Supporting I nformation

Enantioselective Synthesis, Stereochemical Correction and Biological Investigation of the Rodgersinine Family of 1,4-Benzodioxane Neolignans

Lisa I. Pilkington ${ }^{\dagger}$, Jessica Wagoner ${ }^{\ddagger}$, Stephen J. Polyak ${ }^{\ddagger \Delta}$, David Barker ${ }^{\dagger *}$
${ }^{\dagger}$ School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand; ${ }^{\ddagger}$ Department of Laboratory Medicine, University of Washington, Seattle, WA; ${ }^{\Delta}$ Department of Global Health, University of Washington, Seattle, WA.

Contents:

Details of the unsuccessful methyl ether protected approach to 1-4 S2
General experimental details S2
Experimental procedures S3-S25
NMR spectra (and data comparison tables for natural products) S26-S52
ECD spectra for all final compounds S53-S57
Biological testing methods and further analysis S58-S60
References S61

Methyl ether protected approach:

Scheme 1. Synthesis of methyl ether protected analogues of trans and cis rodgersinine A

2,4-Dimethoxyphenylmagnesium bromide was added to aldehyde $\mathbf{9}$ to give a $3: 1$ mixture of diastereomers 19a and 19b which the underwent hydrogenolysis and concomitant cyclisation to give a mixture of trans 20a and cis 20b 1,4benzodioxanes. A Suzuki reaction installed the (E)-propenyl sidechain, providing trans and cis 2,4-dimethoxy rodgersinine A 21a and 21b. Unfortunately, all attempts at deprotection of 21a and 21b or 20a and 20b were unsuccessful.

The details of the experimental procedures are detailed below.

General experimental details:

All reactions were carried out under a nitrogen atmosphere in dry, freshly distilled solvents unless otherwise noted. All optical rotation measurements were determined at $20^{\circ} \mathrm{C}$ on the sodium D line ($\lambda=589 \mathrm{~nm}, 0.1 \mathrm{dm}$ cell). Ultraviolet-visible and circular dichroism spectra were run as methanol solutions. NMR spectra were recorded on a $300 \mathrm{MHz}, 400 \mathrm{MHz}$ or 500 MHz spectrometer. Chemical shifts are reported relative to the solvent peak of chloroform ($\delta 7.26$ for ${ }^{1} \mathrm{H}$ and $\delta 77.0$ for ${ }^{13} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR data is reported as position (δ), relative integral, multiplicity (s , singlet; d, doublet; t , triplet; q , quartet; m , multiplet; br, broad peak; qd, quartet of doublets), coupling constant (J, Hz), and the assignment of the atom. ${ }^{13} \mathrm{C}$ NMR data are reported as position (δ) and assignment of the atom. NMR assignments were performed using HSQC and HMBC experiments. High-resolution mass spectroscopy (HRMS) was carried out by either chemical ionization (CI) or electrospray ionization (ESI) on a MicroTOF-Q mass spectrometer. Unless noted, chemical reagents were used as purchased.

Experimental procedures and compound data:

2-Benzyloxy-4-bromophenol 6

To a stirred suspension of catechol $5(15.0 \mathrm{~g}, 0.136 \mathrm{~mol})$ and $\mathrm{KOH}(7.64 \mathrm{~g}, 0.136 \mathrm{~mol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ under an atmosphere of nitrogen, was added $\mathrm{BnCl}(15.6 \mathrm{~mL}, 0.136 \mathrm{~mol})$ over a period of 10 min . The resulting mixture was stirred at room temperature for 1 h and then heated at reflux for 4 h . After cooling to room temperature, the solution was acidified with 2 M HCl and extracted with diethyl ether ($4 \times 100 \mathrm{~mL}$). The combined organic extracts were then washed with brine (50 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The crude product was purified by distillation and then by flash chromatography (9:1 n-hexanes, ethyl acetate) to yield 2-(benzyloxy)phenol (11.7 g, 43%) as a colourless oil. $\boldsymbol{R}_{\mathbf{f}}(\mathbf{4}: \mathbf{1} \mathbf{n}$ hexanes, ethyl acetate) $\left.0.56 . \boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0 ~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 5.66(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.81-6.96(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$, H-4, H-5 and H-6) and 7.34-7.43 (5H, m, Ar-H). $\boldsymbol{\delta}_{\mathbf{C}}(\mathbf{1 0 0} \mathbf{~ M H z ; ~ C D C l} 3) 71.1\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 112.2$ (C-3), 114.7 (C-6), 120.1 (C4), 121.8 (C-5), 127.8 ($\left.\mathrm{C}-2^{\prime}\right), 128.4$ ($\left.\mathrm{C}-4^{\prime}\right), 128.7\left(\mathrm{C}-3^{\prime}\right), 136.4\left(\mathrm{C}-1^{\prime}\right), 145.8(\mathrm{C}-1)$ and $145.9(\mathrm{C}-2)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data was in agreement with the literature values. ${ }^{1,2}$

To a solution of 2-(benzyloxy)phenol ($3.04 \mathrm{~g}, 15.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetic acid ($22.5 \mathrm{~mL}, 2: 1$, v/v), cooled to $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathrm{Br}_{2}(0.78 \mathrm{~mL}, 15.2 \mathrm{mmol})$ in acetic acid $(7.50 \mathrm{~mL})$ dropwise over 10 min . The solution was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 10 min , then water (20 mL) was added and the organic layer was separated. The aqueous mixture was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic extracts were washed with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~mL})$, water (15 mL) and brine $(15 \mathrm{~mL})$. The solution was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (9:1 n-hexanes, ethyl acetate) to yield the title product $\mathbf{6}$ ($3.96 \mathrm{~g}, 93 \%$) as a yellow solid. $\boldsymbol{R}_{\mathbf{f}} \mathbf{(4 : 1} \mathbf{n}$ hexanes, ethyl acetate) 0.51 . Melting Point: $\left.65.5-67{ }^{\circ} \mathrm{C}\left(L_{i t}{ }^{3} 66-68{ }^{\circ} \mathrm{C}\right) . \boldsymbol{\delta}_{\mathbf{H}} \mathbf{(3 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{\mathbf{3}} ; \mathbf{M e}_{4} \mathbf{S i}\right) 5.08$ (2H, s, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 5.57(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.80(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-6), 6.99(1 \mathrm{H}, \mathrm{dd}, J=3.0$ and $9.0 \mathrm{~Hz}, \mathrm{H}-5), 7.06(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}$, $\mathrm{H}-3)$ and $7.40-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) . \boldsymbol{\delta}_{\mathbf{C}}\left(75 \mathrm{MHz} \mathbf{C D C l}_{3}\right) 71.4\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 111.5(\mathrm{C}-4), 115.5(\mathrm{C}-3), 116.0(\mathrm{C}-6), 124.6$ (C5), 128.0 ($\mathrm{C}-2^{\prime}$), 128.7 ($\left.\mathrm{C}-4^{\prime}\right), 128.8\left(\mathrm{C}-3^{\prime}\right), 135.6\left(\mathrm{C}-1^{\prime}\right), 145.1$ ($\mathrm{C}-1$) and $162.3(\mathrm{C}-2)$. The ${ }^{1} \mathrm{H}$ NMR data was in agreement with the literature values. ${ }^{3}$

(2R)-Ethyl 2-(2'-(benzyloxy)-4'-bromophenoxy)propanoate 8

To a solution of phenol $6(3.00 \mathrm{~g}, 0.011 \mathrm{~mol}), \mathrm{PPh}_{3}(4.93 \mathrm{~g}, 0.019 \mathrm{~mol})$ and (S)-ethyl lactate $7(2.22 \mathrm{~g}, 0.019 \mathrm{~mol})$ in THF $(90 \mathrm{~mL})$ under an atmosphere of nitrogen, at $0{ }^{\circ} \mathrm{C}$ was added DIAD ($3.70 \mathrm{~mL}, 0.019 \mathrm{~mol}$) dropwise. The reaction mixture was then allowed to warm to room temperature. After stirring for 1 h , the mixture was then concentrated in vacuo. The crude product was purified by flash chromatography (19:1 n-hexanes, ethyl acetate) to yield the title product $\mathbf{8}$ ($3.62 \mathrm{~g}, 89 \%$) as a colourless oil. $\boldsymbol{R}_{\mathbf{f}}\left(\mathbf{4 : 1} \boldsymbol{n}\right.$-hexanes, ethyl acetate) 0.58 . $[\boldsymbol{\alpha}]_{\mathbf{D}}+47.7$ (c $\left.0.84, \mathrm{CHCl}_{3}\right)$. IR: $\mathbf{v}_{\mathbf{m a x}}(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3035 (CH aromatic), 2987 and 2937 (CH alkane), 1748 ($\mathrm{C}=\mathrm{O}$ ester), 1589 and 1490 ($\mathrm{C}=\mathrm{C}$ aromatic), 1455, 1404 and 1378 (CH alkane), 1256, 1196, 1141, 1115 and 1096 (C-O ether, ester), 910, 877, 798, 733 and 697 (CH aromatic). $\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(3 0 0} \mathbf{~ M H z ; ~ C D C l} \mathbf{3} ; \mathbf{M e}_{4} \mathbf{S i}$) $1.21\left(3 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.58(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H}-3), 4.15-4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.70(1 \mathrm{H}, \mathrm{q}, J=9.0 \mathrm{~Hz}, \mathrm{H}-2)$, $5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 6.80\left(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.98\left(1 \mathrm{H}, \mathrm{dd}, J=3.0\right.$ and $\left.9.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.07\left(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$ and 7.32-7.45 (5H, m, Ar-H). $\boldsymbol{\delta}_{\mathbf{C}}\left(75 \mathrm{MHz} \mathbf{C D C l}_{3}\right) 14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 18.5(\mathrm{C}-3), 61.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 71.4(\mathrm{OCH} 2 \mathrm{Ar}), 74.9(\mathrm{C}-2)$, 114.9 (C-4'), 118.5 (C-3'), 119.3 (C-6'), 124.2 (C-5'), 127.4 (C-2"), 128.0 (C-4"), 128.5 (C-3"), 136.4 (C-1"), 147.0 (C-1'), $150.4\left(\mathrm{C}-2^{\prime}\right)$ and $171.9(\mathrm{C}-1) . \boldsymbol{m} / \mathbf{z}(\mathbf{E S I}+): 403\left({ }^{81} \mathrm{BrMNa}^{+}, 100 \%\right), 401\left({ }^{79} \mathrm{BrMNa}^{+}, 100\right), 398\left({ }^{81} \mathrm{BrMH}^{+}, 5\right), 396\left({ }^{79} \mathrm{BrMH}^{+}\right.$, 5) and 323 (33). HRMS (ESI+): Found (MNa^{+}): $403.0338 \mathrm{C}_{18} \mathrm{H}_{19}{ }^{81} \mathrm{BrNaO}_{4}$ requires 403.0339. Found (MNa^{+}): 401.0354 $\mathrm{C}_{18} \mathrm{H}_{19}{ }^{79} \mathrm{BrNaO}_{4}$ requires 401.0359.

(2R)-2-(2'-(Benzyloxy)-4'-bromophenoxy)propan-1-al 9

To a solution of ester $8(3.60 \mathrm{~g}, 9.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ under an atmosphere of nitrogen at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL (1 M in cyclohexane, $10.5 \mathrm{~mL}, 10.5 \mathrm{mmol}$). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min . The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (9:1 n-hexanes, ethyl acetate) to yield the title product 9 ($2.61 \mathrm{~g}, 82$ \%) as a white crystalline solid. $\boldsymbol{R}_{\mathbf{f}} \mathbf{(4 : 1} \boldsymbol{n}$-hexanes, ethyl acetate) 0.38 . $[\boldsymbol{\alpha}]_{\mathbf{D}}+25.8\left(c 0.64, \mathrm{CHCl}_{3}\right)$. Melting Point: $62-65{ }^{\circ} \mathrm{C}$. IR: $\mathbf{v}_{\text {max }}(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3066 and 3034 (CH aromatic), 2984 and 2934 (CH alkane), 2874 and 2818 (CH aldehyde), 1734 (C=O aldehyde), 1588 and 1492 (C=C aromatic), 1455, 1403 and 1380 (CH alkane), 1254, 1207, 1137, 1074 and 1001 (C-O ether), 917, 880, 836, 815, 737 and 696 (CH aromatic). $\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{4 0 0} \mathbf{~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.42$ ($3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-3$), 4.50 (1H, q, J $=6.8 \mathrm{~Hz}, \mathrm{H}-2), 5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 6.80\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.01\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$
$\left.=2.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.33-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $\left.9.74(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}, \mathrm{CHO}) . \boldsymbol{\delta}_{\mathrm{C}} \mathbf{(1 0 0} \mathbf{~ M H z ;} \mathbf{C D C l}_{3}\right) 15.6(\mathrm{C}-3), 71.2$ $\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 80.6(\mathrm{C}-2), 115.4$ (C-4'), 117.9 (C-3'), 119.8 (C-6'), 124.1 ($\left.\mathrm{C}-5^{\prime}\right), 127.4$ (C-2"), 128.2 (C-4"), 128.6 (C-3"), 136.0 (C-1"), 146.5 (C-1'), 150.5 (C-2') and 202.1 (C-1). m/z (ESI+): $359\left({ }^{81} \mathrm{BrMNa}^{+}, 25\right), 357\left({ }^{79} \mathrm{BrMNa}^{+}, 25\right), 339$ (100) and 91 (10). HRMS (ESI+): Found (MNa^{+}): $359.0082 \quad \mathrm{C}_{16} \mathrm{H}_{15}{ }^{81} \mathrm{BrNaO}_{3}$ requires 359.0077. Found (MNa^{+}): 357.0097 $\mathrm{C}_{16} \mathrm{H}_{15}{ }^{79} \mathrm{BrNaO}_{3}$ requires 357.0097 .

