A Cooperative Photo-/Lewis Acids-catalysed Tandem Intramolecular [3+2] Cross-Cycloadditions of Cyclopropane 1,1-diesters with α, β-Unsaturated Carbonyls for Medium-sized Carbocycles

Zhenjun Wang, \dagger Shuai Chen, \dagger Jun Ren, Zhongwen Wang*

Table of contents

General Information S3
Preparation of Starting Materials S3
Synthesis of Bridged Oxa-[n.2.1] Skeletons S12
References S21
NMR Spectra of Starting Materials S22
NMR Spectra of Bridged Oxa-[n. 2.1] Skeletons S35
X-ray spectra of 2a and $\mathbf{5}$ S51

Generational Information:

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Bruker 400 MHz spectrometer instruments in CDCl_{3}. The chemical shifts (δ) were measured in ppm and with the solvents as references (For $\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}: \delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C} \delta=77.16 \mathrm{ppm}$). The multiplicities of the signals are described using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, br $=$ broad. All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of products was accomplished by flash chromatography using silica gel (200~300 or $300 \sim 400$ mesh or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$). Thin layer chromatography (TLC) was performed on Merck silica gel GF254 plates and visualized by UV-light ($254+365 \mathrm{~nm}$). Melting points were obtained on a Yanaco-241 apparatus and are uncorrected. IR spectra were recorded on a MAGNA-560 spectrometer made by Nicolet Company. HRMS were recorded on VG ZAB-HS mass spectrometer with ESI resource. IBX (o-Iodoxybenzoic acid); THF (Tetrahydrofuran); $\mathrm{Et}_{3} \mathrm{~N}$ (Triethylamine); DMF (N, N-Dimethylformamide); DMSO (Dimethylsulfoxide); DCM (Dichloromethane); DCE (1,2-Dichloroethane).

Preparation of Starting Materials

General procedure for the synthesis of substrates $1 \mathrm{a}, 1 \mathrm{e}, 1 \mathrm{~g}, 1 \mathrm{i}, 1 \mathrm{j}, 1 \mathrm{k}, 1 \mathrm{l}$ (GP1)

The aldehyde (1.0 equiv., 1.0 mmol) and the wittig reagent (2.0 equiv., 2.0 mmol) were added to a 50 mL round-bottom flask and $15 \mathrm{~mL} \mathrm{CHCl}_{3}$ was added at room temperature. Then the mixture was warmed to reflux for 24 h . The mixture was concentrated under reduced pressure. Then the residue was purified by flash chromatography.
General procedure for the synthesis of substrates $1 \mathrm{~b}, 1 \mathrm{c}, 1 \mathrm{~d}(\mathbf{G P})^{[1]}$

The alkyne (1.2 equiv., 2.4 mmol) and 4 mL THF were added to a 15 mL schlenk and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{n}-\mathrm{BuLi}$ (1.5 equiv., 3 mmol) was dropped to the mixture and reacted for 1 h . Next, the substrate (1 equiv., 2 mmol) was added to the Schlenk and made the mixture at $-60^{\circ} \mathrm{C}$ for another 3.5 h . Then added the water to quench the reaction. The whole mixture was extracted with ethyl ether ($10 \mathrm{~mL} \times 3$) and the extract was washed with water $(10 \mathrm{~mL} \times 2)$ and brine $(10 \mathrm{~mL} \times 1)$, and then dried over MgSO_{4}. The filtrate was concentrated under reduced pressure followed by purification by column chromatography over silica gel.

To a stirred solution of the alkynol product (1.0 equiv., 0.2 mmol) in DCE (1 mL) was added MeOH (1.0 equiv., 0.2 mmol) and the $\mathrm{PPh}_{3} \cdot \mathrm{AuNTf}_{2}$ catalyst (0.02 equiv., 0.004 mmol) under argon atmosphere at room temperature and the mixture reacted at room temperature for 5 h . After stirring for 5 h , the mixture was separated by the preTLC.

General procedure for the synthesis of substrate $1 \mathrm{~h}(\mathrm{GP} 3)^{[2]}$

At the argon atmosphere, the substrate cycloprapane 1,1-diesters (1.0 equiv., 1.6 mmol), acrolein acetal (3.0 equiv., 4.8 mmol), $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{AcO}^{-}$(3.0 equiv., 4.8 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv., 2.4 mmol), KCl (1.0 equiv., 1.6 mmol) were added to 2 mL DMF, then $\operatorname{Pd}(\mathrm{OAc})_{2}(0.05$ equiv., 0.08 mmol$)$ was added. The mixture was warmed to 90 ${ }^{\circ} \mathrm{C}$ for 4 h .

