Supporting Information

Total Synthesis of (-)-Secu'amamine A

Exploiting Type II Anion Relay Chemistry

Heeoon Han and Amos B. Smith, III*

Department of Chemistry,

University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

Table of Contents:

-General Methods and Experimental Procedures S1-S9
$-{ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR Spectra. S10-S34
${ }^{-1}$ H NMR Spectra Comparison S35
$-{ }^{13}$ C NMR Spectra Comparison S36

I. Materials and Methods

Reactions were carried out in oven or flame-dried glassware under an argon atmosphere, unless otherwise noted. All solvents were reagent grade. Diethyl ether and THF were obtained from a Pure Solve TM PS-400. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) with 0.25 mm E. Merck precoated silica gel plates. In aqueous work-up, all organic solutions were dried over sodium sulfate or magnesium sulfate, and filtered prior to rotary evaporation at water aspirator pressure. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.062 \mathrm{~mm}$) supplied by Silicycle and Sorbent Technologies. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AMX500 spectrometer. Chemical shifts are reported as δ values relative to the internal chloroform ($\delta 7.26$ ppm for ${ }^{1} \mathrm{H}$ and $\delta 77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$). Optical rotations were measured on a Jasco Perkin-Elmer model 241 polarimeter. High resolution mass spectra were measured at the University of Pennsylvania Mass Spectrometry Service Center on either a VG Micromass 70/70 H or VG ZAB-E spectrometer.

II. Experimental Procedures

11

12

13

14

14: To a solution of $\mathbf{1 3}(0.54 \mathrm{~g}, 4.0 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added 1.0 M THF solution of t BuOK ($4.0 \mathrm{~mL}, 4.0 \mathrm{mmol}$) dropwise via syringe and then $\mathrm{t}-\mathrm{BuLi}(2.4 \mathrm{~mL}, 4.0 \mathrm{mmol})$. The resulting solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$, and a solution of epoxide linchpin $11(0.98 \mathrm{~g}, 3.4 \mathrm{mmol})$ in THF (3.0mL) was added. The resulting solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$. To the diluted solution was added aldehyde $\mathbf{1 2}(1.0 \mathrm{~g}, 3.0 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL}: 10 \mathrm{~mL})$ via cannula at $-78^{\circ} \mathrm{C}$. After 30 min , the reaction was quenched with a saturated aqueous NaHCO_{3} solution. Then the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$ and the combined organic layers were washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Flash chromatography on silica gel (hexane/EtOAc/triethyl amine $=8 / 2 / 0.4$ to $7 / 3 / 0.2$) provided $\mathbf{1 4}(1.4 \mathrm{~g}, 75 \%)$ as a pale yellow oil: $[\alpha]^{26}{ }_{\mathrm{D}}=+59.2\left(\mathrm{c} 1.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$, $7.35-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.51-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 3.37$ $-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.43$ $-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.20-0.11(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $130.19,128.06,127.69,126.00,78.78,77.36,69.62,62.57,56.99,52.56,49.77,48.26,43.35,29.51$, 27.85, 27.28, 26.82, 26.37, 25.97, 25.73, 25.65, 25.27, 24.98, 18.21, $-3.18,-3.35$; HRMS (ES) m / z $766.3275\left[(\mathrm{M}+\mathrm{H})^{+} ;\right.$calcd for $\left.\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{NO}_{2} \mathrm{~S}_{4} \mathrm{Si}: 766.3276\right]$.