(1S,2R)-2-(2'-(Benzyloxy)-4'-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}$-dimethoxyphenyl)propan-1-ol 19a and (1R,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-(2'', $4^{\prime \prime}$-dimethoxyphenyl)propan-1-ol 19b

To a stirred solution of aldehyde $9(0.300 \mathrm{~g}, 0.895 \mathrm{mmol})$ in THF (15 mL), under an atmosphere of nitrogen at room temperature, was added 2,4-dimethoxyphenylmagnesium bromide (0.5 M in THF, $5.37 \mathrm{~mL}, 2.69 \mathrm{mmol}$) dropwise. The mixture was stirred at room temperature for 24 h . The reaction was quenched with the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The mixture was separated and the aqueous layers further extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (14:1, n hexanes, ethyl acetate) to yield (1S,2R)-2-(2'-benzyloxy-4'-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}$-dimethoxyphenyl)propan-1-ol 19a ($0.256 \mathrm{~g}, 61 \%$) as a pale yellow oil. $\boldsymbol{R}_{\mathbf{f}}\left(\mathbf{4 : 1} \boldsymbol{n}\right.$-hexanes, ethyl acetate) 0.31 . $[\boldsymbol{\alpha}]_{\mathbf{D}}-30.0\left(c 0.60, \mathrm{CHCl}_{3}\right)$. IR: $\mathbf{v}_{\text {max }}(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3510 (broad, OH), 3070 and 3031 (CH aromatic), 2990, 2935 and 2835 (CH alkane), 1612, 1587 and 1491 ($\mathrm{C}=\mathrm{C}$ aromatic), 1454, 1403 and 1382 (CH alkane), 1288, 1248, 1205, 1156, 1131, 1034 and 992 (C-O ether, alcohol), 919, 880, 832, 797, 737,697 and 675 (CH aromatic). $\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{4 0 0} \mathbf{~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.15(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}-3), 3.03(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.71$ ($3 \mathrm{H}, \mathrm{s}$, OMe), $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.56(1 \mathrm{H}, \mathrm{dq}, J=3.2$ and $6.4 \mathrm{~Hz}, \mathrm{H}-2), 5.06(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}, \mathrm{Ar}), 5.16(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-1), 6.38$ $\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 6.43\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 6.92\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.03(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, $7.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$ and $7.31-7.44\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-3^{\prime \prime \prime}\right.$ and $\left.\mathrm{H}-4^{\prime \prime \prime}\right) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right)$ 13.4 (C-3), 55.2 (OMe), 55.3 (OMe), 69.3 (C-1), $71.4\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 79.0(\mathrm{C}-2), 98.0\left(\mathrm{C}-3^{\prime \prime}\right), 104.2\left(\mathrm{C}-5^{\prime \prime}\right), 114.1\left(\mathrm{C}-4{ }^{\prime}\right), 117.8$ (C-3'), 119.4 (C-6'), 120.4 (C-1"), 124.3 (C-5'), 127.5 (C-2"'), 128.1 (C-6"), 128.2 (C-4"'), 128.6 (C-3"'), 136.2 (C-1"'), 146.9 ($\mathrm{C}-1^{\prime}$), 150.9 ($\left.\mathrm{C}-2^{\prime}\right), 156.9$ (C-2") and 160.0 (C-4"). m/z (ESI+): 513 ($\left.{ }^{81} \mathrm{BrMK}^{+}, 63 \%\right), 511$ (${ }^{79} \mathrm{BrMK}^{+}, 60$), 497 (${ }^{81} \mathrm{BrMNa}^{+}, 98$ \%), 495 (${ }^{79} \mathrm{BrMNa}^{+}$, 100), 492 (42), 490 (40), 457 (61), 455 (58), 376 (10), 268 (16) and 178 (14). HRMS (ESI+): Found ($\left.{ }^{81} \mathrm{BrMNa}^{+}\right)$: 497.0773 $\mathrm{C}_{24} \mathrm{H}_{25}{ }^{81} \mathrm{BrNaO}_{5}$ requires 497.0758. Found (${ }^{79} \mathrm{BrMNa}^{+}$): 495.0785 $\mathrm{C}_{24} \mathrm{H}_{25}{ }^{79} \mathrm{BrNaO}_{5}$ requires 495.0778 .

In a separate fraction, (1R,2R)-2-(2'-benzyloxy-4'-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}$-dimethoxyphenyl)propan-1-ol 19b (0.094 g, 22 $\%)$ was isolated as a pale yellow oil. $\boldsymbol{R}_{\mathbf{f}}\left(\mathbf{4 : 1} \boldsymbol{n}\right.$-hexanes, ethyl acetate) $0.25 .[\boldsymbol{\alpha}]_{\mathbf{D}}-97.1$ (c $0.7, \mathrm{CHCl}_{3}$). IR: $\mathbf{v}_{\mathbf{m a x}}(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3509 (broad, OH), 3066 and 3034 (CH aromatic), 2932, 2874 and 2839 (CH alkane), 1613, 1588 and 1492 ($\mathrm{C}=\mathrm{C}$ aromatic), 1455, 1403 and 1380 (CH alkane), 1291, 1254, 1209, 1158, 1131 and 1036 (C-O ether, alcohol), 922, 873, 835, 801, 739 and 698 (CH aromatic). $\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0 ~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{\mathbf{4}} \mathbf{S i}$) 1.14 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-3$), 3.50 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.78
$(3 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{OMe}), 4.32-4.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.04(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-1), 5.08(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}, \mathrm{Ar}), 6.42(1 \mathrm{H}, \mathrm{d}, J=2.0$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime \prime}\right), 6.43\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 6.82\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.99\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, $7.07\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.24\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right)$ and $7.33-7.46\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-3^{\prime \prime \prime}\right.$ and $\left.\mathrm{H}-4^{\prime \prime \prime}\right) . \boldsymbol{\delta}_{\mathrm{C}}(\mathbf{1 0 0} \mathbf{~ M H z} ;$ $\left.\mathbf{C D C l}_{3}\right) 16.4(\mathrm{C}-3), 55.3(\mathrm{OMe}), 55.3(\mathrm{OMe}), 71.2(\mathrm{C}-1), 72.0\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 82.7(\mathrm{C}-2), 98.4\left(\mathrm{C}-3^{\prime \prime}\right), 104.4\left(\mathrm{C}-5^{\prime \prime}\right), 114.3(\mathrm{C}-$ $\left.4^{\prime}\right), 117.6$ (C-3'), 119.9 (C-6'), 121.0 ($\left.\mathrm{C}-1^{\prime \prime}\right), 124.2$ ($\left.\mathrm{C}-5^{\prime}\right), 127.5$ (C-2"'), 128.1 (C-6"), 128.2 (C-4"'), 128.6 (C-3'"'), 136.1 (C$\left.1^{\prime \prime \prime}\right), 147.4\left(\mathrm{C}-1^{\prime}\right), 150.7\left(\mathrm{C}-2^{\prime}\right), 157.9\left(\mathrm{C}-2^{\prime \prime}\right)$ and 160.3 (C-4"). m/z (ESI+): 513 ($\left.{ }^{81} \mathrm{BrMK}^{+}, 63 \%\right), 511$ (${ }^{79} \mathrm{BrMK}^{+}, 60$), 497 (${ }^{81} \mathrm{BrMNa}^{+}, 98$ \%), 495 (${ }^{79} \mathrm{BrMNa}^{+}, 100$), 492 (42), 490 (40), 457 (61), 455 (58), 376 (10), 268 (16) and 178 (14). HRMS (ESI+): Found $\left(\mathrm{MNa}^{+}\right)$: $497.0773 \mathrm{C}_{24} \mathrm{H}_{25}{ }^{81} \mathrm{BrNaO}_{5}$ requires 497.0758. Found (MNa^{+}): 495.0785 $\mathrm{C}_{24} \mathrm{H}_{25}{ }^{79} \mathrm{BrNaO}_{5}$ requires 495.0778.

(2R,3R)-2-Methyl-3-(2',4'-dimethoxyphenyl)-6-bromo-1,4-benzodioxane 20a and (2R,3S)-2-methyl-3-(2', 4^{\prime}-dimethoxyphenyl)-6-bromo-1,4-benzodioxane 20 b

To a 3.5:1 mixture of benzyl ether 19a and benzyl ether $\mathbf{1 9 b}(70.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(12.0 \mathrm{mg})$ in ethyl acetate $(10 \mathrm{~mL})$ was added $37 \% \mathrm{HCl}(1.0 \mathrm{~mL})$ and the resultant suspension was stirred under an atmosphere of hydrogen for 30 min. The catalyst was then removed by filtration through Celite ${ }^{\circledR}$ and washed with ethyl acetate. The filtrate was washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ and water (15 mL). The aqueous layers were back extracted with ethyl acetate ($2 \times 15 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified firstly by flash chromatography (14:1 n-hexanes, ethyl acetate) to yield the title products 20a and 20b ($53.0 \mathrm{mg}, 98$ \%) as a 5:1 inseparable mixture of trans 20a to cis 20b isomers as a white solid. Further purification with silver impregnated silica (2:1 nhexanes, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was able to yield pure samples of 20a and $\mathbf{2 0 b}$ suitable for complete characterisation. $\boldsymbol{R}_{\mathbf{f}}(\mathbf{4}: \mathbf{1} \boldsymbol{n}$-hexanes, ethyl acetate) 0.81 . Melting Point: $67.0-77.0^{\circ} \mathrm{C}$. 20a (trans): $[\boldsymbol{\alpha}]_{\boldsymbol{D}}+3.8$ (c 1.32, MeOH). IR: $\boldsymbol{v}_{\text {max }}$ (film)/cm $\mathbf{c m}^{\mathbf{- 1}}$; 3043 (CH aromatic), 2961, 2936 and 2840 (CH alkane), 1615, 1589, 1509 and 1492 (C=C aromatic), 1463, 1439, 1420 and 1381 (CH alkane), 1301, 1260, 1207, 1158, 1131, 1114, 1103, 1070, 1033 and 1009 (C-O ether), 936, 924, 898, 872, 835, 824, 798,
 $\mathrm{s}, \mathrm{OMe}), 4.09-4.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.11(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-3), 6.48\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.53(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and 8.4 $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 6.77(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-8), 6.93(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $8.8 \mathrm{~Hz}, \mathrm{H}-7), 7.06(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-5)$ and $7.19(1 \mathrm{H}$, d, $\left.J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 16.5\left(\mathrm{CH}_{3}\right), 55.4(\mathrm{OMe}), 55.5(\mathrm{OMe}), 74.1(\mathrm{C}-2), 74.4(\mathrm{C}-3), 98.5\left(\mathrm{C}-3^{\prime}\right), 104.9$ (C-5'), 112.4 (C-6), 117.6 (C-1'), 118.1 (C-8), 120.0 (C-5), 123.9 (C-7), 128.8 (C-6'), 142.9 (C-8a), 145.2 (C-4a), 158.2 (C$\left.2^{\prime}\right)$ and 161.2 (C-4'). m/z (ESI+): 389 (${ }^{81} \mathrm{BrMNa}^{+}, 25$ \%), $387\left({ }^{79} \mathrm{BrMNa}^{+}, 25\right), 367\left({ }^{81} \mathrm{BrMH}^{+}, 95\right), 365\left({ }^{79} \mathrm{BrMH}^{+}, 100\right)$, 287(20) and 178 (25). HRMS (ESI+): Found (MH^{+}): $367.0372 \mathrm{C}_{17} \mathrm{H}_{18}{ }^{81} \mathrm{BrO}_{4}$ requires 367.0363. Found (MH^{+}): 365.0392 $\mathrm{C}_{17} \mathrm{H}_{18}{ }^{79} \mathrm{BrO}_{4}$ requires 365.0383 .

20b (cis): $[\boldsymbol{\alpha}]_{\mathbf{D}}+31.3$ (c 0.32, MeOH). IR: $\boldsymbol{v}_{\text {max }}(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 2996 (CH aromatic), 2957, 2921 and 2868 (CH alkane), 1615, 1590, 1509 and 1493 ($\mathrm{C}=\mathrm{C}$ aromatic), 1463 and 1380 (CH alkane), 1258, 1209, 1158, 1131, 1105, 1070, 1034 and 992 (C-O
 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.63(1 \mathrm{H}, \mathrm{dq}, ~ J=2.4$ and $6.4 \mathrm{~Hz}, \mathrm{H}-2$), $5.44(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3), 6.46(1 \mathrm{H}, \mathrm{d}, J=2.4$
$\left.\mathrm{Hz}, \mathrm{H}-3^{\prime}\right), 6.51\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.77(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-8), 6.95(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.4 \mathrm{~Hz}, \mathrm{H}-7), 7.10$ $(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-5)$ and $\left.7.35\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right) . \boldsymbol{\delta}_{\mathrm{C}} \mathbf{(1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 12.8\left(\mathrm{CH}_{3}\right), 55.4$ (OMe), 55.5 (OMe), 71.2 (C-3), 72.4 (C-2), 98.1 (C-3'), 104.4 (C-5'), 112.4 (C-6), 117.2 (C-1'), 118.7 (C-8), 120.1 (C-5), 124.3 (C-7), 127.5 (C$\left.6^{\prime}\right), 141.4$ (C-8a), 144.4 (C-4a), 157.0 (C-2') and 160.7 (C-4'). m/z (ESI+): 389 (${ }^{81} \mathrm{BrMNa}^{+}, 25 \%$), 387 (${ }^{79} \mathrm{BrMNa}^{+}$, 25), 367 (${ }^{81} \mathrm{BrMH}^{+}, 95$), $365\left({ }^{79} \mathrm{BrMH}^{+}, 100\right)$, 287 (20) and 178 (25). HRMS (ESI+): Found (MH ${ }^{+}$): $367.0372 \mathrm{C}_{17} \mathrm{H}_{18}{ }^{81} \mathrm{BrO}_{4}$ requires 367.0363. Found $\left(\mathrm{MH}^{+}\right)$: $365.0392 \mathrm{C}_{17} \mathrm{H}_{18}{ }^{79} \mathrm{BrO}_{4}$ requires 365.0383.

(7R,8R)-7-(2,4-Dimethoxyphenyl)-8-methyl-3',7-epoxy-8,4'-oxyneolign-7'-ene 21a ($7 R, 8 R$)-trans-dimethyl rodgersinine $A(21 a)$) and (7S,8R)-7-(2,4-dimethoxyphenyl)-8-methyl-3',7-epoxy-8,4'-oxyneolign-7'-ene 21b ((7S,8R)-cis-2,4-dimethyl rodgersinine A (21b))

To a stirred solution of a 5:1 mixture of bromide 20a and bromide 20b ($47.0 \mathrm{mg}, 0.129 \mathrm{mmol}$) in dioxane (3 mL) was added trans-prop-1-enylboronic acid ($33.0 \mathrm{mg}, 0.384 \mathrm{mmol}$) and CsF ($78.0 \mathrm{mg}, 0.512 \mathrm{mmol}$) and the mixture was heated under an atmosphere of nitrogen. After the mixture reached reflux, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(100 \mathrm{mg}, 0.109 \mathrm{mmol})$ was added and the mixture heated at reflux for 3 days. The mixture was then left to cool to room temperature. Ethyl acetate (5 mL) was added, followed by brine (5 mL), the mixture was separated and the aqueous layer further extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified using flash chromatography ($2: 1, n$-hexanes, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield unreacted starting material ($2 R, 3 R$)-2-methyl-3-(2',4'-dimethoxyphenyl)-6-bromo-1,4-benzodioxane 20a and (2R,3S)-2-methyl-3-(2',4'-dimethoxyphenyl)-6-bromo-1,4-benzodioxane 20b ($12.0 \mathrm{mg}, 0.033$ mmol) and the title products 21a and 21b ($32.0 \mathrm{mg}, 76 \%, 100 \%$ brsm.) as a $5: 1$ inseparable mixture of trans 21a to cis 21b isomers as an orange oil. Further purification with silver impregnated silica ($2: 1 n$-hexanes, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was able to separate starting materials 20a and 20b from products 21a and 21b. $\boldsymbol{R}_{\mathrm{f}}$ (4:1 \boldsymbol{n}-hexanes, ethyl acetate) 0.78 . IR: $\mathbf{v}_{\text {max }}(\mathbf{f i l m}) / \mathbf{c m}^{-1}$; 3087, 3060 and 3000 (CH aromatic), 2958, 2936 and 2838 (CH alkane), 1677 (C=C alkene), 1615, 1584 and 1506 ($\mathrm{C}=\mathrm{C}$ aromatic), 1465, 1455, 1438, 1420 and 1381 (CH alkane), 1266, 1208, 1158, 1134, 1119, 1107, 1070 and 1032 (C-O ether), 965, 938, 926, 910, 871, 824, 785 and 731 (CH aromatic). 21a (trans): $\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{4 0 0} \mathbf{~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.18$ (3H, d, $J=6.4$ $\mathrm{Hz}, \mathrm{H}-9), 1.82$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-9{ }^{\prime}$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.12-4.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 5.13 ($1 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}, \mathrm{H}-7$), $6.01-6.09$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime}$), 6.26 ($1 \mathrm{H}, \mathrm{dd}, J=1.6$ and $15.6 \mathrm{~Hz}, \mathrm{H}-7$ '), 6.48 ($1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3$), 6.53 ($1 \mathrm{H}, \mathrm{dd}, J=$ 2.4 and $8.4 \mathrm{~Hz}, \mathrm{H}-5), 6.83$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-6^{\prime}$), 6.93 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}$) and 7.23 ($1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6$). $\boldsymbol{\delta}_{\mathrm{C}}$ ($\mathbf{1 0 0} \mathbf{~ M H z ; ~}$ $\left.\mathrm{CDCl}_{3}\right) 16.6$ (C-9), 18.4 (C-9'), 55.4 (OMe), 55.5 (OMe), 74.0 (C-7), 74.6 (C-8), 98.6 (C-3), 104.9 (C-5), 114.1 (C-2'), 116.7 (C-5'), 118.2 (C-1), 119.1 (C-6'), 123.8 (C-8'), 128.9 (C-6), 130.4 (C-7'), 131.5 (C-1'), 142.7 (C-4'), 144.3 (C-3'), 158.2 (C-2) and 161.1 (C-4). 21b (cis): $\left.\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0} \mathbf{~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.06$ ($3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}-9$), 1.82 ($3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$, H-9'), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.62(1 \mathrm{H}, \mathrm{dq}, J=2.4$ and $6.4 \mathrm{~Hz}, \mathrm{H}-8), 5.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H}-7), 6.05-$ $6.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime}\right), 6.28\left(1 \mathrm{H}, \mathrm{dd}, J=1.6\right.$ and $\left.15.0 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 6.46(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3), 6.51(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and 8.4 Hz ,
 12.9 (C-9), 18.4 (C-9'), 55.4 (OMe), 55.5 (OMe), 71.3 (C-8), 72.4 (C-7), 98.1 (C-3), 104.4 (C-5), 114.1 (C-2'), 117.4 (C-5'), 117.8 (C-1), 119.4 (C-6'), 123.8 (C-8'), 127.6 (C-6), 130.4 (C-7'), 131.5 (C-1'), 141.1 (C-4'), 143.5 (C-3'), 157.0 (C-2) and 160.6 (C-4). m/z (ESI+): 349 ($\mathrm{MNa}^{+}, 30 \%$), $327\left(\mathrm{MH}^{+}, 100\right.$) and 178 (55). HRMS (ESI+): Found (MNa ${ }^{+}$): 349.1406 $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{4}$ requires 349.1410. Found (MH^{+}): $327.1587 \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4}$ requires 327.1591.

