -0.302902503 |  |
| 1 | H | 1.105290725 | 3.384606414 | 0.442779456 |  |
| 1 | H | 1.771333174 | 2.086240356 | 1.410261226 |  |
| 6 | C | -1.028410323 | 2.192158550 | -0.225805392 |  |
| 1 | H | -0.899706720 | 3.253664717 | -0.105867356 |  |
| 1 | H | -1.337336960 | 1.994131603 | -1.243344622 |  |
| 1 | H | -1.790958477 | 1.856526631 | 0.464099861 |  |
| 8 | O | -1.614995401 | -2.749263658 | -0.723253146 |  |

State 2 Energy $=-437.8692158107 \mathrm{~S}=0.00 \quad$ SZ $=0.00 \quad$ Space $\operatorname{Sym}$ - A

| ALPHA | BETA | COEFFICIENT |
| :---: | ---: | ---: |
| 11110000 | 11110000 | 0.8191694 |
| 11101000 | 11101000 | -0.3854871 |
| 11010100 | 11010100 | -0.0834304 |
| 11110000 | 11101000 | 0.0811186 |
| 11101000 | 11110000 | 0.0811186 |
| 11011000 | 11100100 | -0.0718789 |
| 11100100 | 11011000 | -0.0718789 |
| 111011000 | 11011000 | -0.0598459 |
| 1111000 | 01111000 | -0.0594789 |
| 1110010010 | 10110010 | -0.0594789 |
| 1111000 | 11101000 | 0.0580697 |
| 11101000 | 01111000 | 0.0560245 |
| 10111000 | 1111000 | 0.0557696 |
| 11001100 | 11001100 | 0.0557696 |
| 11011000 | 10111000 | 0.0534981 |
| 10111000 | 11011000 | -0.0512943 |

## m-Dimethylaminophenylhydroxylamine hydrochloride Triplet

CASMRMP/6-31G(d)//CASSCF/6-31G(d) $(8,8)$ active space
CASMRMP Energy $=-439.1224630390$ a.u.
=MRPT2,
MCSCF Energy $=-437.882934687$ a.u.

| Atomic | Atomic | Coordinates (Angstroms) |  |  |  |
| :---: | :---: | ---: | ---: | ---: | :---: |
| Number | Type | X | Y | Z |  |
| 6 | C | 1.733200873 | -1.873107928 | 0.173187810 |  |
| 6 | C | 0.642993938 | -2.686088322 | -0.134608311 |  |
| 6 | C | -0.649876446 | -2.091414716 | -0.396891815 |  |
| 6 | C | -0.766973311 | -0.649347886 | -0.335240770 |  |
| 6 | C | 0.365386559 | 0.170301723 | -0.011312359 |  |
| 6 | C | 1.628433365 | -0.487885934 | 0.245388238 |  |
| 1 | H | 2.691120129 | -2.320877269 | 0.357553978 |  |
| 1 | H | 0.729371328 | -3.753668176 | -0.186226114 |  |
| 1 | H | -1.741515045 | -0.242142238 | -0.504776709 |  |
| 1 | H | 2.503179189 | 0.089121568 | 0.459774901 |  |
| 7 | N | 0.250642967 | 1.490245963 | 0.056182911 |  |
| 6 | C | 1.355048276 | 2.347943755 | 0.533682555 |  |
| 1 | H | 2.071154419 | 2.485145277 | -0.265237729 |  |
| 1 | H | 0.941688166 | 3.301281530 | 0.816485567 |  |
| 1 | H | 1.825122945 | 1.901664212 | 1.393566304 |  |
| 6 | C | -0.985804563 | 2.201784917 | -0.330424208 |  |
| 1 | H | -0.721106607 | 3.213986028 | -0.586781980 |  |
| 1 | H | -1.436333184 | 1.733201308 | -1.187666996 |  |
| 1 | H | -1.669922829 | 2.205590964 | 0.507456606 |  |
| 8 | O | -1.650857172 | -2.765242773 | -0.668173879 |  |