9

9: To a solution of $\mathbf{1 0}(1.5 \mathrm{~g}, 5.6 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added 1.0 M THF solution of t BuOK ($0.56 \mathrm{~mL}, 0.56 \mathrm{mmol}$) dropwise via syringe and then 1.7 M pentane solution of t -BuLi (3.3 mL , 0.56 mmol). The resulting solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$, and a solution of epoxide linchpin 11 ($1.3 \mathrm{~g}, 4.3 \mathrm{mmol}$) in THF (4.0 mL) was added via cannula. The resulting solution was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$ and then diluted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$. To the diluted solution was added aldehyde $\mathbf{1 2}(1.9 \mathrm{~g}$, 0.56 mmol) in $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL}: 25 \mathrm{~mL})$ via cannula at $-78{ }^{\circ} \mathrm{C}$. After 30 min , $\mathrm{MOMBr}(0.53 \mathrm{~mL}$, $6.5 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added and the resulting solution was warmed to $0{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with a saturated aqueous NaHCO_{3} solution. Then the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(50 \mathrm{~mL} \times 3)$ and the combined organic layers were washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Flash chromatography on silica gel (hexane/EtOAc/triethyl amine $=$ 20/1/0.4 to 8/2/0.2) provided $2.36(2.6 \mathrm{~g}, 64 \%)$ as a pale yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=8.74\left(\mathrm{c} 2.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61$ (br. s., 6 H), $7.31(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.18-7.09$ $(\mathrm{m}, 3 \mathrm{H}), 5.63(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=9.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}$, $2 \mathrm{H}), 4.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.72$ (br. s., 1H), $2.70-$ $2.64(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=15,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.95(\mathrm{~m}$, $3 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{dd}, J=9.5,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.58$ $-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{dd}, J=9.9,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.93$
$(\mathrm{m}, 1 \mathrm{H}), 0.82(\mathrm{~m}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}),-0.13--0.25(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 138.89,130.34,128.39,128.06,127.88,127.74,127.45,126.13,98.80,80.94,79.10,72.75,70.66$, $69.87,62.78,57.60,55.44,54.07,52.57,46.29,43.79,36.95,27.51,26.76,26.61,26.26,25.77,25.50$, $25.35,24.84,24.69,24.52,18.15,-2.97,-3.90 ;$ HRMS (ES) $m / z 944.4267\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\left.\mathrm{C}_{53} \mathrm{H}_{73} \mathrm{NO}_{4} \mathrm{~S}_{4} \mathrm{Si}: 944.4270\right]$.

15

15: A solution of $9(0.50 \mathrm{~g}, 0.53 \mathrm{mmol})$ in THF was treated with a 1.0 M solution of TBAF in THF $(0.79 \mathrm{~mL}, 0.79 \mathrm{mmol})$ and stirred at reflux for 12 h . The reaction mixture was concentrated in vacuo and flash chromatography on silica gel (hexane/EtOAc/triethylamine $=20 / 1 / 0.4$ to $8 / 2 / 0.2$) provided alcohol $15(0.40 \mathrm{~g}, 91 \%)$ as a pale yellow oil: $[\alpha]^{26}{ }_{\mathrm{D}}=+29.0\left(\mathrm{c} 2.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.57(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{td}, J=8.3,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.07(\mathrm{~m}$, $1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.75(\mathrm{~m}, 5 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=15.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.17-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 6 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=12.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67$ $-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.17(\mathrm{~m}, 1 \mathrm{H}),-0.09--0.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.82,130.22,128.41,128.03,127.87,127.66,127.51,126.16,98.97,83.63,78.94$, $72.68,70.41,65.53,62.95,57.59,56.38,52.77,52.27,46.24,45.84,35.66,27.53,26.36,26.27,25.81$, 25.40, 25.31, 25.04, 24.73, 24.48; HRMS (ES) $m / z 830.3406\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{47} \mathrm{H}_{60} \mathrm{NO}_{4} \mathrm{~S}_{4}$: 830.3405].

8
8: To a stirred solution of alcohol $15(0.35 \mathrm{~g}, 0.42 \mathrm{mmol}$,$) in \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added triethylamine $(0.59 \mathrm{~mL}, 4.2 \mathrm{mmol})$ and methanesulfonyl chloride $(0.049 \mathrm{~mL}, 0.63 \mathrm{mmol})$ at room temperature. After being stirred for 0.5 h , a saturated aqueous NaHCO_{3} solution (5.0 mL) was added, and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($15 \mathrm{~mL} x 3$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude mesylate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 \mathrm{~mL}: 1 \mathrm{~mL})$ and then $\mathrm{NaHSO}_{4}-\mathrm{SiO}_{2}(0.50 \mathrm{~g})$ was treated in one portion. As soon as N -Trityl group was removed (usually finished in 10 min), the reaction mixture was filtered and rinsed with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ till the concentration becomes under 0.02 M . Then the filtrate was treated with excess triethylamine $(1.0 \mathrm{~mL})$ and stirred overnight and the reaction was concentrated in vacuo. Flash chromatography (hexane/EtOAc/triethylamine $=$ $8 / 2 / 0.2$ to $5 / 5 / 0.2$) afforded indolizidine $\mathbf{8}\left(0.17 \mathrm{~g}, 72 \%\right.$) as a pale yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+36.9$ (c 1.00 , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $3 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{ddd}, J=5.3,7.2,9.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.14(\mathrm{ddd}, J=3.2,11.0,14.2 \mathrm{~Hz}, 3 \mathrm{H})$, $3.00-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{td}, J=3.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.84-$ $2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.71-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=6.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=$ 7.1, $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=2.7,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.99-$ $1.93(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.66(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.71$, $128.47,127.69,127.62,97.99,84.19,72.89,70.32,56.69,56.58,55.28,53.48,52.25,50.82,42.73$, $40.79,36.02,28.83,27.65,26.29,26.24,26.23,25.61,25.35,25.20,22.95$; HRMS (ES) $\mathrm{m} / \mathrm{z} 570.2206$ $\left[(\mathrm{M}+\mathrm{H})^{+} ;\right.$calcd for $\left.\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{NO}_{3} \mathrm{~S}_{4}: 570.2204\right]$.