Methods involving the use of both Lewis acids $\left(\mathrm{BBr}_{3}\right.$ and TMSI) for varying lengths of time and at various temperatures on mixtures of 20a and 20b, and 21a and 21b did not yield any of the desired demethylated material, giving either degraded material or returned starting material, depending on the conditions. Strong nucleophilic reagents LiSEt and NaSEt also did not provide the desired demethylated products, under a range of conditions.

1,3-Bis(benzyloxy)-4-bromobenzene

To a solution of resorcinol ($2.20 \mathrm{~g}, 0.020 \mathrm{~mol}$) in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added $\mathrm{NH}_{4} \mathrm{Br}(2.15 \mathrm{~g}, 0.022 \mathrm{~mol})$ and Oxone ${ }^{\circledR}$ ($13.5 \mathrm{~g}, 0.022 \mathrm{~mol}$) and the mixture was stirred at room temperature under an atmosphere of nitrogen for 30 min . The reaction mixture was then filtered and the solvent removed in vacuo. The crude product was purified by flash chromatography (3:1 n-hexanes, ethyl acetate) to yield 4-bromoresorcinol ($2.46 \mathrm{~g}, 65 \%$) as a white solid. $\boldsymbol{R}_{\mathbf{f}}$ ($\mathbf{3}: 1 \mathbf{n}$-hexanes, ethyl acetate) 0.68. Melting Point: $101-103{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{4} 100-102{ }^{\circ} \mathrm{C}\right) . \boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{4 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 5.91(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.35(1 \mathrm{H}$, dd, $\mathrm{J}=2.4$ and $8.4 \mathrm{~Hz}, \mathrm{H}-6), 6.56(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-2)$ and $\left.7.25(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5) . \boldsymbol{\delta}_{\mathrm{C}} \mathbf{(1 0 0 ~ M H z ; ~ C D C l} \mathbf{H}_{\mathbf{3}}\right) 100.6(\mathrm{C}-4), 103.5$ (C-2), 109.5 (C-6), 132.2 (C-5), 153.1 (C-3) and 156.9 (C-1). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data was in agreement with the literature values. ${ }^{5}$

To a solution of 4-bromoresorcinol ($3.43 \mathrm{~g}, 0.018 \mathrm{~mol}$) in acetone (40 mL) at room temperature, under an atmosphere of nitrogen, was added $\mathrm{K}_{2} \mathrm{CO}_{3}(7.54 \mathrm{~g}, 0.055 \mathrm{~mol})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BnBr}(5.30 \mathrm{~mL}, 0.045 \mathrm{~mol})$ was added dropwise. The reaction was allowed to warm to room temperature and stirred overnight. The solvent was removed in vacuo and the residue taken up in a water/ethyl acetate mixture ($1: 1,50 \mathrm{~mL}$). The layers were separated and the aqueous layer was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine (30 mL), dried (MgSO_{4}) and the solvent removed in vacuo. The crude product was purified by flash chromatography ($9: 1 n$-hexanes, ethyl acetate). Only the pure fractions were collected to yield the 1,3-bis(benzyloxy)-4-bromobenzene ($4.48 \mathrm{~g}, 67 \%$) as a pale yellow solid. $\boldsymbol{R}_{\mathbf{f}}$ (3:1 n-hexanes, ethyl acetate) 0.72 . Melting Point: $36-38^{\circ} \mathrm{C}$. (lit. $\left.{ }^{6} 38-39^{\circ} \mathrm{C}\right) . \boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{4 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right.$; $\left.\mathbf{M e}_{4} \mathbf{S i}\right) 5.00(2 \mathrm{H}$, s, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 6.46(1 \mathrm{H}, \mathrm{dd}, J=2.8$ and $8.8 \mathrm{~Hz}, \mathrm{H}-6), 6.60(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-2)$ and $7.31-7.40(11 \mathrm{H}$, m, H-5 and $\mathrm{Ar}-\mathrm{H}) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 70.4\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 70.8\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 102.5(\mathrm{C}-2), 103.5(\mathrm{C}-4), 107.6(\mathrm{C}-6), 127.0(\mathrm{C}-$ $\left.2^{\prime}\right), 127.5$ ($\mathrm{C}-2^{\prime}$), 127.9 ($\left.\mathrm{C}-4^{\prime}\right), 128.1$ ($\mathrm{C}-4^{\prime}$), 128.6 ($\mathrm{C}-3^{\prime}$), 128.6 ($\left.\mathrm{C}-3^{\prime}\right), 133.2$ (C-5), 136.4 ($\left.\mathrm{C}-1^{\prime}\right), 136.5$ ($\left.\mathrm{C}-1^{\prime}\right), 155.7$ (C-3) and 159.2 (C-1). The ${ }^{1} \mathrm{H}$ NMR data was in agreement with the literature values. ${ }^{7}$
(1S,2R)-2-(2'-(Benzyloxy)-4'-bromophenoxy)-1-(2',4'-bis(benzyloxy)phenyl)propan-1-ol 11a and (1R,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}$-bis(benzyloxy)phenyl)propan-1-ol 11b

To a stirred solution of 1,3-bis(benzyloxy)-4-bromobenzene ($0.661 \mathrm{~g}, 1.79 \mathrm{mmol}$) in dry THF (30 mL), under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$, was added ${ }^{\mathrm{t}} \mathrm{BuLi}(1.4 \mathrm{M}$ in THF, $2.56 \mathrm{~mL}, 3.58 \mathrm{mmol}$). After 3 min , a solution of aldehyde 9 ($0.500 \mathrm{~g}, 1.49 \mathrm{mmol}$) in dry THF (15 mL) was added slowly and the mixture was left to warm to room temperature and stirred for a further 20 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was added and the aqueous mixture extracted with ethyl acetate (3×20 $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (9:1 n-hexanes, ethyl acetate) to yield the (1S,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}-$ bis(benzyloxy)phenyl)propan-1-ol 11a ($0.305 \mathrm{~g}, 33 \%$) as a colourless oil. 11a (anti): $\boldsymbol{R}_{\mathbf{f}}$ (4:1 n-hexanes, ethyl acetate) 0.42. $[\boldsymbol{\alpha}]_{\mathbf{D}}-22.7$ (c 1.37, CHCl_{3}). IR: $\mathbf{v}_{\max }(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3511 (broad, OH), 3033 (CH aromatic), 2931 and 2867 (CH alkane), 1611, 1586 and 1495 (C=C aromatic), 1454 and 1380 (CH alkane), 1250, 1125 and 1024 (C-O ether, alcohol), 729 and 695 (CH aromatic). $\left.\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0 ~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.14(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}-3), 3.09(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.55(1 \mathrm{H}, \mathrm{qd}, J=2.8 \mathrm{and} 6.4 \mathrm{~Hz}$, $\mathrm{H}-2), 4.85\left(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, $5.20(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-1), 6.55\left(1 \mathrm{H}, \mathrm{dd}, J=1.6\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 6.57\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 6.65(2 \mathrm{H}, \mathrm{d}, J=1.2$ $\mathrm{Hz}, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-6^{\prime}$), $7.00-7.01$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), and $7.23-7.46$ ($16 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}$ and $\mathrm{Ar}-\mathrm{H}$). $\boldsymbol{\delta}_{\mathrm{C}} \mathbf{(1 0 0 ~ M H z ; ~ C D C l} \mathbf{~}_{\mathbf{3}}$) 13.4 (C-3), $\left.68.6(\mathrm{C}-1), 70.1\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 70.2\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 71.3\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 79.1(\mathrm{C}-2), 99.9\left(\mathrm{C}-3^{\prime \prime}\right), 105.6\left(\mathrm{C}-5^{\prime \prime}\right), 114.1(\mathrm{C}-4)^{\prime}\right), 117.6(\mathrm{C}-$ $\left.3^{\prime}\right), 119.8$ (C-6'), 120.8 (C-1"), 124.4 (C-5'), 127.5 ($\mathrm{Ar}-\mathrm{CH}$), 127.7 (Ar-CH), 128.0 (C-6"), 128.1 (Ar-CH), 128.5 (Ar-CH), 128.6 (Ar-CH), 128.6 (Ar-CH), 136.1 (Ar-C), 136.3 (Ar-C), 136.9 (Ar-C), 146.5 (C-1'), 150.8 (C-2'), 155.9 (C-2") and 159.2 (C-4"). m/z (ESI+): $649\left({ }^{81} \mathrm{BrMNa}^{+}, 100 \%\right), 647\left({ }^{79} \mathrm{MNa}^{+}, 90\right), 569$ (10), 360 (15) and 290 (8). HRMS (ESI+): Found $\left(\mathrm{MNa}^{+}\right)$: $649.1369 \mathrm{C}_{36} \mathrm{H}_{33}{ }^{81} \mathrm{BrNaO}_{5}$ requires 649.1386. Found (MNa^{+}): $647.1386 \mathrm{C}_{36} \mathrm{H}_{33}{ }^{79} \mathrm{BrNaO}_{5}$ requires 647.1404.

In a separate fraction, $(1 R, 2 R)-2-\left(2^{\prime}-(\right.$ benzyloxy $)-4^{\prime}$-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}$-bis(benzyloxy)phenyl)propan-1-ol 11b (0.071 $\mathrm{g}, 8 \%)$ was collected as a colourless oil. $\mathbf{1 1 b}$ (syn): $\boldsymbol{R}_{\mathbf{f}}(\mathbf{4 : 1} \boldsymbol{n} \text {-hexanes, ethyl acetate) } 0.36 \text {. } \boldsymbol{\alpha}]_{\mathbf{D}}-89.3$ (c 1.086, $\left.\mathrm{CHCl}_{3}\right)$. IR: $\mathbf{v}_{\text {max }}($ film $) / \mathbf{c m}^{-1}$; 3507 (broad, OH), 3032 (CH aromatic), 2927 and 2874 (CH alkane), 1611, 1587 and 1495 (C=C aromatic), 1454 and 1380 (CH alkane), 1253, 1170, 1128 and 1027 (C-O ether, alcohol), 736 and 697 (CH aromatic). $\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{4 0 0} \mathbf{~ M H z ;}$ $\mathbf{C D C l}_{3}$; Me $\mathbf{M S i}_{4} 1.16(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}-3), 4.32-4.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.01\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.05$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}$), $5.09(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1), 6.53\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 6.58\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 6.75$ $\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.94\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.05\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$ and $7.23-7.43\left(16 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}\right.$ and $\mathrm{Ar}-\mathrm{H}) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} \mathbf{C D C l}_{3}\right) 16.6(\mathrm{C}-3), 70.1\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 70.2\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 71.3\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 72.1(\mathrm{C}-1), 82.9(\mathrm{C}-2)$, 100.5 (C-3"), 106.0 (C-5"), 114.4 (C-4'), 117.6 (C-3'), 120.0 (C-6'), 121.7 (C-1"), 124.2 (C-5'), 127.3 (Ar-CH), 127.5 (ArCH), 127.5 (Ar-CH), 127.9 (Ar-CH), 128.0 (Ar-CH), 128.2 (Ar-CH), 128.6 (Ar-CH), 128.6 (Ar-CH), 128.9 (C-6"), 136.1 (Ar-C), 136.7 (Ar-C), 136.8 (Ar-C), 147.5 (C-1'), 150.7 (C-2'), 157.0 (C-2") and 159.5 (C-4"). m/z (ESI+): $665\left(^{81} \mathrm{BrMK}^{+}\right.$, 100 \%), $663\left({ }^{79} \mathrm{MK}^{+}\right.$, 95), 569 (70) and 360 (80). HRMS (ESI+): Found (MK^{+}): $665.1103 \mathrm{C}_{36} \mathrm{H}_{33}{ }^{81} \mathrm{BrKO}_{5}$ requires 665.1125. Found (MK^{+}): $663.1123 \mathrm{C}_{36} \mathrm{H}_{33}{ }^{79} \mathrm{BrKO}_{5}$ requires 663.1143 .