State 1 Energy $=-437.8829346870 \mathrm{~S}=1.00 \quad \mathrm{SZ}=1.00 \quad$ Space $\operatorname{Sym}-\mathrm{A}$

| ALPHA | BETA | COEFFICIENT |
| :---: | ---: | ---: |
| 11111000 | 11100000 | 0.8979179 |
| 11110100 | 11001000 | 0.1267601 |
| 11111000 | 11000100 | 0.1013641 |
| 11011100 | 11000100 | -0.1006318 |
| 11111000 | 10100010 | 0.0905974 |
| 11111000 | 11010000 | -0.0904207 |
| 11110010 | 10101000 | 0.0812807 |
| 11101100 | 11100000 | -0.0764740 |
| 11011100 | 11100000 | -0.0739879 |
| 10111010 | 10100010 | -0.0715486 |
| 11101010 | 10110000 | -0.0701862 |
| 10111010 | 11100000 | -0.0608695 |
| 11101100 | 01110000 | 0.0577019 |
| 11110010 | 11001000 | 0.0560866 |
| 11111000 | 10101000 | 0.0540606 |
| 11111000 | 01100001 | 0.0537654 |
| 11101001 | 01110000 | -0.0518671 |

## DFT Computations

Density functional theory (DFT) computations were performed using the Gaussian09 software suite employing the B3LYP functional that consists of Becke's three-parameter gradient-corrected exchange functional and the LYP correlational functional along with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ polarized double- $\zeta$ basis set. Energies, geometries, and analytical frequencies were calculated at this level of theory. In all cases, optimized geometries were found to have zero imaginary frequencies and corrections for the zero point vibrational energy were added unscaled.

## m-Dimethylaminophenylhydroxylamine hydrochloride Singlet



Sum of electronic and zero-point energies $=-440.345772$

| Atomic | Atomic | Coordinates (Angstroms) |  |  |
| :---: | :---: | ---: | ---: | ---: |
| Number | Type | X | Y | Z |
| 6 | C | 1.733622 | -1.905789 | 0.207735 |
| 6 | C | 0.672628 | -2.700364 | -0.12228 |
| 6 | C | -0.652915 | -2.065024 | -0.42352 |
| 6 | C | -0.783918 | -0.624496 | -0.358031 |
| 6 | C | 0.307543 | 0.179894 | -0.017687 |
| 6 | C | 1.546299 | -0.504855 | 0.25533 |
| 1 | H | 2.713017 | -2.314801 | 0.433474 |
| 1 | H | 0.725821 | -3.783563 | -0.182833 |
| 1 | H | -1.764159 | -0.227696 | -0.585234 |
| 1 | H | 2.413184 | 0.093821 | 0.519636 |
| 7 | N | 0.258963 | 1.537485 | 0.064225 |
| 6 | C | 1.424994 | 2.351667 | 0.431921 |
| 1 | H | 2.236352 | 2.251208 | -0.298013 |
| 1 | H | 1.122081 | 3.397306 | 0.446232 |
| 1 | H | 1.794175 | 2.101111 | 1.43267 |
| 6 | C | -1.013284 | 2.194036 | -0.230107 |
| 1 | H | -0.896798 | 3.271887 | -0.133329 |
| 1 | H | -1.340017 | 1.966735 | -1.253352 |
| 1 | H | -1.793367 | 1.861051 | 0.467245 |
| 8 | O | -1.589268 | -2.809121 | -0.718146 |

# m-Dimethylaminophenylhydroxylamine hydrochloride Triplet 



Sum of electronic and zero-point energies $=-440.365686$

| Atomic | Atomic | Coordinates (Angstroms) |  |  |
| :---: | :---: | ---: | ---: | ---: |
| Number | Type | X | Y | Z |
| 6 | C | 1.744412 | -1.877985 | 0.15051 |
| 6 | C | 0.653054 | -2.69361 | -0.142163 |
| 6 | C | -0.651519 | -2.11111 | -0.389553 |
| 6 | C | -0.766206 | -0.66906 | -0.323316 |
| 6 | C | 0.364134 | 0.149465 | -0.020029 |
| 6 | C | 1.626166 | -0.4922 | 0.219446 |
| 1 | H | 2.718322 | -2.325079 | 0.324539 |
| 1 | H | 0.741932 | -3.773681 | -0.196809 |
| 1 | H | -1.758358 | -0.264879 | -0.480375 |
| 1 | H | 2.508743 | 0.099961 | 0.424069 |
| 7 | N | 0.24159 | 1.498768 | 0.059826 |
| 6 | C | 1.32777 | 2.344338 | 0.580848 |
| 1 | H | 2.070133 | 2.526095 | -0.20568 |
| 1 | H | 0.902882 | 3.298729 | 0.89206 |
| 1 | H | 1.804789 | 1.870978 | 1.43957 |
| 6 | C | -0.967753 | 2.224485 | -0.357902 |
| 1 | H | -0.658468 | 3.182343 | -0.781253 |
| 1 | H | -1.520813 | 1.671271 | -1.113392 |
| 1 | H | -1.604335 | 2.413434 | 0.514807 |
| 8 | O | -1.661522 | -2.801771 | -0.659265 |

Cartesian coordinates, total energies and vibrational zero-point energies for the optimized geometries obtained from B3LYP/6-311G** calculations for the water adducts are given.