7

7: To a stirred solution of $\mathbf{8}(36 \mathrm{mg}, 0.063 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1)$ was added trifluoroacetic acid $(0.047 \mathrm{mml}, 0.63 \mathrm{mmol})$ was added. Then $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(54 \mathrm{mg}, 0.13 \mathrm{mmol})$ was added into the solution in one portion at room temperature. After 0.5 h , additional $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(81 \mathrm{mg}, 0.19 \mathrm{mmol})$ was added. The reaction mixture was stirred for 0.5 h . The resultant mixture was extracted with hexane ($5 \mathrm{ml} \times 3$), the aqueous layer was neutralized with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ (until to basic), and then treated with EtSH (0.5 ml) followed by stirring for 5 min . The resulting solution was diluted with saturated aqueous NaHCO_{3} and extracted with EtOAc (15mlx3). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Flash chromatography (hexane/EtOAc/triethylamine $=5 / 5 / 0.2$) afforded dione $7(15 \mathrm{mg}, 62 \%)$ as a pale yellow oil: $[\alpha]^{25}=+77.5$ (c $1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}$, $2 \mathrm{H}), 3.99(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.94$ (m, 1 H), 2.94-2.89 (m, 1 H), $2.84(\mathrm{dd}, J=6.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=6.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}$, $J=5.0,16.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=8.5,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=2.0,13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $208.74,207.81,138.50,128.52,127.79,127.73,96.30,81.23,73.02,69.32,62.67,56.12,52.98,49.56$, 43.72, 41.12, 40.67, 30.16, 23.88, 22.30; HRMS (ES) $m / z 390.2277\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{5}$: 390.2280].

16

16: To a stirred solution of dione $7(25 \mathrm{mg}, 0.064 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added NaOMe (0.050 mL , ca. $30 \% \mathrm{~W} / \mathrm{W}$ in MeOH). Then the solution was stirred for 24 h and quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ triethylamine $\left.=1 / 19 / 0.5\right)$ afforded alcohol $16(22 \mathrm{mg}, 90 \%)$ as a pale yellow oil: $[\alpha]^{26}{ }_{\mathrm{D}}=-11.1$ (c 1.00, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=5.4,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.41-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3$ H), $3.21(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=4.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H})$, $2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{dd}, J=5.0,12.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=2.9,13.2 \mathrm{~Hz}, 1$ H), $2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{ddd}, J$ $=5.3,9.5,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.75,138.38,128.45$, $127.96,127.71,98.86,90.66,73.22,72.89,68.60,58.90,56.21,52.71,50.56,48.73,38.39,33.88,29.29$, 28.00, 21.65; HRMS (ES) $m / z 390.2277\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{5}: 390.2280\right]$.

17: To a stirred solution of dione $7(18 \mathrm{mg}, 0.046 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{NaOMe}(0.050$ mL , ca. $30 \% \mathrm{~W} / \mathrm{W}$ in MeOH). Then the solution was stirred for 6 h and quenched with saturated aqueous NaHCO_{3} and concentrated in vacuo. Flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ triethylamine $=$ $1 / 19 / 0.5$ to $1 / 9 / 0.5$) afforded alcohol $16(13 \mathrm{mg}, 75 \%)$ and $17(2.5 \mathrm{mg}, 15 \%)$ as a pale yellow oil: $[\alpha]^{24}{ }_{D}$ $=-4.30\left(\mathrm{c} 0.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, 4.75 (br. s., 1 H), 4.74 (d, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=6.1 \mathrm{~Hz} 1 \mathrm{H}), 4.49(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{ddd}, J=4.3,5.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (br. s., 1 H$), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.34(\mathrm{~m}$,
$1 \mathrm{H}), 3.29(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 1 \mathrm{H})$, $2.55(\mathrm{dd}, J=3.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=5.0,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1$ H), $2.19-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=2.6,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.37,138.32,128.55$, $128.03,127.81,98.86,89.41,74.65,73.03,70.59,60.16,59.62,58.04,56.22,51.01,48.70,41.42,29.85$, 28.86, 24.08, 21.61; (ES) $m / z 390.2277\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{5}: 390.2280\right]$.