(2R,3R)-2-Methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane and

(2R,3S)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane

To a mixture of alcohols $\mathbf{1 1 a}$ and $\mathbf{1 1 b}(0.650 \mathrm{~g}, 1.04 \mathrm{mmol})$ in ethyl acetate (60 mL) was added $37 \% \mathrm{HCl}(4.5 \mathrm{~mL})$ and 10 $\% \mathrm{Pd} / \mathrm{C}(0.098 \mathrm{~g})$ and the mixture stirred under an atmosphere of hydrogen for 2 h . The mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The aqueous washings were further extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield (2R,3R)-2-Methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane and (2R,3S)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane in a $10: 1$ ratio as an inseparable mixture of trans to cis isomers ($0.066 \mathrm{~g}, 15 \%$) as a orange oil. $\boldsymbol{R}_{\mathbf{f}}(\mathbf{1}: 1 \mathrm{n}$ hexanes, ethyl acetate) 0.81. IR: $\boldsymbol{v}_{\max }($ film $) / \mathbf{c m}^{-1}$; 3384 (broad, OH), 2961 (CH aromatic), 2929 (CH alkane), 1602 and 1487 (C=C aromatic), 1454 (CH alkane), 1269, 1167 and 1015 (C-O ether, alcohol), 737 and 697 (CH aromatic). 214a (trans): $\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{4 0 0} \mathbf{~ M H z} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.20\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.08-4.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.16(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3), 6.47\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.51\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.76(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{H}-8), 6.93(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.4 \mathrm{~Hz}, \mathrm{H}-7), 7.06(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-5), 7.16\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$ and 7.30-7.39 (5H, m, Ar-H). $\boldsymbol{\delta}_{\mathbf{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z ; ~ C D C l} \mathbf{3}_{3}\right) 16.6\left(\mathrm{CH}_{3}\right), 70.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 74.2(\mathrm{C}-2), 74.5(\mathrm{C}-3), 100.2(\mathrm{C}-3$ '), $108.0(\mathrm{C}-$ $\left.5^{\prime}\right), 112.6$ (C-6), 117.9 (C-1'), 118.1 (C-8), 120.0 (C-5), 124.0 (C-7), 127.3 ($\mathrm{Ar}-\mathrm{CH}$), 128.1 ($\mathrm{Ar}-\mathrm{CH}$), 128.7 (Ar-CH), 129.1 (C-6'), 136.3 (Ar-C), 142.9 (C-8a), 145.2 (C-4a), 157.1 (C-4') and 157.5 (C-2'). 214b (cis): $\boldsymbol{\delta}_{\mathbf{H}}$ ($\mathbf{4 0 0} \mathbf{~ M H z ; ~ C D C l} \mathbf{3}_{3} ; \mathbf{M e}_{4} \mathbf{S i}^{\mathbf{~}}$) $1.06\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.63(1 \mathrm{H}, \mathrm{qd}, J=2.4$ and $6.4 \mathrm{~Hz}, \mathrm{H}-2), 5.07\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.51(1 \mathrm{H}, \mathrm{d}, J=2.4$ $\mathrm{Hz}, \mathrm{H}-3), 6.47\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.51\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.75(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-8), 6.94(1 \mathrm{H}, \mathrm{dd}$, $J=2.4$ and $8.4 \mathrm{~Hz}, \mathrm{H}-7), 7.10(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-5), 7.21\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$ and $7.30-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) . \boldsymbol{\delta}_{\mathrm{C}}(\mathbf{1 0 0}$ MHz; $\mathbf{C D C l}_{3}$) $12.9\left(\mathrm{CH}_{3}\right), 70.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 71.2(\mathrm{C}-2), 72.4(\mathrm{C}-3), 99.8\left(\mathrm{C}-3{ }^{\prime}\right), 107.6\left(\mathrm{C}-5^{\prime}\right), 112.6(\mathrm{C}-6), 117.0(\mathrm{C}-8), 118.7$ (C-1'), 120.1 (C-5), 124.3 (C-7), 127.0 (Ar-CH), 127.9 (Ar-CH), 128.7 (Ar-CH), 129.0 (C-6'), 136.3 (Ar-C), 143.3 (C-8a), 144.1 (C-4a), 157.1 (C-4') and 157.5 (C-2'). m/z (APCI+): $429\left({ }^{81} \mathrm{BrMH}^{+}, 24 \%\right), 427\left({ }^{79} \mathrm{MH}^{+}, 25\right), 338$ (100) and 149 (20). HRMS (APCI+): Found $\left(\mathrm{MH}^{+}\right): 429.0529 \mathrm{C}_{22} \mathrm{H}_{20}{ }^{81} \mathrm{BrO}_{4}$ requires 429.0520. Found $\left(\mathrm{MH}^{+}\right): 427.0539 \mathrm{C}_{22} \mathrm{H}_{20}{ }^{79} \mathrm{BrO}_{4}$ requires 427.0539.

In a separate fraction, a 5:1 mixture of (2R,3R)-2-methyl-3-(2', 4^{\prime}-dihydroxyphenyl)-6-bromo-1,4-benzodioxane 12a and (2R,3S)-2-methyl-3-(2', 4'-dihydroxyphenyl)-6-bromo-1,4-benzodioxane $\mathbf{1 2 b}$ ($0.260 \mathrm{~g}, 74 \%$) isomers were collected as a pale orange oil (see below).

(2R,3R)-2-Methyl-3-(2',4'-dihydroxyphenyl)-6-bromo-1,4-benzodioxane 12a
 and
 (2R,3S)-2-methyl-3-(2',4'-dihydroxyphenyl)-6-bromo-1,4-benzodioxane 12b

Method A; Hydrogenation of diols 11a and 11b: To a mixture of alcohols 11a and 11b ($0.650 \mathrm{~g}, 1.04 \mathrm{mmol}$) in ethyl acetate $(60 \mathrm{~mL})$ was added $37 \% \mathrm{HCl}(4.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.098 \mathrm{~g})$ and the mixture stirred under an atmosphere of hydrogen for 2 h . The mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x} 50 \mathrm{~mL}$) and water (50 mL). The aqueous washings were further extracted with ethyl acetate (2 x 50 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield the title products $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ in a $5: 1$ ratio as a mostly inseparable mixture of trans 12a to cis 12b isomers ($0.260 \mathrm{~g}, 74 \%$) as an orange oil. With repeated purification by flash chromatography (1:1 diethyl ether, n-hexanes) a pure sample of the trans isomer 12a was able to be obtained as a white powder: 12a (trans): $\boldsymbol{R}_{\mathbf{f}}$ (3:1 diethyl ether, \boldsymbol{n} hexanes) 0.39. Melting Point: $98-100{ }^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]_{\mathbf{D}}+16.43$ (c 0.70, MeOH). IR: $\boldsymbol{v}_{\text {max }}(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3391 (broad, OH), 2982 (CH aromatic), 2930 (CH alkane), 1611 (C=C aromatic), 1487 (CH alkane), 1269, 1204, 1097, 1011 and 976 (C-O ether, alcohol), 847 and 734 (CH aromatic). $\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0 ~} \mathbf{~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}$) 1.21 ($3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}$), $4.28-4.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 4.86(1 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}, \mathrm{H}-3), 4.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.39\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.40(1 \mathrm{H}, \mathrm{dd}, J=2.4 \mathrm{and} 8.0 \mathrm{~Hz}$, $\left.\mathrm{H}-5^{\prime}\right), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-8), 7.00(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.0 \mathrm{~Hz}, \mathrm{H}-7), 7.03\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$ and $7.10(1 \mathrm{H}, \mathrm{d}, J$ $=2.4 \mathrm{~Hz}, \mathrm{H}-5) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 17.2\left(\mathrm{CH}_{3}\right), 72.8(\mathrm{C}-2), 79.5(\mathrm{C}-3), 104.3\left(\mathrm{C}-3^{\prime}\right), 108.2\left(\mathrm{C}-5{ }^{\prime}\right), 112.6(\mathrm{C}-6), 114.0(\mathrm{C}-$ $\left.1^{\prime}\right)$, 118.4 (C-8), 120.3 (C-5), 125.2 (C-7), 130.2 (C-6'), 142.9 (C-8a), 143.6 (C-4a), 155.8 (C-2') and 157.4 (C-4'). m/z (ESI+): 361 (${ }^{81} \mathrm{BrMNa}^{+}, 100$ \%), $359\left({ }^{79} \mathrm{MNa}^{+}\right.$, 95), 281 (60), 150 (35) and 114 (80). HRMS (ESI+): Found (MNa ${ }^{+}$): $360.9869 \mathrm{C}_{15} \mathrm{H}_{13}{ }^{81} \mathrm{BrNaO}_{4}$ requires 360.9870 . Found (MNa^{+}): 358.9886 $\mathrm{C}_{15} \mathrm{H}_{13}{ }^{79} \mathrm{BrNaO}_{4}$ requires 358.9889.

The cis isomer 12b was not able to be separated, so was characterised as a mixture with the trans isomer 12a. 12b (cis): $\boldsymbol{R}_{\mathbf{f}}$ (3:1 diethyl ether, \boldsymbol{n}-hexanes) 0.39. IR: $\boldsymbol{v}_{\max }(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3361 (broad, OH), 2961 (CH aromatic), 2933 (CH alkane), 1607 ($\mathrm{C}=\mathrm{C}$ aromatic), 1487 (CH alkane), 1268, 1206, 1148, 1097, 1011 and 976 (C-O ether, alcohol), 803 and 683 (CH aromatic). $\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{4 0 0} \mathbf{~ M H z} ; \mathrm{CDCl}_{3} ; \mathbf{M e}_{4} \mathrm{Si}\right) 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.59(1 \mathrm{H}, \mathrm{dq}, J=2.0$ and $6.8 \mathrm{~Hz}, \mathrm{H}-2), 5.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $5.39(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-3), 6.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.38\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.41\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, $6.78(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-8), 7.00(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.0 \mathrm{~Hz}, \mathrm{H}-7), 7.01\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$ and $7.12(1 \mathrm{H}, \mathrm{d}, J=2.4$ $\mathrm{Hz}, \mathrm{H}-5) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} \mathbf{C D C l}_{3}\right) 12.6\left(\mathrm{CH}_{3}\right), 75.8(\mathrm{C}-2), 80.2(\mathrm{C}-3), 102.9\left(\mathrm{C}-3{ }^{\prime}\right), 107.9\left(\mathrm{C}-5^{\prime}\right), 112.6(\mathrm{C}-6), 114.1\left(\mathrm{C}-1^{\prime}\right)$, 118.4 (C-8), 120.2 (C-5), 125.2 (C-7), 130.4 (C-6'), 142.9 (C-8a), 143.7 (C-4a), 155.8 (C-2') and 156.8 (C-4'). m/z (APCI+): 339 (${ }^{81} \mathrm{BrMH}^{+}, 95$ \%), 337 (${ }^{79} \mathrm{MNa}^{+}$, 100), 259 (40) and 149 (90). HRMS (APCI+): Found (MH^{+}): $339.0050 \mathrm{C}_{15} \mathrm{H}_{14}{ }^{81} \mathrm{BrO}_{4}$ requires 339.0050. Found $\left(\mathrm{MH}^{+}\right): 337.0078 \mathrm{C}_{15} \mathrm{H}_{14}{ }^{79} \mathrm{BrO}_{4}$ requires 337.0070.

In a separate fraction, a 10:1 mixture of (2R,3R)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane and (2R,3S)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane ($0.066 \mathrm{~g}, 15 \%$) was collected as a pale orange oil (see above).

Method B; Hydrogenation of (2R,3R)-2-Methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane and (2R,3S)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane: To a 10:1 mixture of alcohols (0.188 $\mathrm{g}, 0.44 \mathrm{mmol})$ in ethyl acetate $(20 \mathrm{~mL})$ was added $37 \% \mathrm{HCl}(1.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.028 \mathrm{~g}$, $)$ and the mixture stirred under an atmosphere of hydrogen for 2 h . The mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate washed with sat. aq. Na$\mathrm{HCO}_{3}(2 \times 20 \mathrm{~mL})$ and water (20 mL). The aqueous washings were further extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield the title products $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ as a mostly inseparable mixture of trans 12a to cis 12b isomers ($0.088 \mathrm{~g}, 59 \%$) as an orange oil.

In a separate fraction, the starting material ($2 R, 3 R$)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4benzodioxane and ($2 R, 3 S$)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane ($0.075 \mathrm{~g}, 40 \%$) was collected as a pale orange oil.

Various methods were attempted, in the hope of obtaining rodgersinine B directly from 12a and 12b, including a So-nogashira-type reaction, and a Stille reaction. Unfortunately, attempts at using these transition metal-based methods to install the alkyne sidechain were unsuccessful.

(7R,8R)-trans-Rodgersinine A (1) and (7S,8R)-cis-rodgersinine A (2) (trans-rodgersinine A (1) and cis-rodgersinine A (2))

To a solution of bromide ($2 R, 3 R$)-12a ($51.0 \mathrm{mg}, 0.151 \mathrm{mmol}$) in dry THF (8 mL), under an atmosphere of nitrogen, was added trans-propenylboronic acid ($39.0 \mathrm{mg}, 0.454 \mathrm{mmol}$), CsF ($92.0 \mathrm{mg}, 0.605 \mathrm{mmol}$) and the reaction mixture was heated. Once the reaction mixture was at reflux, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8.7 \mathrm{mg}, 0.008 \mathrm{mmol})$ was added and the reaction heated at reflux for 18 h. The reaction mixture was then cooled and ethyl acetate (5 mL) and brine (5 mL) added. The layers were separated and the aqueous layer washed with ethyl acetate ($2 \times 5 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (3:1 diethyl ether, n-hexanes) to yield the title products $(7 R, 8 R) \mathbf{- 1}$ and $(7 S, 8 R)-\mathbf{2}$ in a $5: 1$ ratio as mostly inseparable mixture of trans $(7 R, 8 R) \mathbf{- 1}$ to cis $(7 S, 8 R)$ - $\mathbf{2}$ isomers ($40.0 \mathrm{mg}, 89$ \%) as a white solid.

With repeated purification by flash chromatography (1:1 diethyl ether, n-hexanes) a pure sample of the trans isomer ($7 R, 8 R$)-1 was able to be obtained as a white powder. $\boldsymbol{R}_{\mathbf{f}}$ ($\mathbf{3}: \mathbf{1}$ diethyl ether, \boldsymbol{n}-hexanes) 0.49 . Melting Point: $54-56{ }^{\circ} \mathrm{C}$. $[\boldsymbol{\alpha}]_{\mathbf{D}}$ +20.00 (c 0.16, MeOH), 95:5 mixture of trans $(7 R, 8 R)-\mathbf{1}$ to cis $(7 S, 8 R)-2$ isomers. (lit. ${ }^{8}[\boldsymbol{\alpha}]_{\mathbf{D}}+24.8(c 0.075, \mathrm{MeOH})$). ECD $(\mathrm{MeOH} ; ~ с ~ 0.15 \mathrm{mg} / 10 \mathrm{~mL}) \lambda(\Delta \varepsilon) 220(+2.1), 236(0), 252(-0.3), 270(0), 286(+0.2) \mathrm{nm} . \mathbf{U V}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 269$ (4.02) nm. IR: $\mathbf{v}_{\max }(\mathbf{f i l m}) / \mathrm{cm}^{-1}$; 3394 (broad, OH), 2959 (CH aromatic), 2930 and 2853 (CH alkane), 1629 (C=C alkene), 1610 and 1506 (C=C aromatic), 1272, 1216, 1160, 1097 and 973 (C-O ether, alcohol), 846 and 800 (CH aromatic, CH alkene). $\left.\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0 ~ M H z ; ~} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.20(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}-9), 1.84$ (3H, dd, $J=1.6$ and $\left.6.4 \mathrm{~Hz}, \mathrm{H}-9{ }^{\prime}\right), 4.32-4.39$ (1 H , $\mathrm{m}, \mathrm{H}-8), 4.81(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-7), 4.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.04(1 \mathrm{H}, \mathrm{dq}, J=6.4$ and $15.2 \mathrm{~Hz} \mathrm{H}-8$), $6.27(1 \mathrm{H}, \mathrm{dd}, J=1.6$
and $\left.15.2 \mathrm{~Hz}, \mathrm{H}^{\prime} 7^{\prime}\right), 6.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3), 6.41(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 6.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.84\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, $6.89\left(1 \mathrm{H}, \mathrm{dd}, J=1.6\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.95\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$ and $6.99(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6) . \boldsymbol{\delta}_{\mathrm{C}}(\mathbf{1 0 0} \mathbf{~ M H z ;}$ $\mathbf{C D C l}_{3}$) 17.4 (C-9), 18.4 (C-9'), 72.5 (C-8), 80.7 (C-7), 104.5 (C-3), 107.9 (C-5), $114.0(\mathrm{C}-1), 114.3$ (C-2'), 117.1 (C-5'), 120.3 (C-6'), 124.4 (C-8'), 130.1 (C-6), 130.4 (C-7'), 131.8 ($\mathrm{C}-1^{\prime}$), 142.4 ($\mathrm{C}-4^{\prime}$), 142.5 ($\left.\mathrm{C}-3^{\prime}\right), 156.2$ (C-2) and 157.3 (C-4). $\boldsymbol{m} / \mathbf{z}$ (ESI+): 321 ($\mathrm{MNa}^{+}, 5 \%$) and 127 (100). HRMS (ESI+): Found (MNa^{+}): 321.1099 $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{4}$ requires 321.1097. All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data was in agreement with literature values. ${ }^{8}$ The $[\alpha]_{\mathrm{D}}$ and ECD data matched the literature values for what had been reported to be for the enantiomer of this compound. ${ }^{8}$ Thus, the structure of the natural product has been reassigned to that of this compound, $(7 R, 8 R)$-trans-rodgersinine $\mathrm{A}(\mathbf{1})$.