After cooled to the room temperature, water was added to quench the reaction. The mixture was extracted with ethyl ether ($10 \mathrm{~mL} \times 3$). The combined organic phase
was concentrated and 7 mL THF and $7 \mathrm{~mL} 2 \mathrm{~N} \mathrm{HCl}(\mathrm{aq})$ were added. The mixture reacted at room temperature for 12 h , then was concentrated under reduced pressure and next extracted with ethyl ether ($10 \mathrm{~mL} \times 3$), then dried over MgSO_{4}. The filtrate was concentrated under reduced pressure followed by purification by column chromatography over silica gel.
General procedure for the synthesis of substrate 1 f (GP4) ${ }^{[3]}$

At the argon atmosphere, the substrate cycloprapane 1,1-diesters (1.0 equiv., 0.5 mmol), methyl vinyl ketone (3.0 equiv., 1.5 mmol), $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{AcO}^{-}$(2.0 equiv., 1.0 mmol), NaHCO_{3} (2.5 equiv., 1.25 mmol) were added to 2 mL DMF, then $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.1 equiv., 0.05 mmol) was added. The mixture was warmed to $70{ }^{\circ} \mathrm{C}$ for 24 h . After cooled to the room temperature, water was added to quench the reaction. The mixture was extracted with ethyl ether $(10 \mathrm{~mL} \times 3)$ and the extract was washed with water (10 $\mathrm{mL} \times 2$) and brine $(10 \mathrm{~mL} \times 1)$, and then dried over MgSO_{4}. The filtrate was concentrated under reduced pressure followed by purification by column chromatography over silica gel.
(E)-dimethyl 2-(2-(3-oxobut-1-en-1-yl)benzyl)cyclopropane-1,1-dicarboxylate(1a)

The aldehyde $\mathbf{2 2}^{[4]}$ (260 mg , 1 equiv.) was reacted with Wittig reagent 23 (637 mg , 2 equiv.) according to GP1. Silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $5 / 1$) yielded $1 \mathbf{a}$ as a yellow oil ($0.81 \mathrm{mmol}, 255 \mathrm{mg}, 85 \%) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}$, 2 H), $6.65(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J=15.2,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}$, 1H), 1.48 (dd, $J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.35,170.40$, $168.66,140.39,139.39,133.31,130.58,129.74,129.05,127.31,126.90,52.90,52.82$,
34.43, 31.37, 28.54, 27.98, 21.50; IR (KBr): $v=3276,2954,1727,1671,1437,757$ cm^{-1}; HRMS (ESI) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 317.1384$; Found: 317.1388.

Dimethyl 2-(2-(3-oxohept-1-en-1-yl)benzyl)cyclopropane-1,1-dicarboxylate (1b)

32

The aldehyde 22 ($553 \mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) reacted with hexyne ($197 \mathrm{mg}, 2.4$ mmol, 1.2 equiv.) to give the intermediate 32 ($1.67 \mathrm{mmol}, 600 \mathrm{mg}, 83.7 \%$) as a yellow oil (Petroleum/ ethyl acetate $=10 / 1$ then $3 / 1$), 1b was prepared from 32 according to GP2. Silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $5 / 1$) as a yellow oil ($0.18 \mathrm{mmol}, 63 \mathrm{mg}, 88 \%$), $\mathrm{Z}: \mathrm{E}=1.6: 1 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=7.84(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 0.37 \mathrm{H}), 7.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.38 \mathrm{H}), 7.37-7.16(\mathrm{~m}$, $4 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 0.63 \mathrm{H}), 6.67(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 0.37 \mathrm{H}), 6.25(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, 0.6 H), 3.78-3.70 (m, 6H), 3.04-2.90 (m, 1H), 2.71-2.48 (m, 2H), 2.30-2.22 (m, $1.5 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1.4 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1.2 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1.8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.48,200.56$, $170.50,170.40,168.63,168.60,139.44,139.29,138.76,137.40,135.35,133.51$, 130.92, 130.40, 129.67, 129.52, 129.01, 128.79, 128.16, 127.21, 126.81, 126.54, $52.83,52.81,52.75,52.69,42.82,41.11,34.40,34.21,32.04,31.43,28.52,28.07$, 26.58, 26.18, 22.57, 22.28, 21.63, 21.49, 14.02, 13.85; IR (KBr): $v=3300,2986$, 1752, 1375, 1243, $1049 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 359.1853$; Found: 359.1860.

