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Experimental Procedures

Two-stage architecture engineering of the single-atom Fe catalyst

Synthesis of Fex-CN-TA0.5:

The construction of the polymeric carbon nitride framework was based on the reported method 

of polymerization of the super-molecular assembly of melamine and cyanuric acid.1 To 

synthesize the polymeric carbon nitride supported single-atom Fe catalysts, FeCl₃·6H₂O (the 

amount is denoted by x, and the values are 0, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0 mmol), tannic acid 

(TA, 0.5 g), cyanuric acid (CA, 5 g), and melamine (MA, 5 g) were dispersed in 400 mL of 

water, and the mixed under magnetic stirring at room temperature overnight; and the precursor 

was dried in a vacuum oven at 45 oC; the thermal polymerization reaction was conducted in a 

tube furnace with nitrogen flow at 600 ℃ for 2 h. The as-prepared samples were washed in 0.5 

M H2SO4 solution for 12 h under room temperature, followed by washing with water until the 

filtrate being neutral in pH. The polymeric carbon nitride supported single-atom Fe catalysts 

denoted by Fex-CN-TA0.5 were then collected and dried in a vacuum oven.

Synthesis of Fe1.0-CN-TAy:

The single-atom Fe catalysts were synthesized by varying the amount of TA in the precursor 

(the amount of TA was denoted by y in gram) via the otherwise same method to the synthesis 

of Fe1.0-CN-TA0.5. 

Materials characterizations

The morphology of the catalyst sample was characterized on a JEOL 2100 transmission electron 

microscope. X-ray diffraction (XRD) patterns of the catalysts were obtained on a Rigaku 

D/MAX 2500 diffractometer with Cu radiation (Cu Kα = 0.15406 nm). X-ray photoelectron 

spectroscopy (XPS) analysis was conducted on an ESCA laboratory 220i-XL spectrometer; all 

the binding energy were calibrated to C 1s peak at 284.8 eV. The concentration of Fe was 

quantified by inductively coupled plasma - optical emission spectrometer (ICP-OES) 

(PerkinElmer, AVIO 200). 

Evaluation of the catalytic performance
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In a typical experiment of catalytic PMS activation for the pollutant degradation, 8 mg catalyst 

was dispersed in 50 mL BPA solution by ultrasonication for 10 min, followed by mixing by 

magnetic stirrer in dark for 15 min to reach the adsorption-desorption equilibrium. It has been 

experimentally confirmed that 15 min was more than enough for reaching the equilibrium. The 

suspension was sampled for initial BPA concentration analysis. The catalytic reaction was 

initiated by dropping the PMS stock solution (1 M), and the initial PMS concentration was 1 

mM, unless otherwise stated. The suspension was sample at specific intervals, the catalyst was 

removed by syringe filter, and the filtrated was mixed with methanol for pollutants 

concentration analysis with HPLC. If not specified, the initial pH of the solution was around 

6.5. HPLC analysis were performed on Shimazu SIL-20A HPLC with Shim-pack GIST C18 

column (4.6×250 mm, 5 μm). Mobile phase and detection wavelength setting for the pollutants: 

bis phenol A (BPA), methanol/water (70/30) and λ = 225 nm; sulfamethoxazole, 

methanol/water (55/45) and λ = 266 nm; 4-chloro-phenol, phosphate acid solution 

(0.08%)/acetonitrile (50/50) and λ = 221 nm; methyl phenyl sulfoxide (MPSO), phosphate acid 

solution (0.08%)/acetonitrile (70/30) and λ = 215 nm.

Electron spin resonance (ESR) experiments

For detecting the free radicals in the bulk solution, 5,5-Dimethyl-2-pyrrolidone-N-oxyl 

(DMPO) was employed as the spin-trapping agent. In a typical analysis, 0.22 mL DMPO was 

added into 11 mL PMS solution with concentration of 1.0 mM in a glass vial with volume of 

15 mL under magnetic stirring. One millilitre solution was then sampled and measured by ESR 

as the blank experiment. 1.5 mg catalyst was then added in the glass vial to initiate the reaction. 

After 20 s of reaction time, the suspension was sampled, filtered, and sealed in a capillary tube 

for ESR data collection. For detecting the singlet oxygen (1O2) in the reaction system, 2,2,6,6-

tetramethylpiperidine (TEMP) was employed as the spin-trapping agent. In a typical 

experiment, 11 mL solution with 1 mM PMS, 10 mM TEMP, and 20 ppm BPA was 

magnetically stirred in a glass via with capacity of 15 mL. 7.5 mg catalyst was added in the 

glass vial to start the reaction. At specified interval, 1 mL suspension was sampled, filtered, and 

sealed in a capillary tube for ESR data collection.