With repeated purification by flash chromatography (1:1 diethyl ether, n-hexanes) a pure sample of the cis isomer ($7 S, 8 R$)2 was unable to be obtained, however when repeated separation was performed with $\mathrm{HPLC}\left(5 \%{ }^{i} \mathrm{PrOH}\right.$ in n-hexanes, 0.4 $\mathrm{mL} / \mathrm{min}, 15 \mu \mathrm{~L}$ of $10 \mathrm{mg} / 0.5 \mathrm{~mL}$ solution, $28.5-30.5 \mathrm{~min}$) giving a pure sample of cis-rodgersinine $\mathrm{A}(7 S, 8 R)$ - 2 as a colourless film. $\boldsymbol{R}_{\mathbf{f}}$ ($\mathbf{3 : 1} \mathbf{1}$ diethyl ether, \boldsymbol{n}-hexanes) 0.49 . $[\boldsymbol{\alpha}]_{\mathbf{D}}+67.78(c 0.090, \mathrm{MeOH}), 85: 15$ mixture of cis ($7 S, 8 R$)- $\mathbf{2}$ to trans $(7 R, 8 R)-\mathbf{1}$ isomers. (lit. ${ }^{8}[\boldsymbol{\alpha}]_{\mathbf{D}}+79.9(c 0.18, \mathrm{MeOH})$). ECD (MeOH; c $\left.0.30 \mathrm{mg} / 10 \mathrm{~mL}\right) \lambda(\Delta \varepsilon) 239(-0.3), 245(0), 259(+0.5)$ $\mathrm{nm} . \mathbf{U V}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 269$ (3.81) nm. IR: $\mathbf{v}_{\max }($ film $) / \mathrm{cm}^{\mathbf{- 1}}$; 3372 (broad, OH), 2959 (CH aromatic), 2927 and 2870 (CH alkane), 1606 (C=C alkene), 1505 and 1491 ($\mathrm{C}=\mathrm{C}$ aromatic), 1263, 1207, 1155, 1095 and 974 (C-O ether, alcohol), 833, 800 and 736 (CH aromatic, CH alkene). $\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0 ~} \mathbf{~ M H z ; ~} \mathbf{C D C l}_{\mathbf{3}} \mathbf{;} \mathbf{M e}_{4} \mathbf{S i}$) $1.20(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}-9), 1.84$ (3H, dd, $J=1.2$ and $\left.6.4 \mathrm{~Hz}, \mathrm{H}-9{ }^{\prime}\right), 4.55(1 \mathrm{H}, \mathrm{dq}, J=2.4$ and $6.4 \mathrm{~Hz}, \mathrm{H}-8), 5.15(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 5.38(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-7), 6.05(1 \mathrm{H}, \mathrm{dq}, J$ $=6.4$ and $\left.16.0 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 6.28\left(1 \mathrm{H}, \mathrm{dd}, J=1.6\right.$ and $\left.16.0 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right), 6.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-3), 6.41(1 \mathrm{H}, \mathrm{dd}, J=1.2$ and $8.0 \mathrm{~Hz}, \mathrm{H}-$ 5), $6.81\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.89\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.95\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$ and $7.04(1 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}, \mathrm{H}-6) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} \mathbf{C D C l}_{3}\right) 12.5$ (C-9), 18.4 (C-9'), 72.8 (C-8), 77.2 (C-7), 103.9 (C-3), 107.8 (C-5), 113.8 (C-1), 114.2 ($\mathrm{C}-2^{\prime}$), 117.8 ($\mathrm{C}-5^{\prime}$), 120.4 ($\left.\mathrm{C}-6^{\prime}\right), 124.3$ ($\mathrm{C}-8^{\prime}$), 128.6 (C-6), 130.1 ($\left.\mathrm{C}-7^{\prime}\right), 131.7$ (C-1'), 140.8 (C-4'), 142.2 (C-3'), 155.6 (C-2) and 156.7 (C-4). m/z (ESI+): 321 ($\mathrm{MNa}^{+}, 25 \%$), 223 (30), 145 (60) and 101 (100). HRMS (ESI+): Found $\left(\mathrm{MNa}^{+}\right)$: $321.1095 \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{4}$ requires 321.1097. All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data was in agreement with literature values. ${ }^{8}$ The $[\alpha]_{D}$ and ECD data matched the literature values for what had been reported for the natural product. ${ }^{8}$ Thus, the structure of the natural product was confirmed to be $(7 S, 8 R)$-cis-rodgersinine $A(2)$.

(2R,3R)-2-Methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane and
 (2R,3S)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane

To a mixture of diols $(2 R, 3 R)-\mathbf{1 2 a}$ and $(2 R, 3 S)-\mathbf{1 2 b}(0.109 \mathrm{~g}, 0.320 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature, under an atmosphere of nitrogen, was added DIPEA ($0.17 \mathrm{~mL}, 0.970 \mathrm{mmol}$) followed by MOMCl $(0.15 \mathrm{~mL}, 1.29 \mathrm{mmol})$ and the mixture was stirred at room temperature for 7 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ was added and the organic layer separated. The aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (9:1 n-hexanes, ethyl acetate) to yield the (2R,3R)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane and (2R,3S)-2-methyl-3-($2^{\prime}, 4^{\prime}$ -bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane as an inseparable 5:1 mixture of trans to cis isomers (0.093 g, 68 \%) as a colourless oil. $\boldsymbol{R}_{\mathbf{f}}$ (4:1 \boldsymbol{n}-hexanes, ethyl acetate) 0.55 . IR: $\boldsymbol{v}_{\text {max }}(f i l m) / \mathbf{c m}^{\mathbf{- 1}} ; 2953$ and 2931 (CH aromatic), 2826 (CH alkane), 1612, 1587, 1507 and 1486 (C=C aromatic), 1448 (CH alkane), 1266, 1208, 1152, 1074, 1004 and 925 (C-O ether), 898, 803 and 682 (CH aromatic). (trans): $\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{4 0 0} \mathbf{~ M H z ;} \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.21\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.47$ (3H, s, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.11-4.18(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.13(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3), 5.17(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz},-$ $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.19\left(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.76\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-8)$, $6.85\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.94(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.4 \mathrm{~Hz}, \mathrm{H}-7), 7.06(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-5)$ and $7.21(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\left.\mathrm{Hz}, \mathrm{H}-6{ }^{\prime}\right) . \boldsymbol{\delta}_{\mathbf{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 16.6\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 74.3(\mathrm{C}-2), 74.4(\mathrm{C}-3), 94.5$ $\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $94.7\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 103.2\left(\mathrm{C}-3{ }^{\prime}\right), 109.3(\mathrm{C}-5 '), 112.5(\mathrm{C}-6), 118.1(\mathrm{C}-8), 119.2(\mathrm{C}-1$ 1), $120.0(\mathrm{C}-5), 124.1(\mathrm{C}-$
 $\left.J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.47\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.63(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}=2.4$ and $6.4 \mathrm{~Hz}, \mathrm{H}-2), 5.17(2 \mathrm{H}, \mathrm{d}$, $\left.J=1.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.19\left(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.46(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3), 6.74(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and 8.4 $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 6.76(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-8), 6.82\left(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.92(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.4 \mathrm{~Hz}, \mathrm{H}-7), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=2.4 \mathrm{~Hz}, \mathrm{H}-5)$ and $7.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-6{ }^{\prime}\right) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 12.8\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $71.3(\mathrm{C}-2), 72.5(\mathrm{C}-3), 94.5\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 95.0\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 102.7\left(\mathrm{C}-3{ }^{\prime}\right), 109.0\left(\mathrm{C}-5{ }^{\prime}\right), 112.5(\mathrm{C}-6), 118.7(\mathrm{C}-8), 119.2(\mathrm{C}-$ $\left.1^{\prime}\right), 120.1$ (C-5), 124.5 (C-7), 127.7 (C-6'), 142.9 (C-8a), 144.4 (C-4a), 154.5 (C-2') and 158.2 (C-4').m/z (ESI+): 449 (${ }^{81} \mathrm{BrMNa}^{+}, 20$), 447 (${ }^{79} \mathrm{BrMNa}^{+}, 20$), 393 (95), 381 (100) and 353 (15). HRMS (ESI+): Found (MNa $): 449.0396$ $\mathrm{C}_{19} \mathrm{H}_{21}{ }^{81} \mathrm{BrNaO}_{6}$ requires 449.0394. Found ($\mathrm{MNa}{ }^{+}$): $447.0414 \mathrm{C}_{19} \mathrm{H}_{21}{ }^{79} \mathrm{BrNaO}_{6}$ requires 447.0414 .

(2R,3R)-2-Methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-formyl-1,4-benzodioxane (2R,3R)-13a and

(2R,3S)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-formyl-1,4-benzodioxane (2R,3S)-13b

To a stirred solution of ($2 R, 3 R$)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane and (2R,3S)-2-methyl-3-(2', 4^{\prime}-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane ($74.0 \mathrm{mg}, 174 \mathrm{mmol}$) in dry THF (8 mL), under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$, was added ${ }^{t} \mathrm{BuLi}(1.4 \mathrm{M}$ in THF, $0.25 \mathrm{~mL}, 0.348 \mathrm{mmol})$. After 30 sec , dry DMF (0.22 mL , 2.78 mmol) was added and the mixture stirred at $-78^{\circ} \mathrm{C}$ for 45 min and then allowed to warm to room temperature and left for a further 30 min . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added and the aqueous mixture extracted with ethyl acetate ($3 \times 6 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield (2R,3R)-2-methyl-3-(2', 4'-bis(methoxymethoxy)phenyl)-6-formyl-1,4benzodioxane $(2 R, 3 R)$-13a and (2R,3S)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-formyl-1,4-benzodioxane ($2 R, 3 S$)13b as an inseparable $5: 1$ mixture of trans $(2 R, 3 R)-\mathbf{1 3 a}$ to cis $(2 R, 3 S) \mathbf{- 1 3 b}$ isomers ($39.0 \mathrm{mg}, 60 \%$) as a pale yellow oil. $\boldsymbol{R}_{\mathbf{f}}$ (4:1 n-hexanes, ethyl acetate) 0.29 . IR: $\mathbf{v}_{\max }(\mathbf{f i l m}) / \mathbf{c m}^{-1}$; 2928 (CH aromatic), 2825 (CH alkane), 1690 ($\mathrm{C}=\mathrm{O}$, aldehyde), 1608, 1585 and 1505 (C=C aromatic), 1444 (CH alkane), 1280, 1218, 1154, 1130, 1112, 1074, 1007 and 926 (C-O ether), 896, 816 and 787 (CH aromatic). (2S,3S)-13a (trans): $\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0 ~ M H z ; ~} \mathbf{C D C l}_{3}$; $\mathbf{M e}_{4} \mathbf{S i}$) $1.26\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.47$ $\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.23-4.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-3), 5.18(2 \mathrm{H}, \mathrm{d}, J=1.6$ $\left.\mathrm{Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.19\left(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.76\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.87(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}$, H$\left.3^{\prime}\right), 7.03(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-8), 7.24\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.43(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.0 \mathrm{~Hz}, \mathrm{H}-7), 7.45(1 \mathrm{H}, \mathrm{d}, J=2.4$ $\mathrm{Hz}, \mathrm{H}-5)$ and $9.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 16.6\left(\mathrm{CH}_{3}\right), 56.2\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 74.1(\mathrm{C}-3), 75.2$ $(\mathrm{C}-2), 94.4\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 94.7\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 103.2\left(\mathrm{C}-3{ }^{\prime}\right), 109.3\left(\mathrm{C}-5{ }^{\prime}\right), 117.4(\mathrm{C}-8), 118.4(\mathrm{C}-5), 118.9\left(\mathrm{C}-11^{\prime}\right), 124.0(\mathrm{C}-7)$, 128.8 (C-6'), 130.5 (C-6), 144.7 (C-4a), 149.3 (C-8a), 155.8 (C-2'), 158.8 (C-4') and 190.8 (CHO). (2S,3R)-13b (cis): $\boldsymbol{\delta}_{\mathbf{H}}$ ($400 \mathrm{MHz} \mathbf{C D C l}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $1.12\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.48\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.75(1 \mathrm{H}$, qd, $J=2.4$ and $6.4 \mathrm{~Hz}, \mathrm{H}-2), 5.18\left(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.20\left(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.49(1 \mathrm{H}, \mathrm{d}, J=$ $2.4 \mathrm{~Hz}, \mathrm{H}-3), 6.76\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.84(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3$ '), $7.02(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-8), 7.24(1 \mathrm{H}$, d, $\left.J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.45(1 \mathrm{H}, \mathrm{dd}, J=2.4$ and $8.0 \mathrm{~Hz}, \mathrm{H}-7), 7.50(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-5)$ and $9.85(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) . \boldsymbol{\delta}_{\mathrm{C}}$ (100 MHz; CDCl ${ }_{3}$) $12.9\left(\mathrm{CH}_{3}\right), 56.2\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 72.1(\mathrm{C}-2), 72.5(\mathrm{C}-3), 94.4\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 94.7$ $\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 102.7$ ($\left.\mathrm{C}-3^{\prime}\right), 109.0\left(\mathrm{C}-5^{\prime}\right), 118.0(\mathrm{C}-8), 118.5$ (C-5), 118.9 (C-1'), 124.5 (C-7), 127.6 (C-6'), 130.5 (C-6), 143.9 (C-4a), 148.0 (C-8a), 154.5 (C-2'), 158.3 (C-4') and 190.8 (CHO). m/z (ESI+): 397 ($\mathbf{M N a}^{+}, 100$ \%), 381 (20) and 227 (20). HRMS (ESI+): Found $\left(\mathrm{MNa}^{+}\right): 397.1253 \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{7}$ requires 397.1258.