Dimethyl2-(2-(3-cyclohexyl-3-oxoprop-1-en-1-yl)benzyl)cyclopropane-1,1-dicarb oxylate (1c)

The aldehyde 22 ($7.0 \mathrm{mmol}, 1.93 \mathrm{~g}, 1.0$ equiv.) reacted with cyclohexyl alkyne (9.24 $\mathrm{mmol}, 1.3$ equiv., 1.0 g) to give the intermediate $34(5.76 \mathrm{mmol}, 2.21 \mathrm{~g}, 82.1 \%)$ as a colorless oil (Petroleum/ ethyl acetate $=10 / 1$ then $3 / 1$), 1c was prepared from 34 according to GP2. Silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $5 / 1$) as a yellow oil ($0.15 \mathrm{mmol}, 57 \mathrm{mg}, 79 \%$), $\mathrm{E}: \mathrm{Z}=2: 1 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.81(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 0.66 \mathrm{H}), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.66 \mathrm{H}), 7.31-7.09(\mathrm{~m}$, $4.3 \mathrm{H}), 6.98(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 0.36 \mathrm{H}), 6.68(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 0.66 \mathrm{H}), 6.23(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $0.33 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 6 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.57$ (m, 1H), 2.35-2.03 (m, 2H), 1.81 (dd, $J=32.1,12.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.10(\mathrm{~m}, 5 \mathrm{H})$, $1.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.03,170.46,168.60,139.54$, $139.28,133.68,130.35,129.68,127.16,126.80,126.64,52.86,52.79,49.81,34.39$, 31.53, 28.81, 28.78, 28.56, 26.04, 25.87, 21.55; IR (KBr): $v=2933,1734,1439,1244$, $550 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 385.2010; Found: 385.2016.
Dimethyl2-(2-(3-cyclopropyl-3-oxoprop-1-en-1-yl)benzyl)cyclopropane-1,1-dicar boxylate(1d)

The aldehyde 22 ($2 \mathrm{mmol}, 553 \mathrm{mg}$, 1 equiv.) reacted with cyclopropyl acetylene ($2.4 \mathrm{mmol}, 160 \mathrm{mg}$) to give the intermediate $36(1.26 \mathrm{mmol}, 430 \mathrm{mg}, 63 \%)$ as a
colorless oil (Petroleum/ ethyl acetate $=10 / 1$ then $3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.59(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.69$ $(\mathrm{m}, 6 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}$ 1 H), 1.38-1.22 (m, 1H), 0.85-0.77 (m, 2H), 0.76-0.68 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=170.97,169.17,169.09,139.12,139.04,137.73,129.58,129.51,128.98$, $127.46,127.43,127.27,91.19,75.40,75.38,62.73,62.66,53.15,53.08,34.73,34.70$, 30.82, 30.74, 28.86, 28.80, 22.17, 22.04, 8.71.

1d was prepared from 36 according to GP2. Silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $5 / 1$) as a yellow oil ($0.15 \mathrm{mmol}, 56 \mathrm{mg}, 82 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.91(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.82$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) 3.06(\mathrm{dd}, J=15.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (dd, $J=15.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.16$ $(\mathrm{m}, 2 \mathrm{H}), 1.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.91,170.32,168.51$, $139.41,138.88,133.49,130.27,129.57,128.23,127.10,126.71,52.74,52.66,34.30$, 31.34, 28.47, 21.40, 19.93, 11.50; IR (KBr): $v=3279,3183,1725,1596,1437,1389$, 1123, $1094 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 365.1359$; Found: 365.1364.

Dimethyl2-(2-(1-hydroxy-3-phenylprop-2-yn-1-yl)benzyl)cyclopropane-1,1-dicar boxylate (1e)

The aldehyde 22 ($4.0 \mathrm{mmol}, 1.1 \mathrm{~g}, 1.0$ equiv.) reacted with Wittig reagent 39 (5.0 mmol, $1.9 \mathrm{~g}, 1.3$ equiv.) to give the substrate $\mathbf{1 e}(3.33 \mathrm{mmol}, 1.26 \mathrm{~g}, 83 \%)$ as a brown oil according to the GP1. Silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.11(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~m}, 2 \mathrm{H})$, $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, 3 H), 3.72 (s, 3H), 3.08 (dd, $J=15.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (dd, $J=15.3,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23-2.13 (m, 1H), $1.61(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
$190.36,170.47,168.59,141.95,139.83,138.25,133.92,133.01,130.60,129.77$, $128.81,128.68,127.23,126.94,124.14,52.84,52.77,34.42,31.66,28.59,21.56$; IR $(\mathrm{KBr}): v=3298,2988,1735,1438,1243,1048,753 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 379.1540$; Found: 379.1541.
(E)-dimethyl2-(5-methoxy-2-(3-oxobut-1-en-1-yl)benzyl)cyclopropane-1,1-dicarb oxylate (1f)

