Supporting information

Csm6-DNAzyme tandem assay for one-pot and sensitive analysis of lead pollution and bioaccumulation in mice

Hao Yang^a, Feng Li^b, Ting Xue^a, Mohammad Rizwan Khan^d, Xuhan Xia^a, Rosa Busquets^e, Hong Gao^{a,*}, Yi Dong^a, Wenhu Zhou^c, Ruijie Deng^{a,*}

- ^a College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- ^b Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
- ^c Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- ^d Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- ^e School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, KT1 2EE, Kingston Upon Thames, United Kingdom

*e-mail:

Hong Gao, gao523@hotmail.com

Ruijie Deng, drj17@scu.edu.cn

Table of content

Table S1. Oligonucleotide sequences	S3
Table S2. Sequences of plasmids containing DNA sequences encoding for Thermus	thermophilus
Csm6 (TtCsm6) and Enterococcus italicus (EiCsm6)	S4
Table S3. Detection of Pb ²⁺ spiked in the fresh egg and tap water samples	S5
Table S4. Comparisons of detection performance of different fluorescent assays	S6
Figure S1. Plasmid vector for expression of TtCsm6	S7
Figure S2. Plasmid vector for expression of EiCsm6	S8
Figure S3. SDS-PAGE analysis of purified Csm6 proteins	S9
Figure S4. Optimization of the lengths of two arms of DNAzyme strand	S10
Figure S5. Optimization of the concentration of substrate and TtCsm6	S11
Figure S6. Optimization of the amount of DNAzyme strand and buffer pH	S12
Figure S7. Optimization of the reaction temperature and time of DNAzyme cutting	S13
Figure S8. Optimization of the reaction temperature and time of CRISPR reporting	S14
Figure S9. Optimization of the one-step cDNAzyme assay for Pb ²⁺ detection	S15

Table S1. Oligonucleotide sequences

Number	Oligonucleotide	Sequences (5' to 3')
1	Sub (Sub-F2)	rArArAGGAAGTGGTAACGTCAATTG
2	Sub-E	rArArArArAGGAAGTGGTAACGTCAATTG
3	Sub-F0	rArArAGGAAGTGGTAACGTCAATTG
4	Sub-F1	rArArAGGAAGTGGTAACGTCAATTG
5	Sub-F3	rArArAGGAAGTGGTAACGTCAATTG
6	Sub-H2	rArArAGGAAGTGGTAACGTCAATTG
7	Sub-OMe2	rArArAGGAAGTGGTAACGTCAATTG
8	Dz-C 9-4t	GTTACCACT GAAGTAGCGCCGCCG TTTT
9	Dz-C 9-6t	GTTACCACT GAAGTAGCGCCGCCG TTTTTT
10	Dz-C 9-8t	GTTACCACT GAAGTAGCGCCGCCG TTTTTTTT
11	Dz-C 9-10t	GTTACCACT GAAGTAGCGCCGCCG TTTTTTTTT
12	Dz-C 9-12t	GTTACCACT GAAGTAGCGCCGCCG TTTTTTTTTTT
13	Dz-C 9-14t	GTTACCACT GAAGTAGCGCCGCCG TTTTTTTTTTTTT
14	Dz-C 8-10t	TTACCACT GAAGTAGCGCCGCCG TTTTTTTTT
15	Dz-C 10-10t	CGTTACCACT GAAGTAGCGCCGCCG TTTTTTTTT
16	Dz-C 11-10t	ACGTTACCACT GAAGTAGCGCCGCCG TTTTTTTTT
17	Dz-C 12-10t	GACGTTACCACT GAAGTAGCGCCGCCG TTTTTTTTT
18	Dz-C 13-10t	TGACGTTACCACT GAAGTAGCGCCGCCG TTTTTTTTT
19	Sub-O	ACTCAC /iBHQ1dT/ ATrAGGAAG /i6FAMdT/ GATGGACGTG
20	Dz-O	GTCCATCACT GAAGTAGCGCCGCCG TATAG
21	C5 reporter	6FAM-rCrCrCrC-BHQ1

^{*} The bold, red-marked letters represent the ribonucleotide at this position, the blue marked letters represent the ribonucleotides with 2'-F modification, the deep red marked letters represent the ribonucleotides with 2'-H, the green marked letters represent the ribonucleotides with 2'-OMe, and all other sequences are deoxyribonucleotides.