(2R,3R)-2-Methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-ethynyl-1,4-benzodioxane (2R,3R)-14a and
 (2R,3S)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-ethynyl-1,4-benzodioxane (2R,3S)-14b

To a solution of trimethylsilyl diazomethane ($0.051 \mathrm{~mL}, 0.103 \mathrm{mmol}$) in THF (3 mL) under an atmosphere of nitrogen at $78{ }^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}\left(1.4 \mathrm{M}\right.$ in n-hexanes, $0.073 \mathrm{~mL}, 0.103 \mathrm{mmol}$) dropwise. The mixture was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 25 min before a solution of aldehydes $(2 R, 3 R) \mathbf{- 1 3 a}$ and $(2 R, 3 S)-\mathbf{1 3 b}(0.032 \mathrm{~g}, 0.086 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added dropwise and the solution stirred at $-78^{\circ} \mathrm{C}$ for an hour before warming to room temperature and stirring for 1 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(4 \mathrm{~mL})$ was added and the organic layer separated. The aqueous layer was further extracted with ethyl acetate (3 x 5 mL) and the combined organic extracts were washed with water $(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield the title products $(2 R, 3 R) \mathbf{- 1 4 a}$ and $(2 R, 3 S) \mathbf{- 1 4 b}(0.023 \mathrm{~g}, 73 \%)$ as an inseparable $5: 1$ mixture of trans $(2 R, 3 R) \mathbf{- 1 4 a}$ to cis $(2 R, 3 S) \mathbf{- 1 4 b}$ isomers as a pale yellow oil. $\boldsymbol{R}_{\mathbf{f}}$ (4:1 \boldsymbol{n}-hexanes, ethyl acetate) 0.44 . IR: $\mathbf{v}_{\text {max }}(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}} ; 3300(\mathrm{C} \equiv \mathrm{CH}$, terminal alkyne), 2959 and 2926 (CH aromatic), 2847 (CH alkane), 1737, 1614, 1580 and 1505 ($\mathrm{C}=\mathrm{C}$ aromatic), 1448 (CH alkane), 1280, 1218, 1154, 1074, 1008 and 923 (C-O ether), 847, 817 and $729\left(\mathrm{CH}\right.$ aromatic), $613\left(\mathrm{C} \equiv \mathrm{CH}\right.$, terminal alkyne). (2S,3S)-14a (trans): $\boldsymbol{\delta}_{\mathbf{H}}$ ($500 \mathrm{MHz} \mathbf{C D C l}_{3}$; $_{\mathbf{M e}}^{4} \mathbf{S i}$) $1.22\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}\right), 3.47\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH} 3\right), 3.49(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.15-4.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 5.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-3), 5.17\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.19(2 \mathrm{H}, \mathrm{d}, J=$ $\left.1.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.76\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-8), 6.85\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $7.01(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $8.0 \mathrm{~Hz}, \mathrm{H}-7), 7.06(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-5)$ and $7.23\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right) . \boldsymbol{\delta}_{\mathrm{C}}(\mathbf{1 2 5} \mathbf{~ M H z} ;$ $\left.\mathbf{C D C l}_{3}\right) 16.6\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $56.3\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $74.2(\mathrm{C}-3), 74.7(\mathrm{C}-2), 75.4\left(\mathrm{C}-2^{\prime \prime}\right), 83.6\left(\mathrm{C}-1^{\prime \prime}\right), 94.5$ $\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 94.7\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 103.2(\mathrm{C}-3 '), 109.0\left(\mathrm{C}-5^{\prime}\right), 114.1(\mathrm{C}-6), 116.9(\mathrm{C}-8), 119.3\left(\mathrm{C}-1{ }^{\prime}\right), 120.8(\mathrm{C}-5), 125.6(\mathrm{C}-$ 7), 128.8 (C-6'), 144.0 (C-8a), 144.6 (C-4a), 155.8 (C-2') and 158.7 (C-4'). ($2 S, 3 R$)-14b (cis): $\boldsymbol{\delta}_{\mathbf{H}}$ ($\mathbf{5 0 0} \mathbf{~ M H z ; ~ C D C l} \mathbf{3}_{\mathbf{3}}$; Me $\mathbf{M S i}_{\mathbf{4}}$) $1.02\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.97\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}\right), 3.47\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.66(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}=$ 2.0 and $6.5 \mathrm{~Hz}, \mathrm{H}-2), 5.17\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.19\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.46(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, $\mathrm{H}-3), 6.74\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-8), 6.85\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.02(1 \mathrm{H}, \mathrm{dd}, J=$ 2.0 and $8.0 \mathrm{~Hz}, \mathrm{H}-7), 7.11(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-5)$ and $7.38\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-\mathbf{6}^{\prime}\right) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 2 5} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 12.8\left(\mathrm{CH}_{3}\right)$, $56.1\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $71.6(\mathrm{C}-2), 72.5(\mathrm{C}-3), 75.4\left(\mathrm{C}-2^{\prime \prime}\right), 83.6\left(\mathrm{C}-1^{\prime \prime}\right), 94.5\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 94.7$ $\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 102.7\left(\mathrm{C}-3^{\prime}\right), 109.0\left(\mathrm{C}-5^{\prime}\right), 114.1(\mathrm{C}-6), 117.5$ (C-8), 119.3 (C-1'), $121.0(\mathrm{C}-5), 126.0(\mathrm{C}-7), 127.7\left(\mathrm{C}-6^{\prime}\right)$, 143.6 (C-8a), 144.7 (C-4a), 155.0 (C-2') and 158.2 (C-4'). m/z (ESI+): 393 (MNa^{+}, 25), 381 (100), 337 (30), 301 (20), 227 (60) and 159 (30). HRMS (ESI+): Found (MNa^{+}): $393.1308 \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NaO}_{6}$ requires 393.1309.

(7R,8R)-trans-(2,4-Bis(methoxymethoxy))-rodgersinine B and (7S,8R)-cis-(2,4-bis(methoxymethoxy))-rodgersinine B

To a solution of alkynes $(2 R, 3 R)-14 \mathbf{a}$ and $(2 R, 3 S)-\mathbf{1 4 b}(8.1 \mathrm{mg}, 0.022 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$ was added ${ }^{t} \mathrm{BuLi}(1.4 \mathrm{M}$ in n-hexanes, $0.028 \mathrm{~mL}, 0.039 \mathrm{mmol})$ dropwise and the solution was stirred at this temperature for 5.5 min before iodomethane $(0.100 \mathrm{~mL}, 1.61 \mathrm{mmol})$ was added dropwise. The mixture was stirred at this temperature for 45 min , then slowly warmed to room temperature, where it was stirred for a further 20 min. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (3 mL) was added and the organic layer separated. The aqueous layer was further extracted with ethyl acetate (3 x 5 mL) and the combined organic extracts were washed with water (5 mL) and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield (7R,8R)-trans-(2,4-bis(methoxymethoxy))-rodgersinine B and (7S,8R)-cis-(2,4-bis(methoxymethoxy))-rodgersinine B (5.9 mg, 70 \%) as an inseparable 5:1 mixture of trans to cis isomers as a pale yellow oil. $\boldsymbol{R}_{\mathbf{f}} \mathbf{(4 : 1} \boldsymbol{n}$-hexanes, ethyl acetate) 0.46 . IR: $\mathbf{v}_{\text {max }}(\mathbf{f i l m}) / \mathbf{c m}^{-}$ ¹; 2933 (CH aromatic), 2857 and 2824 (CH alkane), 1613, 1584 and 1505 (C=C aromatic), 1305, 1264, 1155, 1119, 1075, 1005 and 911 (C-O ether), 810 and 732 ($\mathbf{C H}$ aromatic). ($7 S, 8 S$)-(trans): $\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(5 0 0} \mathbf{~ M H z ;} \mathbf{C D C l}_{\mathbf{3}} ; \mathbf{M e}_{\mathbf{4}} \mathbf{S i}$) 1.21 (3 H , d, $J=6.5$ $\mathrm{Hz}, \mathrm{H}-9), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9{ }^{\prime}\right), 3.47\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.14-4.19(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 5.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{H}-7), 5.17\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.19\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.76(1 \mathrm{H}, \mathrm{dd}, J=2.0 \mathrm{and} 8.5 \mathrm{~Hz}$, H-5), $6.81\left(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.85(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-3), 6.90\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.95(1 \mathrm{H}, \mathrm{d}, J=$ $\left.2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$ and $7.23(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-6) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 2 5} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 4.3\left(\mathrm{C}-9^{\prime}\right), 16.6(\mathrm{C}-9), 56.1\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 56.3$ $\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 74.1(\mathrm{C}-7), 74.5(\mathrm{C}-8), 79.4\left(\mathrm{C}-7{ }^{\prime}\right), 83.7\left(\mathrm{C}-8{ }^{\prime}\right), 94.5\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 94.7\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 103.2(\mathrm{C}-3), 109.3(\mathrm{C}-$ 5), 116.6 (C-1), 116.7 (C-5'), 119.5 (C-1'), 120.1 (C-2'), 124.9 (C-6'), 128.9 (C-6), 143.5 (C-4'), 143.9 (C-3'), 155.8 (C-2)
 $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.65(1 \mathrm{H}, \mathrm{qd}, J=2.0$ and $6.5 \mathrm{~Hz}, \mathrm{H}-8), 5.17\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.19$ $\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.45(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-7), 6.74(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $8.5 \mathrm{~Hz}, \mathrm{H}-5), 6.81(1 \mathrm{H}, \mathrm{d}, J=8.5$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 6.85(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-3), 6.90\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.98\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$ and $7.38(1 \mathrm{H}$, d, $J=8.5 \mathrm{~Hz}, \mathrm{H}-6) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 2 5} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 4.3\left(\mathrm{C}-9{ }^{\prime}\right), 12.8(\mathrm{C}-9), 56.1\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 56.3\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 71.5(\mathrm{C}-8), 72.4$ (C-7), $79.4\left(\mathrm{C}-7^{\prime}\right), 83.8\left(\mathrm{C}-8^{\prime}\right), 94.4\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 94.5\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 102.7(\mathrm{C}-3), 109.0(\mathrm{C}-5), 116.6(\mathrm{C}-1), 117.1\left(\mathrm{C}-5^{\prime}\right)$, 119.1 ($\mathrm{C}-1^{\prime}$), 120.2 ($\mathrm{C}-2^{\prime}$), 125.2 (C-6'), 127.7 (C-6), 142.0 (C-4'), 143.2 (C-3'), 154.5 (C-2) and 158.1 (C-4). m/z (ESI+): $407\left(\mathrm{MNa}^{+}, 20\right), 381$ (100), 353 (18) and 239 (25). HRMS (ESI+): Found (MNa^{+}): $407.1471 \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO}_{6}$ requires 407.1465.

(7R,8R)-trans-Rodgersinine B (3) and (7S,8R)-cis-rodgersinine B (4)
 (trans-rodgersinine B (3) and cis-rodgersinine B (4))

To a solution of a $5: 1$ mixture ethers ($7 R, 8 R$)-trans-(2,4-bis(methoxymethoxy))-rodgersinine B and ($7 S, 8 R$)-cis-($2,4-$ bis(methoxymethoxy))-rodgersinine $\mathrm{B}(5.4 \mathrm{mg}, 0.014 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $2 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{~mL})$ and the resultant mixture stirred at room temperature for 20 h . Following this, the reaction was gently heated at $40^{\circ} \mathrm{C}$ for a further 2 h until complete by TLC. 1 M NaOH was added until the solution was pH 5 and then the solution was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography ($1: 1 n$-hexanes, ethyl acetate) to give the title products ($7 R, 8 R$)-3 and ($7 S, 8 R$)-4 (4.10 mg, quant.) in a 5:1 ratio as an inseparable mixture of trans ($7 R, 8 R$)-3 to ($7 S, 8 R$)-4 isomers as a pale yellow semi-solid. $\boldsymbol{R}_{\mathbf{f}}$ (1:1 \boldsymbol{n}-hexanes, ethyl acetate) 0.43 . IR: $\mathbf{v}_{\text {max }}(f i l m) / \mathbf{c m}^{-1}$; 3374 (broad, OH), 2954 (CH aromatic), 2922 and 2852 (CH alkane), 1607, 1579, 1504 and 1459 (C=C aromatic), 1262, 1226, 1172, 1095, 1023 and 975 (C-O ether, alcohol), 840, 811 and 780 (CH aromatic). $\boldsymbol{m} / \mathbf{z}$ (ESI+): 319 ($\mathrm{MNa}^{+}, 60$ \%), 227 (100) and 158 (50). HRMS (ESI+): Found (M^{+}): 319.0931 $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{4}$ requires 319.0941.

The mixture of isomers was able to be separated by HPLC ($5 \%{ }^{i} \operatorname{PrOH}$ in n-hexanes, $0.4 \mathrm{~mL} / \mathrm{min}, 15 \mu \mathrm{~L}$ of $5 \mathrm{mg} / 0.25 \mathrm{~mL}$ solution, $40.5-43 \mathrm{~min}$) to give a pure sample of ($7 R, 8 R$)-trans-rodgersinine B (3) as a colourless film. ($7 R, 8 R$)-3 (trans): $[\boldsymbol{\alpha}]_{\mathbf{D}}$ $+18.0(c 0.20, \mathrm{MeOH}) ;\left(\mathrm{lit} .^{8}[\alpha]_{\mathbf{D}}+18.7(c 0.270, \mathrm{MeOH})\right.$). ECD (MeOH; c $\left.0.375 \mathrm{mg} / 10 \mathrm{~mL}\right) \lambda(\Delta \varepsilon) 229(+0.5), 234(0), 247$ (-0.5), $274(0), 303(+0.2) \mathrm{nm} . \mathbf{U V}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 258(4.11)$ and $\left.287(3.73) \mathrm{nm} . \boldsymbol{\delta}_{\mathbf{H}} \mathbf{(5 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}\right) 1.21$ ($3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H}-9$), 2.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$) , $4.32-4.37$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 4.81 ($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-7$), 5.00 ($1 \mathrm{H}, \mathrm{br}, \mathrm{OH}$), 6.36 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $6.40(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-3), 6.41(1 \mathrm{H}, \mathrm{dd}, J=2.5$ and $8.5 \mathrm{~Hz}, \mathrm{H}-5), 6.82\left(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.95$ ($1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $8.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), $7.00\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-\mathbf{2}^{\prime}\right)$ and $7.00(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-6) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 2 5} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right)$ 4.3 (C-9'), 17.3 (C-9), 72.8 (C-8), 79.1 (C-7'), 80.1 (C-7), 84.3 (C-8'), 104.4 (C-3), 108.0 (C-5), 113.9 (C-1), 116.9 (C-1'), 117.0 (C-5'), 120.3 (C-2'), 126.0 (C-6'), 130.3 (C-6), 142.2 (C-4), 143.5 (C-3'), 156.0 (C-2) and 157.4 (C-4). All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data was in agreement with literature values. ${ }^{8}$ The $[\alpha]_{D}$ and ECD data matched the literature values for what had been reported to be for the enantiomer of this compound. ${ }^{8}$ Thus, the structure of the natural product has been reassigned to that of this compound, ($7 R, 8 R$)-trans-rodgersinine $\mathrm{B}(3)$.

In a separate fraction of the HPLC separation ($5 \%{ }^{i} \operatorname{PrOH}$ in n-hexanes, $0.4 \mathrm{~mL} / \mathrm{min}, 15 \mu \mathrm{~L}$ of $5 \mathrm{mg} / 0.25 \mathrm{~mL}$ solution, $43.5-46 \mathrm{~min})(7 S, 8 R)$-cis-rodgersinine B (4) was isolated as a colourless film. ($75,8 R$)-4 (cis): $[\boldsymbol{\alpha}]_{\mathbf{D}}+66.67$ (c $\left.0.030, \mathrm{MeOH}\right)$; (lit. ${ }^{8}[\alpha]_{\mathrm{D}}+62.0(c \quad 0.030, \mathrm{MeOH})$). ECD (MeOH; c $\left.0.35 \mathrm{mg} / 10 \mathrm{~mL}\right) \lambda(\Delta \varepsilon) 236(+0.5), 258(+0.8), 286(+0.3) \mathrm{nm} . \mathbf{U V}$ $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 258(4.05)$ and $286(3.66) \mathrm{nm} . \boldsymbol{\delta}_{\mathrm{H}}\left(\mathbf{5 0 0} \mathbf{~ M H z ; ~ C D C l} \mathbf{C l}_{3} \mathbf{M e}_{4} \mathbf{S i}\right) 1.21(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}-9), 2.02(3 \mathrm{H}, \mathrm{s}$, HH-9'), 4.57 ($1 \mathrm{H}, ~ q d, ~ J=2.5$ and $6.5 \mathrm{~Hz}, \mathrm{H}-8$), 4.78 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), 5.37 ($1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-7$), 6.36 ($1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}$, H-3), $6.41(1 \mathrm{H}, \mathrm{dd}, J=2.5$ and $8.5 \mathrm{~Hz}, \mathrm{H}-5), 6.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.81\left(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.94(1 \mathrm{H}, \mathrm{dd}, J=1.5 \mathrm{and}$ $\left.8.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.01\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-\mathbf{2}^{\prime}\right)$ and $7.03(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-6) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 2 5} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 4.3$ (C-9'), 12.6 (C-9), 72.9 (C-8), 77.0 (C-7), 79.1 (C-7'), 84.3 (C-8'), 103.8 (C-3), 107.9 (C-5), 113.7 (C-1), 116.7 (C-1'), 117.7 (C-5'), 120.2 (C$\left.2^{\prime}\right), 126.1$ (C-6'), 128.5 (C-6), 141.8 (C-4'), 141.8 (C-3'), 155.3 (C-2) and 156.7 (C-4). All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data was
in agreement with literature values. ${ }^{8}$ The $[\alpha]_{D}$ and ECD data was identical to that of the literature values for what had been reported for the natural product. ${ }^{8}$ Thus, the structure of the natural product was confirmed to be this product, $(7 S, 8 R)$ -cis-rodgersinine B (4).