Theoretical simulations

All the first-principles spin-polarized calculations were performed by using the Vienna ab initio 

Simulation Program (VASP).2-3 The generalized gradient approximation (GGA) in the Perdew-
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Burke-Ernzerhof (PBE) form and a cutoff energy of 500 eV for planewave basis set were 

adopted.4 A 5 × 5 × 1 Monkhorst-Pack k grid was used for sampling the Brillouin zones at 

structure calculation.5 The ion-electron interactions were described by the projector augmented 

wave (PAW) method.6 The convergence criteria of structure optimization were choose as the 

maximum force on each atom less than 0.02 eV/Ǻ with an energy change less than 1 × 10-5 eV. 

To calculate the kinetic energy barrier of chemical reactions, the climbing image nudged elastic 

band (CI-NEB) method was used to search for the transition states.7



6

-900 0 40 80 120
0.0

0.2

0.4

0.6

0.8

1.0
C

/C
0

Reaction time (s)

BPA Concentration:
 0.1 mM
 0.3 mM
 0.4 mM

Figure S1. Degradation of BPA at a series of concentrations on Fe1.0-CN-TA2.0.

Reaction conditions: [catalyst] = 0.16 g L−1; [PMS] = 1.0 mM; initial pH = 6.5.

Figure S2. Pseudo first-order reaction kinetics fitting of the reactions. Degradation of BPA at a series of 

concentrations on Fe1.0-CN-TA2.0.
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Figure S3. Molecular structure of the selected pollutants.
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Figure S4. The impact of the mineral ions and humic acid on BPA degradation performance on Fe1.0-
CN-TA2.0.

Reaction conditions: [catalyst] = 0.16 g L−1, [BPA] = 0.3 mM, [anion] = 5 mM, [humic acid] = 5 mg L−1, 

[PMS] = 1.0 mM.
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Figure S5. The impact of the initial pH on BPA degradation performance on Fe1.0-CN-TA2.0.

Reaction conditions: [catalyst] = 0.16 g L−1, [BPA] = 0.3 mM, [PMS] = 1.0 mM, initial pH = 6.5.

Figure S6. Photograph of the fixed-bed flow reactor setup. 

Reaction conditions: catalyst loading, 20 mg; [PMS] = 0.5 mM; [BPA] = 0.1 mM; flow rate, 12.0 mL h−1.
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Figure S7. The performance of Fe1.0-CN-TA2.0 in a fixed-bed flow reactor for catalytic BPA removal in 
Pear River water.

Location for water sampling: (23°02'07.4"N, 113°22'07.2"E). Date: October 06, 2022.

Figure S8. Scanning electronic microscopy images of Fe1.0-CA-TA2.0 before (a) and after (b) reaction.
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Figure S9. X-ray photoelectron spectroscopy (XPS) survey scan of the catalysts.
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Figure S10. X-ray photoelectron spectra of O 1s signal.

C=O: 531.6 eV: oxygen doubly bound to carbon (i.e., C=O) in quinones, ketones, and aldehydes; C-O: 

533.2 eV oxygen singly bound to carbon (i.e., C-O) in ethers and phenols. 8-9
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Figure S11. X-ray photoelectron spectra of Fe 2p signals.
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Figure S12. X-ray diffraction (XRD) profiles of the catalysts.
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Figure S13. Fourier transform infrared (FT-IR) spectra of the catalysts.

0 1 2 3 4 5 6

 Fe1.0-CN-TA0.5
 Fitting curve

F
T(

k2 )
(k

)
 (Å

-3
)

R (Å)

Figure S14. Fe K-edge Fourier transform EXAFS spectrum of Fe1.0-NC-TA0.5 and the fitting curve.
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Figure S15. Wavelet transforms of the k2-weighted EXAFS of Fe1.0-CN-TA0.5.

Figure S16. The selective conversion of MPSO to MPSO2 by high valent FeIV=O.
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Figure S17. The impact of BPA on the PMS consumption on the single-atom Fe catalysts. 

Reaction conditions: [catalyst] = 0.16 g L−1; [PMS] = 1.0 mM; [BPA] = 0.3 mM, if any. Initial pH, 6.5.
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Table S1. Summary of the recently reported single-atom catalysis for PMS activation.