## One water adduct

C

| -0.40029200 | -0.54076100 | 0.10487700 |
| ---: | ---: | ---: |
| 0.35315800 | 0.63259200 | -0.00080400 |


| C | -0.38793700 | 1.85925000 | -0.09449600 |
| :--- | ---: | ---: | ---: |
| C | -1.79877600 | 1.96948900 | -0.10547000 |
| C | -2.54525700 | 0.83733600 | -0.01829700 |
| C | -1.84845700 | -0.48850300 | 0.08542000 |
| H | 0.03368100 | -1.53428700 | 0.17199600 |
| H | 0.16927300 | 2.78684200 | -0.16222700 |
| H | -2.24745500 | 2.95206800 | -0.18198400 |
| H | -3.62907400 | 0.82533500 | -0.02196400 |
| N | 1.71182400 | 0.66947200 | -0.01396700 |
| C | 2.46514500 | 1.92881000 | -0.03601300 |
| H | 3.52192600 | 1.69089100 | -0.12060700 |
| H | 2.20208400 | 2.54047300 | -0.90247600 |
| H | 2.32481500 | 2.51008600 | 0.88131000 |
| C | 2.44425600 | -0.58064100 | 0.19160200 |
| H | 2.32824900 | -0.93408700 | 1.22436500 |
| H | 2.08096200 | -1.36910400 | -0.47015600 |
| H | 3.49947200 | -0.41029400 | -0.00475600 |
| O | -2.54785400 | -1.49283700 | 0.14894000 |
| O | 0.86277100 | -3.43476500 | -0.22444500 |
| H | 1.07962300 | -4.08407000 | 0.45325500 |
| H | 0.44330300 | -3.94477700 | -0.92584200 |

Sum of electronic and thermal Free Energies $=-516.937520$ Zero-point correction= 0.187687 (Hartree/Particle)

## Three water adduct

| C | 0.17531100 | 1.64691900 | -0.40017700 |
| :---: | ---: | ---: | ---: |
| C | -0.27872300 | 0.28482100 | -0.38782000 |
| C | -1.57447900 | 0.00240300 | 0.00917200 |
| C | -2.45273300 | 1.08585800 | 0.35540300 |
| C | -2.07049000 | 2.43757900 | 0.33030000 |
| C | -0.79330700 | 2.73500900 | -0.05461200 |
| N | -2.14937100 | -1.25031400 | -0.06762200 |
| C | -1.49627600 | -2.26401000 | -0.88446800 |
| O | 1.33826600 | 2.00020700 | -0.62097600 |
| C | -3.10895700 | -1.74488700 | 0.91697500 |
| O | 3.98260200 | 1.05410300 | 0.31604700 |
| O | 3.71426900 | -1.61188900 | 0.85991500 |
| O | 1.56713600 | -2.20567900 | -0.59951900 |
| H | 0.43715000 | -0.49773600 | -0.63899800 |
| H | -3.48573200 | 0.85859400 | 0.59346000 |
| H | -2.78657500 | 3.20600100 | 0.59307000 |
| H | -0.41653600 | 3.75076300 | -0.11150900 |
| H | -2.59885200 | -2.40599400 | 1.62831200 |


| H | -3.55809200 | -0.93621100 | 1.48989200 |
| :--- | ---: | ---: | ---: |
| H | -3.89171100 | -2.31458500 | 0.41354000 |
| H | -0.53625700 | -2.58491900 | -0.45109200 |
| H | -2.16760900 | -3.11441800 | -0.99034000 |
| H | -1.27134200 | -1.84097800 | -1.86808100 |
| H | 3.90942100 | -0.66510100 | 0.70128000 |
| H | 3.92073300 | -1.78590300 | 1.78202700 |
| H | 2.30894600 | -2.06865100 | 0.03997900 |
| H | 1.98316600 | -2.63353700 | -1.35497000 |
| H | 4.75959700 | 1.40982500 | -0.12588700 |
| H | 3.21901600 | 1.37896400 | -0.17969900 |