(2S)-Methyl 2-(2'-(benzyloxy)-4'-bromophenoxy)propanoate 16

To a solution of phenol $6(0.200 \mathrm{~g}, 0.717 \mathrm{mmol}), \mathrm{PPh}_{3}(0.329 \mathrm{~g}, 1.25 \mathrm{mmol})$ and (R)-methyl lactate $15(0.131 \mathrm{~g}, 1.25$ mmol) in THF (10 mL) under an atmosphere of nitrogen, at $0^{\circ} \mathrm{C}$ was added DIAD ($0.25 \mathrm{~mL}, 1.25 \mathrm{mmol}$) dropwise. The reaction mixture was allowed to warm to room temperature. After stirring for 4 h , the mixture was then concentrated in vacuo. The crude product was purified by flash chromatography (14:1 n-hexanes, ethyl acetate to $9: 1 n$-hexanes, ethyl acetate) to yield the title product $\mathbf{1 6}(0.223 \mathrm{~g}, 85 \%)$ as a colourless oil. $\boldsymbol{R}_{\mathbf{f}}$ (4:1 \boldsymbol{n}-hexanes, ethyl acetate) 0.55 . [$\left.\boldsymbol{\alpha}\right]_{\mathbf{D}}-47.7$ (c 0.502, CHCl_{3}). IR: $\mathbf{v}_{\text {max }}(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3066 and 3033 (CH aromatic), 2992 and 2949 (CH alkane), 1754 ($\mathrm{C}=\mathrm{O}$ ester), 1587 and 1492 (C=C aromatic), 1454, 1403 and 1378 (CH alkane), 1251, 1200, 1139, 1115, 1096 and 1003 (C-O ether), 978, 880, 836, 740, 696 and 641 (CH aromatic). $\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(4 0 0 ~ M H z ; ~} \mathbf{C D C l}_{\mathbf{3}} \mathbf{; ~ M e}_{\mathbf{4}} \mathbf{S i}$) 1.56 (3H, d, $J=6.8 \mathrm{~Hz}, \mathrm{H}-3$), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.69 ($1 \mathrm{H}, \mathrm{q}, J$ $\left.=6.8 \mathrm{HzCH}_{2} \mathrm{CH}_{3}\right), 5.04\left(2 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 6.79\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.97(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $8.4 \mathrm{~Hz}, \mathrm{H}-$ $\left.5^{\prime}\right), 7.06\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$ and $7.28-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 0 0} \mathbf{~ M H z} ; \mathbf{C D C l}_{3}\right) 18.4$ (C-3), $52.0(\mathrm{OMe}), 71.2$ $\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 74.7$ (C-2), 114.9 (C-4'), 118.2 (C-3'), 119.3 (C-6'), 124.1 (C-5'), 127.3 (C-2"), 127.9 (C-4"), 128.4 (C-3'), 136.3 (C-1"), 146.8 (C-1'), 150.3 (C-2') and 172.2 (C-1). m/z (ESI+): 405 (${ }^{81} \mathrm{BrMK}^{+}, 40 \%$), 403 (${ }^{79} \mathrm{MK}^{+}, 40$), $389\left({ }^{81} \mathrm{BrMNa}^{+}\right.$, 100) and 387 (${ }^{79} \mathrm{BrMNa}^{+}$, 100). HRMS (ESI+): Found (MNa^{+}): 389.0171 $\mathrm{C}_{17} \mathrm{H}_{17}{ }^{81} \mathrm{BrNaO}_{4}$ requires 389.0183. Found $\left(\mathrm{MNa}^{+}\right): 387.0191 \mathrm{C}_{17} \mathrm{H}_{17}{ }^{79} \mathrm{BrNaO}_{4}$ requires 387.0202.

To a solution of ester $\mathbf{1 6}(7.80 \mathrm{~g}, 21.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$ under an atmosphere of nitrogen at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL (1 M in cyclohexane, $23.5 \mathrm{~mL}, 23.5 \mathrm{mmol}$). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(80 \mathrm{~mL})$ then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (14:1 n-hexanes, ethyl acetate to 9:1 n-hexanes, ethyl acetate) to yield the title product (2S)-9 (4.79 g, 67%) as a white crystalline solid. $\boldsymbol{R}_{\mathbf{f}}\left(\mathbf{4 : 1} \boldsymbol{n}\right.$-hexanes, ethyl acetate) $0.38 .[\boldsymbol{\alpha}]_{\mathbf{D}}-27.7\left(c 0.68, \mathrm{CHCl}_{3}\right)$. Melting Point: $61-64{ }^{\circ} \mathrm{C}$. The IR, ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR spectra were identical to that of the enantiomer $\mathbf{9} . \mathbf{m} / \mathbf{z}(\mathbf{E S I}+$): $359\left({ }^{81} \mathrm{BrMNa}^{+}\right.$, 20), $357\left({ }^{79} \mathrm{BrMNa}^{+}\right.$, 20) and 107 (100). HRMS (ESI+): Found (MNa^{+}): $359.0090 \mathrm{C}_{16} \mathrm{H}_{15}{ }^{81} \mathrm{BrNaO}_{3}$ requires 359.0077. Found $\left(\mathrm{MNa}^{+}\right)$: $357.0098 \mathrm{C}_{16} \mathrm{H}_{15}{ }^{79} \mathrm{BrNaO}_{3}$ requires 357.0097.

(1R,2S)-2-(2'-(Benzyloxy)-4'-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}$-bis(benzyloxy)phenyl)propan-1-ol (1R,2S)-11a and (1S,2S)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-(2'",4"-bis(benzyloxy)phenyl)propan-1-ol (1S,2S)-11b

To a stirred solution of bromide 1,3-bis(benzyloxy)-4-bromobenzene ($1.98 \mathrm{~g}, 5.37 \mathrm{mmol}$) in dry THF (90 mL), under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$, was added ${ }^{t} \mathrm{BuLi}(1.4 \mathrm{M}$ in THF, $7.67 \mathrm{~mL}, 10.7 \mathrm{mmol})$. After 5 min , a solution of aldehyde (2S)-9 (1.50 g, 4.48 mmol) in dry THF (45 mL) was added slowly and the mixture was left to warm to room temperature and stirred for a further 20 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ was added and the aqueous mixture extracted with ethyl acetate (3 x 60 $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography ($9: 1 n$-hexanes, ethyl acetate) to yield (1R,2S)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}-$ bis(benzyloxy)phenyl)propan-1-ol (1R,2S)-11a (1.18 g, 42%) as a colourless oil. (1R,2S)-11a (anti): [$\boldsymbol{\alpha}]_{\mathbf{D}}+26.7$ (c 1.10, CHCl_{3}). The IR, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ and ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ spectra were identical to that of the enantiomer ($1 \mathrm{~S}, 2 \mathrm{R}$)-11a. \mathbf{m} / \mathbf{z} (ESI+): 665 (${ }^{81} \mathrm{BrMK}^{+}, 40 \%$), $647\left({ }^{79} \mathrm{MK}^{+}, 35\right), 649\left({ }^{81} \mathrm{BrMNa}^{+}, 100\right), 647\left({ }^{79} \mathrm{MNa}^{+}, 90\right), 360$ (30) and 114 (33). HRMS (ESI+): Found (MNa^{+}): $649.1400 \mathrm{C}_{36} \mathrm{H}_{33}{ }^{81} \mathrm{BrNaO}_{5}$ requires 649.1386. Found (MNa^{+}): $647.1418 \mathrm{C}_{36} \mathrm{H}_{33}{ }^{79} \mathrm{BrNaO}_{5}$ requires 647.1404.

In a separate fraction, (1S,2S)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-(2", $4^{\prime \prime}$-bis(benzyloxy)phenyl)propan-1-ol (1S,2S)-11b $(0.284 \mathrm{~g}, 10 \%)$ was collected as a colourless oil. (1S,2S)-11b (syn): $\mathbf{[\alpha}]_{\mathbf{D}}+87.7\left(c 0.554, \mathrm{CHCl}_{3}\right)$. The IR, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR spectra were identical to that of the enantiomer (1R,2R)-11b. m/z (ESI+): $665\left({ }^{81} \mathrm{BrMK}^{+}, 50 \%\right), 647\left({ }^{79} \mathrm{MK}^{+}, 45\right), 649$ (${ }^{81} \mathrm{BrMNa}^{+}, 100$), $647\left({ }^{79} \mathrm{MNa}^{+}\right.$, 85), 360 (15) and 114 (30). HRMS (ESI+): Found (MNa ${ }^{+}$): $649.1389 \mathrm{C}_{36} \mathrm{H}_{33}{ }^{81} \mathrm{BrNaO}_{5}$ requires 649.1386. Found $\left(\mathrm{MNa}^{+}\right)$: $647.1404 \mathrm{C}_{36} \mathrm{H}_{33}{ }^{79} \mathrm{BrNaO}_{5}$ requires 647.1404.

To a mixture of alcohols $(1 R, 2 S)-11 \mathbf{a}$ and $(1 S, 2 S)-\mathbf{1 1 b}(1.20 \mathrm{~g}, 1.91 \mathrm{mmol})$ in ethyl acetate (60 mL) was added $37 \% \mathrm{HCl}$ $(4.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.180 \mathrm{~g})$ and the mixture stirred under an atmosphere of hydrogen for 70 min . The mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The aqueous washings were further extracted with ethyl acetate (2 x 50 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield the title products $(2 S, 3 S)-12 \mathbf{a}$ and $(2 S, 3 R)-\mathbf{1 2 b}(0.396 \mathrm{~g}, 61 \%)$ as a $5: 1$ ratio as an inseparable mixture of trans $(2 S, 3 S)-12 a$ to cis $(2 S, 3 R)-\mathbf{1 2 b}$ isomers an orange oil. $\boldsymbol{R}_{\mathbf{f}}$ ($\mathbf{3}: \mathbf{1}$ diethyl ether, \boldsymbol{n}-hexanes) 0.39 . The $\mathbf{I R},{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ and ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ data are identical to that of the enantiomers (2R,3R)-12a and (2R,3S)-12b. $\mathbf{m} / \mathbf{z}(\mathbf{E S I}+): 361\left({ }^{81} \mathrm{BrMNa}^{+}, 60 \%\right), 359\left({ }^{79} \mathrm{MNa}^{+}, 58\right), 301(75)$, 203 (100), 150 (85) and 114 (95). HRMS (ESI+): Found (MNa ${ }^{+}$): $360.9862 \mathrm{C}_{15} \mathrm{H}_{13}{ }^{81} \mathrm{BrNaO}_{4}$ requires 360.9870. Found $\left(\mathrm{MNa}^{+}\right): 358.9874 \mathrm{C}_{15} \mathrm{H}_{13}{ }^{79} \mathrm{BrNaO}_{4}$ requires 358.9889.

(7S,8S)-trans-Rodgersinine $A(1)$ and (7R,8S)-cis-rodgersinine A (2) (ent-trans-rodgersinine A (1) and ent-cis-rodgersinine A (2))

To a solution of a $5: 1$ mixture bromides ($2 S, 3 S$)-12a and ($2 S, 3 R$)-12b ($50.0 \mathrm{mg}, 0.148 \mathrm{mmol}$) in dry THF (8 mL), under an atmosphere of nitrogen, was added trans-propenylboronic acid ($38.0 \mathrm{mg}, 0.445 \mathrm{mmol}$), CsF ($90.0 \mathrm{mg}, 0.590 \mathrm{mmol}$) and the resultant mixture was heated. Once the reaction was as reflux, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8.6 \mathrm{mg}, 0.007 \mathrm{mmol})$ was added and the reaction heated at reflux for 18 h . The reaction was then cooled and ethyl acetate (5 mL) and brine (5 mL) added. The layers were separated and the aqueous layer washed with ethyl acetate ($2 \times 5 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography ($3: 1$ diethyl ether, n-hexanes) to yield the title products $(7 S, 8 S)-1$ and $(7 R, 8 S)-2(44.0 \mathrm{mg}$, quant.) in a $5: 1$ ratio as mostly inseparable mixture of trans ($7 S, 8 S$) $\mathbf{- 1}$ to cis ($7 R, 8 S$)-2 isomers as a yellow oil. $\boldsymbol{R}_{\mathbf{f}}$ ($\mathbf{3 : 1} \mathbf{1}$ diethyl ether, \boldsymbol{n}-hexanes) $0.49 . \boldsymbol{m} / \mathbf{z}\left(E S I+\right.$): 321 ($\mathrm{MNa}^{+}, 20 \%$) and 303 (100). HRMS (ESI+): Found (MNa ${ }^{+}$): 321.1092 $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{4}$ requires 321.1097.

A small sample of the mixture of isomers was able to be separated by HPLC ($5 \%{ }^{i} \operatorname{PrOH}$ in n-hexanes, $0.4 \mathrm{~mL} / \mathrm{min}, 15 \mu \mathrm{~L}$ of $10 \mathrm{mg} / 0.5 \mathrm{~mL}$ solution, $25.5-28 \mathrm{~min})$ to give a pure sample of $(7 S, 8 S)$-trans-rodgersinine $\mathrm{A}(\mathbf{1})$ as a pale orange film. (7S,8S)-1 (trans): [$\boldsymbol{\alpha}]_{\mathbf{D}}-19.67$ (c 0.30, MeOH); (lit. ${ }^{8}$ of enantiomer $[\boldsymbol{\alpha}]_{\mathbf{D}}+24.8$ (c 0.075, MeOH)). ECD (MeOH; с 0.375 $\mathrm{mg} / 10 \mathrm{~mL}) \lambda(\Delta \varepsilon) 239(0), 256(+0.5), 274(0), 287(-0.2) \mathrm{nm} . \mathbf{U V}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 268(4.11) \mathrm{nm}$. The IR, ${ }^{\mathbf{1}} \mathbf{H}$ NMR and
${ }^{13} \mathbf{C}$ NMR data are identical to that of $(7 R, 8 R)-\mathbf{1}$ and matched the literature values. ${ }^{8}$ The $[\alpha]_{\mathrm{D}}$ and ECD data was opposite to that of the literature values for what had been reported for this compound. ${ }^{8}$ Thus, the structure of the natural product has been reassigned to that of $(7 R, 8 R)$-trans-rodgersinine $A(\mathbf{1})$, the enantiomer of this product, $(7 S, 8 S) \mathbf{- 1}$.

In a separate fraction of the HPLC separation ($5 \%{ }^{i} \operatorname{PrOH}$ in n-hexanes, $0.4 \mathrm{~mL} / \mathrm{min}, 15 \mu \mathrm{~L}$ of $10 \mathrm{mg} / 0.5 \mathrm{~mL}$ solution, $28.5-30.5 \mathrm{~min})(7 R, 8 S)$-cis-rodgersinine $\mathrm{A}(2)$ was isolated as a pale orange film. $(7 R, 8 S)-\mathbf{2}$ (cis): $[\boldsymbol{\alpha}]_{\mathbf{D}}-79.00$ (c 0.10 , $\mathrm{MeOH})$; (lit. ${ }^{8}$ of enantiomer $[\boldsymbol{\alpha}]_{\mathbf{D}}+79.9(c 0.18, \mathrm{MeOH})$). ECD (MeOH; c $\left.0.35 \mathrm{mg} / 10 \mathrm{~mL}\right) \lambda(\Delta \varepsilon) 240(+0.1), 244(0), 261(-$ $0.6) \mathrm{nm}$. UV (MeOH) $\lambda_{\max }(\log \varepsilon) 268(3.88) \mathrm{nm}$. The IR, ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C} \mathbf{N M R}$ data are identical to that of $(7 S, 8 R)$ - $\mathbf{2}$ and match the literature values. ${ }^{8}$ The $[\alpha]_{D}$ and ECD data was opposite to that of the literature values for what had been reported for the natural product. ${ }^{8}$ Thus, the structure of the natural product was confirmed to be (7S,8R)-cis-rodgersinine A (2), the enantiomer of this product.