The substrate $\mathbf{1 f}$ was prepared by $\mathbf{2 9}$ ($0.5 \mathrm{mmol}, 202 \mathrm{mg}, 1.0$ equiv.) according to GP4 and silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $5 / 1$) yielded $\mathbf{1 f}$ as a yellow oil ($0.28 \mathrm{mmol}, 105 \mathrm{mg}, 56 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H), 3.70 (s, 3H), 3.67 (s, 3H), 2.95 (dd, $J=15.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dd, $J=15.2$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{dd}$, $J=9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.42,170.34,168.65$, $161.56,141.53,139.95,128.45,126.69,125.61,115.00,112.97,55.48,52.90,52.84$, 34.39, 31.35, 28.47, 27.84, 21.37; IR (KBr): $v=3294,2970,1725,1433,1240,745$ cm^{-1}; HRMS (ESI) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 347.1489$; Found: 347.1495.
(E)-dimethyl2-methyl-2-(2-(3-oxobut-1-en-1-yl)benzyl)cyclopropane-1,1-dicarboxylate (1g)

The aldehyde $\mathbf{2 4}{ }^{[4]}$ ($0.09 \mathrm{mmol}, 27 \mathrm{mg}, 1.0$ equiv.) was reacted with Wittig reagent 23 ($0.18 \mathrm{mmol}, 59 \mathrm{mg}, 2.0$ equiv.) according to GP1. Silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $4 / 1)$ yielded $\mathbf{1 b}$ as a yellow oil $(0.06 \mathrm{mmol}, 20$ $\mathrm{mg}, 66 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H})$, 7.35-7.25 (m, 2H), 7.23-7.14 (m, 1H), $6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), \quad 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=5.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.54,169.58,168.88,141.33$, 138.82, 134.11, 130.32, 130.22, 129.01, 127.08, 127.00, 52.90, 52.75, 39.43, 35.46, 32.92, 27.77, 27.11, 20.37; IR (KBr): $v=3293,2986,1736,1435,1241,749 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 331.1540$; Found: 331.1538.
(E)-dimethyl2-(2-(3-oxoprop-1-en-1-yl)benzyl)cyclopropane-1,1-dicarb-oxylate (1h)

The substrate $\mathbf{1 h}$ was prepared by $27(1.6 \mathrm{mmol}, 600 \mathrm{mg}, 1.0$ equiv.) according to GP3, and silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $5 / 1$) yielded 1h as a yellow oil ($0.86 \mathrm{mmol}, 260 \mathrm{mg}, 54 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.69$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28$ - 7.21 (m, 2H), 6.61 (dd, $J=15.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, 3H), 3.67(s,3H), 3.01 (dd, $J=$ $15.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.43$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=193.81,170.33,168.63,149.55,139.43$, 132.69, 131.38, 130.46, 129.91, 127.46, 127.21, 52.95, 52.86, 34.43, 31.32, 28.41, 21.49; IR (KBr): $v=3299,3193,2995,1756,1679,1244,1049 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 303.1227$; Found: 303.1230.
(E)-diethyl 2-(2-(3-oxobut-1-en-1-yl)benzyl)cyclopropane-1,1-dicarboxylate (1i)

The aldehyde $\mathbf{2 5}{ }^{[4]}$ ($2 \mathrm{mmol}, 628 \mathrm{mg}, 1.0$ equiv.) was reacted with Wittig reagent 23 ($4 \mathrm{mmol}, 1.52 \mathrm{~g}, 2.0$ equiv.) according to GP1. Silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $3 / 1$) yielded $\mathbf{1 i}$ as a yellow oil ($1.88 \mathrm{mmol}, 650 \mathrm{mg}, 94 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.21$ (m, 3H), 6.64 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 4 \mathrm{H}), 3.04(\mathrm{dd}, J=15.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (dd, $J=15.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{dd}, J$ $=8.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad \delta=198.36,170.02$,
$168.25,140.44,139.48,133.30,130.53,129.64,129.04,127.21,126.82,61.71,61.69$, $34.70,31.33,27.87,27.84,21.10,14.23,14.17$; IR (KBr): $v=3297,2984,1728,1671$, 1370, 1250, 1210, 755, $565 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 345.1697; Found: 345.1698.
(E)-dimethyl 2-(2-(3-oxobut-1-en-1-yl)phenyl)cyclopropane-1,1-dicarboxylate(1j)

The substrate $\mathbf{1} \mathbf{j}$ was prepared by $\mathbf{3 7}{ }^{[4]}(3 \mathrm{mmol}, 787 \mathrm{mg}, 1.0$ equiv.) according to GP1 and silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $3 / 1$) yielded $\mathbf{1} \mathbf{j}$ as a yellow oil ($2.36 \mathrm{mmol}, 712 \mathrm{mg}, 79 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.98(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.81 (dd, $J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.20,169.96$, $167.00,141.12,135.24,134.19,130.18,129.37,129.20,128.32,126.21,53.20,52.39$, $36.81,30.45,26.39,18.89$; IR (KBr): $v=2954,1730,1670,1599,1437,1284,1132$, 978, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 303.1227; Found: 303.1229.
(E)-dimethyl2-(2-(3-oxo-3-phenylprop-1-en-1-yl)phenyl)cyclopropane-1,1-dicarb oxylate (1k)