6: A solution of $\mathbf{1 6}(5.0 \mathrm{mg}, 0.013 \mathrm{mmol})$ in $\mathrm{EtOH}(4.0 \mathrm{~mL})$ was treated with Raney $\mathrm{Ni}(0.20 \mathrm{ml}$ slurry in $\mathrm{H}_{2} \mathrm{O}$) and stirred at $50{ }^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(\mathrm{~g})(1 \mathrm{~atm})$ for 24 h . Then the mixture was filtered through celite and concentrated in vacuo. Flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ triethylamine $\left.=1 / 9 / 0.5\right)$ afforded diol 6 (3.5mg, 91%) as a pale yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=-43.5\left(\mathrm{c} 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $4.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{qd}, J=5.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-$ $3.58(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=4.9,9.6 \mathrm{~Hz}, 1$ H), $2.87(\mathrm{dt}, J=4.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H})$, $2.37(\mathrm{dd}, J=5.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1$ H), $1.89(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{tdd}, J=4.8,9.7,14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.77,98.92,90.63,72.65,61.09,58.95$, $56.31,53.02,50.54,48.74,38.54,33.68,30.64,29.12,21.57$; HRMS (ES) $m / z 300.1808\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{5}: 300.1811\right]$.

5: To a solution of $\mathbf{6}(4.0 \mathrm{mg}, 0.013 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$ were added $4 \AA \mathrm{MS}(4.0 \mathrm{mg})$ and NMO ($2.0 \mathrm{mg}, 0.017 \mathrm{mmol}$). After $5 \mathrm{~min}, \operatorname{TPAP}(0.47 \mathrm{mg}, 13 \mu \mathrm{~mol})$ was added to the reaction mixture. After 1 h , the reaction mixture was treated with additional NMO ($1.6 \mathrm{mg}, 0.013 \mathrm{mmol}$) and stirred for 1 h . Then the reaction mixture was filtered through celite and concentrated in vacuo. Flash chromatography $(\mathrm{EtOAc} /$ hexane/triethylamine $=3 / 7 / 0.2)$ afforded lactone $\mathbf{5}(3.1 \mathrm{mg}, 75 \%)$ as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ $-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{dd}, J=9.5,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.87(\mathrm{~m}$, $1 \mathrm{H}), 2.78(\mathrm{dd}, J=11.3,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}$, $2 H), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 3 \mathrm{H}) ;$ HRMS (ES) $m / z 296.1510\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{5}$: 296.1498].

4: Following the Weinreb's five-step procedure, (-)-secu'amamine A (4) (2.2mg) was synthesized from compound 5: $[\alpha]^{25}{ }_{\mathrm{D}}=-505.2\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$; reported by Weinreb group $[\alpha]^{25}{ }_{\mathrm{D}}=-511.3$ (c 0.15, $\left.\mathrm{CHCl}_{3}\right)$; reported by Osaki group $[\alpha]^{25}{ }_{\mathrm{D}}=-479\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.79$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{brs}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 1 H), 3.02 (brs, 1 H), 2.60-2.55 (m, 1H), 2.55-2.50 (brs, 1 H$), 2.36(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ (brs, 1 H), 2.09-2.06 (m, 1H), $2.01(\mathrm{dd}, J=11.6 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.21,161.97,133.96,124.29,114.07,86.91,74.99,59.43$, 52.12, 48.61, 36.97, 28.23, 22.19; HRMS (ES) $m / z 234.1145\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$: 234.1130].

Appendix 2-1: Spectral Data

$\stackrel{J}{7}$

The $500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of Compound 9

The COSY Spectrum of Compound $\mathbf{8}$

\％
管＂
e
$\stackrel{0}{\circ}$

The $125 \mathrm{MHz}{ }^{13} \mathrm{CNMR}$ Spectrum of Compound $\mathbf{1 7}$

The COSY Spectrum of Compound $\mathbf{1 7}$

The $500 \mathrm{MHz}{ }^{1} \mathrm{HNMR}$ Spectrum of Compound 6

${ }^{1}$ H NMR Data comparison of secu'amamine A- between Smith's lab and Weinreb's lab.

${ }^{13}$ C NMR Data comparison of secu'amamine A- between Smith's lab and Weinreb's lab.