Sum of electronic and thermal Free Energies= -669.829693 Zero-point correction $=0.238203$ (Hartree/Particle)

## Four water adduct

| C | -0.66404800 | 1.78420400 | -0.18764800 |
| :---: | ---: | ---: | :---: |
| C | -0.74569900 | 0.34947200 | -0.17487800 |
| C | -1.97600700 | -0.26282900 | -0.01053800 |
| C | -3.14957500 | 0.55323400 | 0.12440200 |
| C | -3.12892400 | 1.95922900 | 0.11153000 |
| C | -1.92391000 | 2.58180100 | -0.05130600 |
| N | -2.18613800 | -1.62096900 | -0.14692600 |
| C | -1.16422300 | -2.41923000 | -0.81184300 |
| O | 0.38777000 | 2.42628300 | -0.25943300 |
| C | -3.14218000 | -2.36007100 | 0.67377300 |
| O | 3.27768700 | 1.64457600 | 0.04560200 |
| O | 3.77037500 | -0.49717200 | 1.56532800 |
| O | 1.67941300 | -1.56725300 | 0.06235200 |
| H | 0.18353700 | -0.21754000 | -0.23759700 |
| H | -4.11542000 | 0.06397900 | 0.18255500 |
| H | -4.05414300 | 2.51272000 | 0.21128800 |
| H | -1.81683200 | 3.66083700 | -0.08538500 |
| H | -2.61430300 | -2.86833800 | 1.49009600 |
| H | -3.88353200 | -1.70326900 | 1.12511800 |
| H | -3.64487900 | -3.11260800 | 0.06410600 |
| H | -0.24967500 | -2.50986300 | -0.20749600 |
| H | -1.57506500 | -3.40485500 | -1.02446700 |
| H | -0.87657400 | -1.92613600 | -1.74510900 |
| H | 3.58337800 | 0.42294400 | 1.26433700 |
| H | 4.27112700 | -0.44441700 | 2.38440500 |
| H | 2.20992300 | -1.39014000 | 0.85941500 |
| H | 2.35507100 | -1.53394200 | -0.63630700 |
| H | 3.52700100 | 1.09984500 | -0.71741000 |
| H | 2.38493600 | 1.96737500 | -0.13155700 |


| O | 4.10540000 | -0.80249600 | -1.14851200 |
| :--- | :--- | :--- | :--- |
| H | 4.40125600 | -0.89224200 | -0.22355000 |
| H | 4.81941100 | -1.12391400 | -1.70760100 |

Sum of electronic and thermal Free Energies=-746.276458 Zero-point correction= 0.265800 (Hartree/Particle)

## m-dimethylamino phenol radical cation

| C | 0.49889700 | -0.86162800 | -0.03215100 |
| :--- | ---: | ---: | ---: |
| C | -0.50925600 | 0.13514800 | 0.00104800 |
| C | -0.12389600 | 1.51934100 | 0.05398000 |
| C | 1.21267800 | 1.85683800 | 0.07304300 |
| C | 2.19937900 | 0.86991400 | 0.03072800 |
| C | 1.83262600 | -0.50092700 | -0.02452000 |
| H | 0.26245200 | -1.91286100 | -0.09898900 |
| H | -0.86846600 | 2.29809200 | 0.11793700 |
| H | 1.50220900 | 2.89855200 | 0.12701400 |
| H | 3.24796900 | 1.14824600 | 0.04109400 |
| N | -1.82084200 | -0.21167500 | -0.00054300 |
| C | -2.91226800 | 0.75809200 | -0.15826900 |
| H | -3.71429900 | 0.27953900 | -0.71966300 |
| H | -3.29923500 | 1.05140800 | 0.82265400 |
| H | -2.58562600 | 1.63574400 | -0.70692500 |
| C | -2.24400300 | -1.61024200 | 0.14980500 |
| H | -3.28508400 | -1.62467900 | 0.46446800 |
| H | -2.15693200 | -2.13740300 | -0.80557600 |
| H | -1.64033600 | -2.11429300 | 0.90222700 |
| O | 2.73950700 | -1.48675200 | -0.07764300 |
| H | 3.64223800 | -1.14581400 | -0.08127800 |

Sum of electronic and thermal Free Energies= -441.158380
Zero-point correction= 0.177088 (Hartree/Particle)