1k was prepared by $\mathbf{3 7}$ ($3.0 \mathrm{mmol}, 787 \mathrm{mg}, 1.0$ equiv.) according to GP1 Silica gel chromatography (Petroleum/ ethyl acetate $=10 / 1$ then $5 / 1$) yielded $\mathbf{1 k}$ as a yellow oil ($2.41 \mathrm{mmol}, 881 \mathrm{mg}, 81 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.06(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.18$ $(\mathrm{m}, 4 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{dd}, J=8.0,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.34$,
$169.68,167.08,142.20,138.18,136.00,134.38,132.71,130.00,128.92,128.82$, $128.72,128.15,126.80,125.02,53.09,52.34,36.90,30.63,19.19$; IR (KBr): $v=2953$, 1732, 1664, 1598, 1438, 1331, 1281, 755, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 365.1384$; Found: 365.1387.
(E)-dimethyl2-(2-(3-oxobut-1-en-1-yl)phenethyl)cyclopropane-1,1-dicarboxylate (11)

11 was prepared by $\mathbf{4 0}{ }^{[4]}$ ($2.0 \mathrm{mmol}, 581 \mathrm{mg}, 1.0$ equiv.) according to GP1 and silica gel chromatography (Petroleum/ethyl acetate $=10 / 1$ then $5 / 1$) yielded $\mathbf{1 l}$ as a brown oil ($1.54 \mathrm{mmol}, 510 \mathrm{mg}, 77 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) 2.89(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H})$, $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.46,170.74,168.67$, $141.22,140.48,133.15,130.49,130.36,128.81,127.01,126.83,52.81,52.75,34.14$, 32.36, 30.83, 28.06, 27.96, 21.19; IR (KBr): $v=3297,1733,1670,1437,1245,1133$, 1048, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 331.1540$; Found: 331.1542.

Synthesis of bridged oxa-[n.2.1] skeletons

General procedure for the synthesis of 2

General Procedure A: The substrate $\mathbf{1}(0.04 \mathrm{mmol}, 1$ equiv.) was dissolved in the 2 mL solvent $\left(\mathrm{CDCl}_{3}\right.$ or DCE) in an NMR tube at room temperature and then catalyst (0.2 equiv., 0.008 mmol) was added. The solution was irradiated by UV (the most common one for detection of TLC in laboratory) and warmed to $50{ }^{\circ} \mathrm{C}$. After it finished then filtered on silica gel. The filtrate was concentrated under reduced pressure and the residue was purified by the pre-TLC or by flash chromatography using silica gel (200~300 or 300~400 mesh or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$) (petroleum / ethyl
acetate $=10 / 1 \sim 3 / 1)$ to afford product 2 .

General Procedure B : The substrate $\mathbf{1}(0.1 \mathrm{mmol}, 1$ equiv.) was dissolved in the solvent (5 mL) in a 25 mL quartz glass bottle at room temperature and then catalyst (0.2 equiv., 0.02 mmol) was added. The solution was irradiated by UV (Ultraviolet disinfection lamp) and warmed to $50{ }^{\circ} \mathrm{C}$. After it finished then filtered on silica gel. The filtrate was concentrated under reduced pressure and the residue was purified by the pre-TLC or by flash chromatography using silica gel (200~300 or 300~400 mesh or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$) (petroleum / ethyl acetate $=10 / 1$) to afford product 2 .

(Z)-dimethyl9-methyl-6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8(9H)-dicar boxylate (2a)

2a was prepared according to GPA yielded 2a as a white solid ($0.038 \mathrm{mmol}, 12$ $\mathrm{mg}, 92 \%$), according to GPB ($0.088 \mathrm{mmol}, 28 \mathrm{mg}, 88 \%$); Mp: 75-77 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.21-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.37(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 3 \mathrm{H}), 2.53$ (dd, $J=13.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.45$, $169.60,139.63,136.35,136.03,129.49,128.25,127.80,126.98,126.17,87.43,73.81$, 70.14, 52.76, 44.24, 42.40, 24.73; IR (KBr): $v=2952,1737,1435,1246,1087 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 317.1384$; Found: 317.1382.
(Z)-dimethyl9-butyl-6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8(9H)-dicarbo xylate (2b)

2b was prepared according to GPA as a yellow oil ($0.03 \mathrm{mmol}, 10.2 \mathrm{mg}, 73 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.13-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.47(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=13.0$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{dd}, J=13.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dt}, J=19.2$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.17(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{dq}, J=13.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.71(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=170.57,169.69,140.22,136.29,133.41$, $132.40,128.19,127.61,126.69,126.07,90.35,73.46,71.00,52.74,52.72,44.61$, $42.48,36.28,26.59,23.07,14.09$; IR (KBr): $v=3445,1737,1434,1246,1090 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 359.1853$; Found: 359.1855.
(Z)-dimethyl9-cyclohexyl-6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8(9H)-di carboxylate (2c)