Table S2. Sequences of plasmids containing DNA sequences encoding for *Thermus thermophilus* Csm6 (TtCsm6) and *Enterococcus italicus* (EiCsm6)

Proteins

Sequences atggaagatctggatgcactgtgggaacgttaccgtgaagcggttcgtgcaggcggtaacccgcaggcgct

gtatcaggaaatggtttggccggcgctgctggcgctgtggcgtgaaaaaccgcgtgtttacccgttcccgcag gccttcgctgtctctgttcacaccctgggtaccagcccggaagcgaccgcgtggccatcctgggcgcgggc gctgaacgtgtttacgtgctgcacaccccggaatccgcgcgcttcctgccgcgcctgcgccaggacaccggt a a agac ct g tacccggtggaa at ct g at g taga ag c g at ttatcgcgaa g ttaaac g tc t g ct g g a ag ct g taga g taga g ct g taga gaaaaacacccggaagttccggtggcactggatctgaccagcgggactaaagctatgtccgctggcctggcg gcagccggcttcttcttccagcgtttttatccgaaagttcgtgttgtttacgtggataacgaggactacgatccgga actgcgccgtccgcgtgctggtaccgaaaaactgcgcatcctgccgaacccgcacgaagcgctggcggaa gtagatgcgctgttcgcaaaagaactctatggcaaaggtgaattcggccaggccgcagcgtacttccgcggt atggttggccgcaccggtaaccaggcgtacgcactgtatgcgctgctggcagaaatgtaccgtgcatggcgt gcactggactttggtgaagcctgaaagcgggcgtaaacttctgggccagctgagccagaacgtgtggctg aaccacccgctgaacgcccgtgaagcgctggaagcgcaggttgctctgctggaagcggtagatcgttt cctgaaagcccgcgacttcgctctgaaagaaggtgtttacggcctggcgcgtacgctgctgcacctggcaca ggaagctaaagaagaagcggcggtgctggccgcactgtatgcataccgcgctctggaactgctgctgcagg aacgtctggcgctgctgggccgtcgtgctgaagctccgggtctgagcccggaagaagccgaagccctgcgt aaagetetggcggaactgetgggcgteetgecggaagaagtgcgcetgccggcgaaactgggtetgetgga cctgctggcattcctgcgcctgaaaggcgacgaagctctgggccgcctgagcctggatgaactgcgcggtctt gcaggcgctgaaaggtcgtaactccgcgctgctggtgcacggctttgacgtgccgagcccgaaagcagt agaaggcatcgcacgcctggcgcagggcctgctgcaggacctggaagcgcgcaccgcgctgggtccgct gtctccggaaccggtgccgctgggtttctaa

TtCsm6

atgaaaatcctgttcagcccgatcggtaacaccgatccgtggcgcaacgatcgtgacggcgcgatgctgca catcgtgcgtcactaccagccggaccgtgttgttctgtttttcaccgaaagcatctggcagggtaaccagcactt ctccggccagcagcgttcgattgggttaaaattatccagagcatcaacgaaaactgccagatcgaaatcaa atgcgacaccatcgaagttgaaaacgacttcgatgcgtacaaagacctgttccaccagtacctggttgaaga aaaacgtaaatacccgaacgcggaaatctttctgaacgtgacctccggtaccccgcagatggaaaccaccc tgtgcctggaatacgttacctacccggacaaaatgcgctgcatccaggtgagcaccccgctgaaaacctcta acgcgaaaactaaatatgcgcaggcggattgccaggaagttgatctggaaatcgttaacgaagaagaatct cagcagccgagccgttgccataaaatcgcgatcctgtctttccgtgaagctatcgtgcgtaaccagatcaaat ccctgctggataactacgattacgaagcggccctgcagctggttgcgagccagaaatccttccgtaacggca aagaaatccgtaaaaaactgaaagaactgatcgatgatatcaaaatgcaccgcgtgttcagctacctgatca aacagtatccgcgcaacgaaaaactgcagaaagcgctgctgcacaccatcctgctggaaatgcgccacca gcgcggtgacatcgcggaaaccctgatccgtgtgaaaagcatcgcggaatacatcgttgaacagtacatcc agaaaaactatccgtacctgatcatctacaaagaagataaaccgtacttcaacgtgagctacagccaggaa ctgaccgaatcttacctggcgctgatggactctcgtaacaagaaaaccaacaaaaagatgaccgttgatagc ctggaccgtattctgggtttcccggcttaccgtgacttcctgcagctgctggaagcgagcaacgaaatgacca acgaa atgaa caa agtta acgaa at caa caa cct gcgtaa caa agtt gcgcacaa cct ggact ccct gaacctggatcgtgataaaaacggtcgtaaaatcaccaacgcggttaccgcggttcgtaccatgctgctggcggttt tcccggaagtgcaggaaaacgatttccactacctgaaacagtttaaccagtctatcaaagaactgctgtaa

EiCsm6

Table S3. Detection of Pb²⁺ spiked in the fresh egg and tap water samples

Samples	Added (nM)	Found (nM)	Recovery (%)	RSD (%) n=3	
	10	9.01	90.09	3.12	
Fresh egg	30	27.13	90.43	1.51	
	50	52.66	105.32	1.71	
	10	9.34	93.42	2.35	
Tap water	30	27.09	90.29	2.71	
	50	56.09	112.17	3.14	

