Highly Tunable Interfacial Adhesion of Glass Fiber by Hybrid Multilayers of Graphene Oxide and Aramid Nanofiber

Byeongho Park, ^{1†} Wonoh Lee, ^{2†} Eunhee Lee, ¹ Sa Hoon Min, ¹ and Byeong-Su Kim¹*

¹ Department of Chemistry and Department of Energy Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea

² Composites Research Center, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon, Gyungnam 642-831, Korea

E-mail: bskim19@unist.ac.kr

Figure S1. Surface free energy (SFE) of bare glass fiber, GO₃₀ (glass fiber/(GO/PSS)₃₀), and ANF₃₀ (glass fiber/(PDAC/ANF)₃₀).

[†]These authors contributed equally to this work.

Figure S2. Cross-section SEM images of multilayer-coated glass fiber of (a) GO_{10} , (b) ANF_{10} , (c) $(GO/ANF)_{10}$, and (d) ANF_5/GO_5 . The scale bars are 5 μ m.