$\mathbf{2 c}$ was prepared according to GPA and yielded $\mathbf{2 c}$ as a yellow oil $(0.023 \mathrm{mmol}$, $9 \mathrm{mg}, 55 \%) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.20-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.55(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.06-$ $2.88(\mathrm{~m}, 3 \mathrm{H}), 2.45(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.80,168.87$, $139.43,136.09,126.92,126.68,125.34,124.81,91.62,71.70,69.36,51.41,46.68$, $43.29,43.16,27.79,27.32,26.01,25.48,25.31$; $\mathrm{IR}(\mathrm{KBr}): v=3524,3437,1629,553$, $449 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd. for: $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 385.2010$; Found: 385.2011.
(Z)-dimethyl9-cyclopropyl-6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8(9H)-d icarboxylate (2d)

2d was prepared according to GPB and silica gel chromatography (petroleum/ ethyl acetate $=10 / 1)$ yielded $\mathbf{2 d}$ as a yellow oil $(0.09 \mathrm{mmol}, 30 \mathrm{mg}, 76 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.20-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.43(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~m}, 4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.41(\mathrm{~m}, 1 \mathrm{H}), 0.53-0.42(\mathrm{~m}, 1 \mathrm{H}), 0.33-0.18(\mathrm{~m}, 2 \mathrm{H}), 0.09(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.56,168.30,138.67,134.87,133.58,128.50,126.71$, $126.41,125.18,124.56,86.19,72.11,69.03,51.32,51.23,43.06,40.84,16.32$; IR (KBr): $v=3011,2952,1736,1433,1264,785 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 365.1359$; Found: 365.1363.
(Z)-dimethyl

9-phenyl-6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8(9H)-dicarboxylate (2e)

$\mathbf{2 e}$ was prepared by $\mathbf{1 e}(0.05 \mathrm{mmol}, 0.02 \mathrm{M})$ according to GPA and separated by neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ flash column chromatography as a yellow oil $(0.04 \mathrm{mmol}, 14 \mathrm{mg}$, 74%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H})$, $7.13-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=13.1,10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.01(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, J=13.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=13.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}$, $J=13.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.35,169.92,142.61$, $139.47,136.07,135.61,128.43,128.19,127.83,127.60,127.06,127.00,126.22$, 125.63, 90.93, 76.10, 72.91, 52.99, 52.30, 43.01, 42.93; IR (KBr): $v=2957,1630$, 700, $570 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 379.1540$; Found: 379.1544.

(Z)-dimethyl3-methoxy-9-methyl-6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8 (9H)-dicarboxylate (2f)

2f was prepared according to GPA and yielded $2 \mathbf{2 f}(0.035 \mathrm{mmol}, 13 \mathrm{mg}, 83 \%)$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3): \delta=6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.57(\mathrm{~m}$, $2 \mathrm{H}), 6.25(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.61(\mathrm{~m}$, $9 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.51,169.65,158.51,137.87,135.13,132.10,129.09,129.02,114.17,111.28$, 87.53, 73.83, 70.09, 55.33, 52.75, 44.46, 42.43, 24.89; IR (KBr): $v=2954,1736$, 1500, 1249, $767 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 347.1489$; Found: 347.1495.

(Z)-dimethyl6,9-dimethyl-6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8(9H)-di carboxylate (2g)

$\mathbf{2 g}$ was prepared by $\mathbf{1 g}(0.08 \mathrm{mmol}, 0.02 \mathrm{M})$ according to GPA and yielded $\mathbf{2 g}$ as a yellow oil ($0.07 \mathrm{mmol}, 24 \mathrm{mg}, 89 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.12(\mathrm{~m}$,
$3 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=$ 13.6, $12.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $170.99,169.94,139.38,136.34,136.06,128.91,128.28,127.68,126.71,126.36,88.24$, 80.19, 70.50, 52.78, 52.67, 48.63, 48.02, 26.41,26.27; IR (KBr): $v=2950,1733,1429$, 1236, 1082, $752 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 331.1540; Found: 331.1543.
(Z)-dimethyl 6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8(9H)-dicarboxylate (2h)

2h was prepared according to GPA and yielded $\mathbf{2 h}$ as a yellow oil ($0.03 \mathrm{mmol}, 9$ $\mathrm{mg}, 75 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.16-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.24$ (dd, $J=12.5$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=12.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.22(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=$ 13.5, $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (dd, $J=13.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=171.25,169.93,138.48,136.42,129.94,129.11,128.95,128.71,127.42,126.42$, 82.63, 79.06, 67.66, 53.37, 53.13, 42.25, 40.30; IR (KBr): $v=3443,2829,1737$, $1627,1249 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 303.1227; Found: 303.1230 .
(Z)-diethyl9-methyl-6,7-dihydro-5H-6,9-epoxybenzo[9]annulene-8,8(9H)-dicarbo xylate (2i)