Table S4. Comparisons of detection performance of different fluorescent assays for Pb²⁺ sensing

Strategy	Recognition O	One sten	One-tube	Separation	Elaborate	Linear	LOD	Application	Ref.	
Strategy	Recognition	One-step		required	probe design	range		Application		
Csm6-DNAzyme tandem	DNAzyme	Yes	Yes	No	No	0.1-100	70 pM	Water, eggs	This work	
assay		res	res			nM		and mice	THIS WOLK	
Magnetic separation-based	DNAzyme	No	No	Yes	Yes	0.01-10 53 pN nM	52 pM	3 pM Water	ACS Sens., 2020, 5,	
Cas12a-DNAzyme		NO	NO	165	165		33 pW		970-977	
Cas12a/Cas14a-DNAzyme	DNA	No	No	Yes	Yes	0.24-48	480 pM	Water	Anal. Chim. Acta, 2022,	
	DNAzyme	INO	NO			nM			1192, 339356	
Cas12a-G-quadruplex assay	G-quadruplex No	No	Yes	No	No	0.1 nM- 5	2.6 nM	Tea Beverage	Food Chem., 2022,	
	G-quaurupiex	NO				μΜ		and milk	378, 131802	
Cell-free paper-based biosensor	Allosteric		Yes	No	No	1-250 nM	0.1 nM	Water	J. Hazard. Mater.,	
	transcription								2022, 438, 129499	
	factor								2022, 436, 129499	
Tetrahedral DNA							0.9125	Tobacco leaf	J. Clean. Prod., 2022,	
Nanostructure-based	DNAzyme Yes	Yes	Yes	No	Yes	0-500 nM	nM		, ,	
DNAzyme					nM extracts	362, 132544				
Label-free sequential	DNAzyme			V.	No	Yes	0.1-10	0.22	Water and	ACS Sens., 2018, 3,
DNAzyme		No	Yes	INU	165	0.1-10	0.22	eggs	2660-2666	

Figure S1. Plasmid vector for expression of TtCsm6.

Figure S2. Plasmid vector for expression of EiCsm6.

Figure S3. SDS-PAGE analysis of purified Csm6 proteins.

Figure S4. Optimization of the lengths of two arms of DNAzyme strand. Fluorescence signal and signal-to-background ratio of the cDNAzyme assay response to Pb²⁺ using **Sub** probes that hybridized with **Dz** with different arm lengths (3'-part) (A), different arm lengths (5'-part) (B). The excitation wavelength was 480 nm, with the corresponding emission wavelength of 510-600 nm. The concentrations of Pb²⁺, **Sub** and **Dz** were 150 nM, 400 nM and 400, respectively.

Figure S5. Optimization of the concentration of substrate and TtCsm6. Fluorescence signal and signal-to-background ratio of the cDNAzyme assay response to Pb²⁺ using different concentrations of **Sub** (A), using different concentration of TtCsm6 (B). The excitation wavelength was 480 nm, with the corresponding emission wavelength of 510-600 nm. The concentrations of Pb²⁺, **Sub** and **Dz** were 150 nM, 400 nM and 400, respectively.

Figure S6. Optimization of the amount of DNAzyme strand and buffer pH. Fluorescence signal and signal-to-background ratio of the cDNAzyme assay response to Pb²⁺ using different ratios of **Sub** to **Dz** (A), using different buffer pH (B). The excitation wavelength was 480 nm, with the corresponding emission wavelength of 510-600 nm. The concentrations of Pb²⁺, **Sub** and **Dz** were 150 nM, 400 nM and 400, respectively.

Figure S7. Optimization of the reaction temperature and time of DNAzyme cutting. Fluorescence signal and signal-to-background ratio of the cDNAzyme assay response to Pb²⁺ using different reaction temperature (A) and time (B) of DNAzyme cutting. The excitation wavelength was 480 nm, with the corresponding emission wavelength of 510-600 nm. The concentrations of Pb²⁺, Sub and Dz were 150 nM, 400 nM and 400, respectively.

Figure S8. Optimization of the reaction temperature and time of CRISPR reporting. Fluorescence signal and signal-to-background ratio of the cDNAzyme assay response to Pb²⁺ using different reaction temperature (A) and time (B) of CRISPR reporting. The excitation wavelength was 480 nm, with the corresponding emission wavelength of 510-600 nm. The concentrations of Pb²⁺, **Sub** and **Dz** were 150 nM, 400 nM and 400, respectively.

Figure S9. Optimization of the one-step cDNAzyme assay for Pb²⁺ detection. Fluorescence signal and signal-to-background ratio of the cDNAzyme assay response to Pb²⁺ using different reaction temperature (A) and reaction time (B). The excitation wavelength was 480 nm, with the corresponding emission wavelength of 510-600 nm. The concentrations of Pb²⁺, **Sub** and **Dz** were 150 nM, 400 nM and 400, respectively. The reaction time was 1 h.