Catalyst 
(Loading / g L−1)

Pyrolysis temperature
 (oC)

[BPA] 
(µM)

[PMS] 
(mM) Removal efficiency References

Fe1.0-CN-TA2.0
 (0.16) 600 300 1.0 100%(1.5 min) This Work

CoSA/NHCS
 (0.1) 600 87.61 0.33 100%(2 min) 10

Co−N4−C
 (0.1) 950 87.61 0.5 100%(10 min) 11

SA-CoCN-1.0
 (0.3) 520 43.80 0.5 100%(30 min) 12

ZIF-8@67-C
 (0.1) 950 87.61 0.33 91.62%(0.25 min) 13

FeCo-NC-2
 (0.1) 650 87.61 0.65 100%(4 min) 14

FeSA-N-C
 (0.15) 900 87.61 1.30 100%(30 min) 15

Mn-ISAs@CN
 (0.2) 900 87.61 0.65 100%(4 min) 16

Co-Sas
 (0.2) 800 87.61 1.30 81.6%(12 min) 17

FeSA-N/C-20
 (0.15) 900 87.61 1.30 100%(20 min) 18

p-CoSi1N3@D
 (0.02) 900 87.61 0.4 99%(5 min) 19

Co-TPML
 (0.2) 800 50 2 100%(5 min) 20

SA Co-N/C 
(0.05) 1000 43.8 0.5 100%(15 min) 21

CoCN-0.4z1m 
(0.2) 600 87.61 0.65 100%(20 min) 22

CoNPC-7.78 
(0.05) 1000 87.61 1.6 100%(5 min) 23

3SACu@NBC 
(0.1) 900 87.61 1.30 100%(30 min) 24

Co-N-C-900 
(0.5) 900 0.35 0.976 100%(3 min) 25

FeSA-N-CNT 
(0.02) 700 50 0.4 100%(1 min) 26

SA-Fe-NC 
(0.05) 800 100 2 100%(3 min) 27

FeSA-N/O-C
 (0.1) 600 65.71 0.3 100%(45 min) 28

p-MnNC@Mt-900 
(0.1) 900 43.8 0.6 100%(5 min) 29

Co-N2 
(0.2) 1000 50 2 100%(5 min) 30

SA-Fe/CN 
(0.02) 900 20 0.1 100%(5 min) 31

SA-Cu-NC 
(0.04) 800 50 1.0 95%(60 min) 32

Cu-SA
 (0.1) 800 100 0.5 60%(5 min) 33
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Table S2. Weight percentage of Fe in the single-atom Fe catalysts.

Entry Catalyst
Fe loadings 

(wt. %)

1 Fe0.1-CN-TA0.5 0.13

2 Fe0.3-CN-TA0.5 0.37

3 Fe0.5-CN-TA0.5 0.73

4 Fe1.0-CN-TA0.5 1.19

5 Fe2.0-CN-TA0.5 1.09

6 Fe1.0-CN-TA1.0 2.27

7 Fe1.0-CN-TA2.0 2.43

8 Fe1.0-CN-TA3.0 2.22

9 Fe1.0-CN-TA4.0 1.72

10 Fe1.0-CN-TA5.0 1.79

Table S3. Percentage of the deconvoluted peaks in the XPS C 1s signal.

Percentage (%)

Entry Component Fe1.0-CN-

TA0.5

Fe1.0-CN-

TA2.0

1 C= C 21.1 39.6

2 C−C 12.1 25.0

3 N=C−N 57.4 24.2

4 C=O, C=N 9.4 11.2
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Table S4. Percentage of the deconvoluted peaks in the XPS N1s signal.

Percentage (%)

Entry Component Fe1.0-CN-

TA0.5

Fe1.0-CN-

TA2.0

1 C=N−C 64.0 53.4

2 N−(C3) 18.1 23.4

3 C−N−H 17.9 23.2

Table S5. Percentage of the C, N, and O determined by XPS.

Percentage (%)

Entry items Fe1.0-CN-

TA0.5

Fe1.0-CN-

TA2.0

1 C 46.6 55.9

2 N 49.3 38.8

3 O 4.0 5.1

4 C/N 0.95 1.44

Table S6. EXAFS fitting parameters for Fe1.0-CN-TA2.0.

Shell CN a R (Å) b
σ2 (Å2) 
c

ΔE0 

(eV) d
R 

factor e

Fe−N 3.56
2.07± 

0.02

0.0101± 

0.0020
1.773 0.0117

[a] CN: Coordination number. [b] R: Bond distance. [c] σ2: Debye-Waller factor. [d] ΔE0: the inner 

potential correction. [e] R factor: the goodness of fitting.
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Table S7. EXAFS fitting parameters for Fe1.0-CN-TA0.5.

Shell CN a R(Å) b
σ2 (Å2) 
c

ΔE0 

(eV) d
R 

factor e

Fe−N 3.47
2.08 ± 

0.02

0.0106± 

0.0025
2.715 0.0131

[a] CN: Coordination number. [b] R: Bond distance. [c] σ2: Debye-Waller factor. [d] ΔE0: the inner 

potential correction. [e] R factor: the goodness of fitting.
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