$\mathbf{2 i}$ was prepared according to GPA and yielded $\mathbf{2 i}$ as a yellow oil $(0.03 \mathrm{mmol}$, $11.4 \mathrm{mg}, 87 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.36(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 4.22-4.12 (m, 2H), 3.04-2.90 (m, 3H), $2.51(\mathrm{dd}, J=13.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=170.01,169.18,139.74,136.45,136.33,129.28,128.28,127.83,126.96,126.17$,
87.31, 73.75, 70.10, 61.80, 61.65, 44.33, 42.57, 29.85, 24.72, 14.18, 14.15; IR (KBr): $v=3524,3479,3437,1629,554 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 345.1697; Found: 345.1700.
dimethyl
8-methyl-5,6-dihydro-5,8-epoxybenzo[8]annulene-7,7(8H)-dicarboxylate (2j)

$\mathbf{2} \mathbf{j}$ was prepared by $\mathbf{1} \mathbf{j}(0.02 \mathrm{mmol}, 0.02 \mathrm{M})$ according to GPA and yielded $\mathbf{2} \mathbf{j}$ as a yellow oil ($0.016 \mathrm{mmol}, 5 \mathrm{mg}, 80 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24-7.07$ $(\mathrm{m}, 4 \mathrm{H}), 6.37(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{dd}, J=13.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.66,168.52,143.33,136.56$, 132.83, 132.81, 129.89, 127.91, 127.88, 126.54, 86.86, 80.32, 74.79, 52.92, 52.65, 40.28, 21.40; IR (KBr): $v=3272,2954,1736,1545,1451,1261,1070,766 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 303.1227; Found: 303.1226.
dimethyl8-phenyl-5,6-dihydro-5,8-epoxybenzo[8]annulene-7,7(8H)-dicarboxylate (2k)

$\mathbf{2 k}$ was prepared according to GPA and yielded $\mathbf{2 k}$ as a yellow oil ($0.01 \mathrm{mmol}, 3$ $\mathrm{mg}, 20 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.14(\mathrm{~m}$, $7 \mathrm{H}), 6.75$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=8.6,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{dd}, \mathrm{J}=13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.84,168.60,143.27,138.15,136.28,133.04,129.67,128.04$, 127.94, 127.85, 126.60, 126.49, 89.27, 80.07, 78.26, 52.61, 52.40, 41.48; IR (KBr): v $=2954,2923,2853,1735,1468,745 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 365.1384; Found: 365.1390.
(Z)-dimethyl7-methyl-9,10,11,12-tetrahydro-7,10-epoxybenzo[10]annulene-8,8(7 H)-dicarboxylate (2l)

21 was prepared according to GPA and yielded $\mathbf{2 1}$ as a yellow oil ($0.015 \mathrm{mmol}, 5$ $\mathrm{mg}, 34 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=13.0,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{dd}, J=14.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.89,169.38,142.07,137.65,135.72,131.19,128.54,126.93$, 126.57, 125.33, 86.80, 86.11, 52.82, 52.65, 37.24, 33.87, 27.50, 24.09; IR (KBr): $v=$ 3271, 2952, 1733, 1261, 1073, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 331.1540; Found: 331.1535.

Dimethyl 1-(2-oxopropyl)naphthalene-2,2(1H)-dicarboxylate (3j)

$\mathbf{3} \mathbf{j}$ was prepared by $\mathbf{1} \mathbf{j}(0.02 \mathrm{mmol}, 0.02 \mathrm{M})$ according to $\mathbf{G P A}$ and yielded $\mathbf{3} \mathbf{j}$ as a white solid ($0.0196 \mathrm{mmol}, 5.9 \mathrm{mg}, 98 \%$); Mp: $100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.17(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{dd}, J=5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (dd, $J=9.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.69$ $-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.35,170.79,168.93$, $136.79,130.27,129.40,128.82,128.31,127.48,127.12,123.94,58.69,53.22,53.01$, 44.95, 38.24, 30.94; $\mathrm{IR}(\mathrm{KBr}): v=3271,3056,2955,1734,1434,1268,1241,744$ cm^{-1}; HRMS (ESI) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 303.1227$; Found: 303.1233.

Dimethyl 1-(2-oxo-2-phenylethyl)naphthalene-2,2(1H)-dicarboxylate (3k)

$\mathbf{3 k}$ was prepared by $\mathbf{1 k}(0.02 \mathrm{mmol}, 0.02 \mathrm{M})$ according to GPA and yielded $\mathbf{3 k}$ as a yellow oil ($0.0184 \mathrm{mmol}, 6.8 \mathrm{mg}, 92 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.01(\mathrm{~m}, 4 \mathrm{H})$, $6.64(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=7.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (s, 3H), 3.62 (s, 3H), 3.22 (dd, $J=16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=16.6,4.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=197.79,170.69,168.98,137.07,136.76,133.16$, $130.31,129.55,128.70,128.62,128.60,128.17,127.45,127.08,123.98,58.99,53.25$, 53.05, 40.18, 38.54; IR (KBr): $v=3127,2359,1733,1540,950 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 365.1384$; Found: 365.1383 .

The procedure of the one-pot tandem reaction

To a stirred solution of the alkynol product ($0.1 \mathrm{mmol}, 1.0$ equiv.) in DCE (5 mL) in a 25 mL quartz glass bottle was added MeOH (1.0 equiv., 0.1 mmol) and the $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}$ catalyst (0.02 equiv., 0.002 mmol) at room temperature and the mixture was stirred at room temperature for 5 h . After the reaction finished totally, $\mathrm{Sc}(\mathrm{OTf})_{3}$ ($0.02 \mathrm{mmol}, 0.2$ equiv.) was then added and under the irradiation of an UV disinfection lamp. The reaction was further stirred for 30 min . at $50^{\circ} \mathrm{C}$ in a water bath for. The product was separated with the pre-TLC.

2b (52%), 2c (50%), 2d (50\%), 2e (48\%)

Application

In the room temperature, added $\mathbf{2 a}(0.1 \mathrm{mmol}, 32 \mathrm{mg}, 1$ equiv), $\mathrm{Pd} / \mathrm{C}(3.2 \mathrm{mg}, 10$ $\mathrm{w} \%), \mathrm{MeOH}(10 \mathrm{~mL})$ to a 25 mL round flask and reacted in the atmosphere of H_{2} at the 5 MPa pressure at $55^{\circ} \mathrm{C}$ for 5 h . After it finished totally, filtered the Pd / C, and the mixture was purified by pre-TLC and yielded the $\mathbf{4}$ as a yellow oil ($0.84 \mathrm{mmol}, 27 \mathrm{mg}$, 85%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.89- 4.78 (m, 1H), 3.77 (s, 3H), 3.67 (s, 3H), 3.45 (dd, $J=15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, $J=13.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=15.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=13.8,9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40$ (dd, $J=13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (dd, $J=15.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (dd, $J=$
13.6, $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $170.56,169.43,143.69,135.81,132.05,130.23,127.22,126.16,83.02,75.23,69.49$, 52.53, 52.30, 43.38, 41.64, 35.13, 29.08, 25.58; IR (KBr): $v=3272,2952,1737,1258$, 899, $760 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 341.1359$; Found: 341.1362.

Added the 2a ($0.1 \mathrm{mmol}, 32 \mathrm{mg}, 1$ equiv), $\mathrm{DCM}(5 \mathrm{~mL})$ to a 25 mL round flask and then dropped the $\mathrm{Br}_{2}(0.12 \mathrm{mmol}, 1.2$ equiv.) to the mixture. After it finished, added the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ to the mixture until the color faded. The organic layer was washed by the brine $(10 \mathrm{~mL} \times 3)$ and water $(10 \mathrm{~mL} \times 3)$ and dried by the MgSO_{4}. Then the mixture was concentrated under reduced pressure. Then the residue was purified by flash chromatography and yielded the $\mathbf{5}$ as a white solid ($0.78 \mathrm{mmol}, 25 \mathrm{mg}, 66 \%$); Mp: 181-183 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 3.12-2.82 (m, 3H), $2.53(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=169.51,167.38,135.44,133.59,132.93,132.20,129.38,125.74,85.64$, 82.76, 74.08, 64.61, 53.54, 53.42, 42.47, 39.92, 25.30; IR (KBr): $v=3271,1754,1732$, 1543, 1260, $745 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 403.0152$; Found: 403.0155.

References

[1] M. N. Pennell, P. G. Turner, T. D. Sheppard, Chem. Eur. J. 2012, 18, 4748.
[2] G. Battistuzzi, S. Cacchi, G. Fabrizi, Org. Lett. 2003, 5, 777.
[3] T. Jeffery, J. Chem. Soc. Chem. Commun. 1984, 1287.
[4] S. Xing, W. Pan, C. Liu, J. Ren, Z. Wang, Angew. Chem. Int. Ed., 2010, 49, 3215.

$1 f$

ii

${ }_{200}$	190	180	$\stackrel{1}{17}$	180	150	140	130	${ }_{1} 12$	110	100	90	18	10	1	5	10	1	10	1	0	-10
			1.0				130		1.0						50	40	30	20	10	0	-10

2c

2c

X-ray spectra of 5

X-ray spectra of 2a