(2S,3S)-2-Methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane and (2S,3R)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane

To a mixture of diols $(2 S, 3 S)$-12a and $(2 S, 3 R)-\mathbf{1 2 b}(0.080 \mathrm{~g}, 0.237 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at room temperature, under an atmosphere of nitrogen, was added DIPEA ($0.11 \mathrm{~mL}, 0.593 \mathrm{mmol}$) followed by MOMCl ($0.11 \mathrm{~mL}, 0.949 \mathrm{mmol}$) and the mixture was stirred at room temperature for 20 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ was added and the organic layer separated. The aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (9:1 n-hexanes, ethyl acetate) to yield (2S,3S)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane and (2S,3R)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane as an inseparable 5:1 mixture of trans to cis isomers ($0.071 \mathrm{~g}, 71$ $\%$) as a colourless oil. $\boldsymbol{R}_{\mathbf{f}}$ (4:1 n-hexanes, ethyl acetate) 0.55 . The IR, ${ }^{1} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR spectra were identical to that of the enantiomers (2R,3R)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane and (2R,3S)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane. m/z (ESI+): 465 (${ }^{81} \mathrm{BrMK}^{+}, 22 \%$), 463 (${ }^{79} \mathrm{BrMK}^{+}, 20$), 449 (${ }^{81} \mathrm{BrMNa}^{+}, 100$), 447 (${ }^{79} \mathrm{BrMNa}^{+}$, 95), 368 (40), 347 (60) and 114 (55). HRMS (ESI+): Found (MNa ${ }^{+}$): 449.0382 $\mathrm{C}_{19} \mathrm{H}_{21}{ }^{81} \mathrm{BrNaO}_{6}$ requires 449.0394. Found (MNa^{+}): $447.0405 \mathrm{C}_{19} \mathrm{H}_{21}{ }^{79} \mathrm{BrNaO}_{6}$ requires 447.0414. and

(2S,3R)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-formyl-1,4-benzodioxane (2S,3R)-13b

To a stirred solution of (2S,3S)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane and (2S,3R)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane ($39.0 \mathrm{mg}, 0.092 \mathrm{mmol}$) in dry THF (6 mL), under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$, was added ${ }^{t} \mathrm{BuLi}(1.4 \mathrm{M}$ in THF, $0.13 \mathrm{~mL}, 0.183 \mathrm{mmol}$). After 30 sec , dry DMF (0.11 $\mathrm{mL}, 1.47 \mathrm{mmol}$) was added and the mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min and then allowed to warm to room temperature and left for a further 30 min . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ was added and the aqueous mixture extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield title products (2S,3S)-13a and (2S,3R)-13b as an inseparable 5:1 mixture of trans $(2 S, 3 S) \mathbf{- 1 3 a}$ to cis $(2 S, 3 R) \mathbf{- 1 3 b}$ isomers ($23.3 \mathrm{mg}, 69 \%$) as a colourless oil. $\boldsymbol{R}_{\mathbf{f}}$ (4:1 n-hexanes, ethyl acetate) 0.29 . The IR, ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR spectra were identical to that of the enantiomers ($2 S, 3 S$)-13a and (2S,3R)-13b. $\boldsymbol{m} / \mathbf{z}$ (ESI+): 397 ($\mathrm{MNa}^{+}, 100$ \%), $360\left(\mathrm{MH}^{+}, 40\right.$ \%), 250 (5) and 114 (5). HRMS (ESI+): Found (MNa ${ }^{+}$): 397.1256 $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{7}$ requires 397.1258 .

(2S,3S)-2-Methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-ethynyl-1,4-benzodioxane (2S,3S)-14a and

(2S,3R)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-ethynyl-1,4-benzodioxane (2S,3R)-14b

To a solution of trimethylsilyl diazomethane ($0.039 \mathrm{~mL}, 0.077 \mathrm{mmol}$) in THF (2 mL) under an atmosphere of nitrogen at $78{ }^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}\left(1.4 \mathrm{M}\right.$ in n-hexanes, $0.055 \mathrm{~mL}, 0.077 \mathrm{mmol}$) dropwise. The mixture was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 25 min before a solution of aldehydes $(2 S, 3 S)-13 a$ and $(2 S, 3 R)-\mathbf{1 3 b}(0.024 \mathrm{~g}, 0.064 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added dropwise and the solution stirred at $-78{ }^{\circ} \mathrm{C}$ for an hour before warming to room temperature and stirring for 1 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (3 mL) was added and the organic layer separated. The aqueous layer was further extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$) and the combined organic extracts were washed with water (5 mL) and brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield the title products $(2 S, 3 S) \mathbf{- 1 4 a}$ and $(2 S, 3 R)-\mathbf{1 4 b}(0.021 \mathrm{~g}, 92 \%)$ as an inseparable $5: 1$ mixture of trans $(2 S, 3 S) \mathbf{- 1 4 a}$ to cis $(2 S, 3 R) \mathbf{- 1 4 b}$ isomers as a pale yellow oil. $\boldsymbol{R}_{\mathbf{f}}$ (4:1 n-hexanes, ethyl acetate) 0.44 . The $\mathbf{I R},{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ and ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ spectra were identical to that of
the enantiomers (2S,3S)-14a and (2S,3R)-14b. m/z (ESI+): 393 ($\mathbf{M N a}^{+}, 70$), 381(100), 227 (60) and 159 (20). HRMS (ESI+): Found (MNa ${ }^{+}$): $393.1308 \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NaO}_{6}$ requires 393.1309.

(7S,8S)-trans-(2,4-Bis(methoxymethoxy))-rodgersinine B and (7R,8S)-cis-(2,4-bis(methoxymethoxy))-rodgersinine B

To a solution of alkyne ($2 S, 3 S$)-14a and ($2 S, 3 R$)-14b ($8.0 \mathrm{mg}, 0.022 \mathrm{mmol}$) in THF (1.5 mL) under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$ was added ${ }^{t} \mathrm{BuLi}(1.4 \mathrm{M}$ in n-hexanes, $0.028 \mathrm{~mL}, 0.039 \mathrm{mmol})$ dropwise and the solution was stirred at this temperature for 5.5 min before iodomethane $(0.100 \mathrm{~mL}, 1.61 \mathrm{mmol})$ was added dropwise. The mixture was stirred at this temperature for 45 min , then slowly warmed to room temperature, where it was stirred for a further 20 min . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (3 mL) was added and the organic layer separated. The aqueous layer was further extracted with ethyl acetate (3 x 5 mL) and the combined organic extracts were washed with water (5 mL) and brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (4:1 n-hexanes, ethyl acetate) to yield the title products (7.6 $\mathrm{mg}, 92 \%$) as an inseparable 5:1 mixture of trans to cis isomers as a pale yellow oil. $\boldsymbol{R}_{\mathrm{f}}$ (4:1 \boldsymbol{n}-hexanes, ethyl acetate) 0.46 . The IR, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR spectra were identical to that of their enantiomers. $\boldsymbol{m} / \mathbf{z}$ (ESI+): 407 ($\mathbf{M N a}^{+}, 20 \%$), 381 (100), 239 (25) and 114 (15). HRMS (ESI+): Found (MNa ${ }^{+}$): $407.1465 \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO}_{6}$ requires 407.1465.

(7S,8S)-trans-Rodgersinine B (3) and (7R,8S)-cis-rodgersinine B (4) ((ent)-trans-rodgersinine B (3) and (ent)-cis-rodgersinine B (4))

To a 5:1 mixture of ethers (7S,8S)-trans-(2,4-bis(methoxymethoxy))-rodgersinine B and (7R,8S)-cis-(2,4-bis(methoxymethoxy))-rodgersinine $\mathrm{B}(7.6 \mathrm{mg}, 0.020 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $2 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{~mL})$ and the resultant mixture stirred at room temperature for 20 h . Following this, the reaction was gently heated at $40{ }^{\circ} \mathrm{C}$ for a further 3.5 h .1 M NaOH was added until the solution was pH 5 and then the solution was extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The crude product was purified by flash chromatography (1:1 n-hexanes, ethyl acetate) to give the title products ($7 S, 8 S$)-3 and ($7 R, 8 S$)-4 (5.06 mg, 86%) in a 5:1 ratio as an inseparable mixture of trans $(7 S, 8 S)$ - $\mathbf{3}$ to cis $(7 R, 8 S)-\mathbf{4}$ isomers as a pale yellow semi-solid. $\boldsymbol{R}_{\mathrm{f}} \mathbf{(1 : 1} \boldsymbol{n}$-hexanes, ethyl acetate) 0.43. IR: $\mathbf{v}_{\max }(\mathbf{f i l m}) / \mathbf{c m}^{\mathbf{- 1}}$; 3365 (broad, OH), 2954 (CH aromatic), 2922 and 2852 (CH alkane), 1608, 1579, 1504 and

1459 (C=C aromatic), 1263, 1226, 1172, 1095, 1023 and 975 (C-O ether, alcohol), 840, 811, 781 and 732 (CH aromatic). $\boldsymbol{m} / \mathbf{z}$ (ESI+): $319\left(\mathrm{MNa}^{+}, 10 \%\right.$) and 239 (100). HRMS (ESI+) Found (M^{+}): 319.0939 $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{4}$ requires 319.0941.

The mixture of isomers was able to be separated by HPLC ($5 \%{ }^{i} \operatorname{PrOH}$ in n-hexanes, $0.4 \mathrm{~mL} / \mathrm{min}, 15 \mu \mathrm{~L}$ of $5 \mathrm{mg} / 0.25 \mathrm{~mL}$ solution, 40.5-43 min) to give a pure sample of (7S,8S)-trans-rodgersinine B (3) as a colourless film. (7R,8S)-3 (trans): $[\alpha]_{\mathbf{D}}$ -16.0 (c 0.30, MeOH); (lit. ${ }^{8}$ of enantiomer $[\boldsymbol{\alpha}]_{\mathbf{D}}+18.7$ (c $\left.0.270, \mathrm{MeOH}\right)$). ECD (MeOH ; c $\left.0.325 \mathrm{mg} / 10 \mathrm{~mL}\right) \lambda(\Delta \varepsilon) 229(-$ 1.7), 234 (0), 247 (+0.4), 271 (0), 303 (-0.1) nm. UV (MeOH) $\lambda_{\max }(\log \varepsilon) 258$ (3.89) and 287 (3.55) nm. $\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(5 0 0 ~ M H z ; ~}$ $\mathbf{C D C l}_{3} ; \mathbf{M e}_{4} \mathbf{S i}$) 1.21 ($3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H}-9$), 2.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9{ }^{\prime}$), $4.32-4.37$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 4.81 ($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-7$), 5.00 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.40(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-3), 6.41(1 \mathrm{H}, \mathrm{dd}, J=2.5$ and $8.5 \mathrm{~Hz}, \mathrm{H}-5), 6.82(1 \mathrm{H}, \mathrm{d}, J=$ $\left.8.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.95\left(1 \mathrm{H}, \mathrm{dd}, J=2.0\right.$ and $\left.8.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.00\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$ and $7.00(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-6) . \boldsymbol{\delta}_{\mathrm{C}}$ ($125 \mathbf{~ M H z ; ~} \mathbf{C D C l}_{3}$) 4.3 (C-9'), 17.3 (C-9), 72.8 (C-8), 79.1 (C-7'), 80.1 (C-7), 84.3 (C-8'), 104.4 (C-3), 108.0 (C-5), 113.9 (C-1), 116.9 ($\mathrm{C}-1^{\prime}$), 117.0 (C-5'), 120.3 (C-2'), 126.0 (C-6'), 130.3 (C-6), 142.2 (C-4'), 143.5 (C-3'), 156.0 (C-2) and 157.4 (C-4). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data matched the literature values of the natural product. ${ }^{8}$ The $[\alpha]_{\mathrm{D}}$ and ECD data was opposite to that of the literature values for what had been reported for this compound. ${ }^{8}$ Thus, the structure of the natural product has been reassigned to that of $(7 R, 8 R)$-trans-rodgersinine $B(3)$, the enantiomer of this product.

In a separate fraction of the HPLC separation ($5 \%{ }^{i} \operatorname{PrOH}$ in n-hexanes, $0.4 \mathrm{~mL} / \mathrm{min}, 15 \mu \mathrm{~L}$ of $5 \mathrm{mg} / 0.25 \mathrm{~mL}$ solution, 43.5-46 min) (7R,8S)-cis-rodgersinine B (4) was isolated as a colourless film. (7R,8S)-4 (cis): $\boldsymbol{\alpha}_{\boldsymbol{\alpha}}^{\mathbf{D}} \mathbf{D}_{\mathbf{D}}-50.00(c 0.030, \mathrm{MeOH})$; (lit. ${ }^{8}[\boldsymbol{\alpha}]_{\mathbf{D}}+62.0(c 0.030, \mathrm{MeOH})$ of enantiomer). ECD (MeOH; c $\left.0.30 \mathrm{mg} / 10 \mathrm{~mL}\right) \lambda(\Delta \varepsilon) 225(0), 236(-0.4), 259(-0.7)$, 287 (-0.3) nm. UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 259$ (4.01) and 286 (3.62) nm. $\boldsymbol{\delta}_{\mathbf{H}}\left(\mathbf{5 0 0} \mathbf{~ M H z ; ~ C D C l} \mathbf{H}_{3} ; \mathbf{M e}_{\mathbf{4}} \mathbf{S i}\right) 1.21$ (3H, d, $J=6.5$ $\mathrm{Hz}, \mathrm{H}-9), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9^{\prime}\right), 4.57(1 \mathrm{H}, \mathrm{qd}, J=2.5$ and $6.5 \mathrm{~Hz}, \mathrm{H}-8), 4.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.37(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-7), 6.36$ $(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-3), 6.41(1 \mathrm{H}, \mathrm{dd}, J=2.5$ and $8.5 \mathrm{~Hz}, \mathrm{H}-5), 6.50(1 \mathrm{H}, \mathrm{br}$ s, OH$\left.), 6.81(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-5)^{\prime}\right), 6.94$ $\left(1 \mathrm{H}, \mathrm{dd}, J=1.5\right.$ and $\left.8.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.01\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$ and $7.03(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-6) . \boldsymbol{\delta}_{\mathrm{C}}\left(\mathbf{1 2 5} \mathbf{~ M H z ; ~ C D C l} \mathbf{~}_{3}\right)$ 4.3 (C-9'), 12.6 (C-9), 72.9 (C-8), 77.0 (C-7), 79.1 (C-7'), 84.3 (C-8'), 103.8 (C-3), 107.9 (C-5), 113.7 (C-1), 116.7 (C-1'), 117.7 (C-5'), 120.2 (C-2'), 126.1 (C-6'), 128.5 (C-6), 141.8 (C-4'), 141.8 (C-3'), 155.3 (C-2) and 156.7 (C-4). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data matched the literature values of the natural product. ${ }^{8}$ The $[\alpha]_{D}$ and ECD data was opposite to that of the literature values which had been reported for the natural product. ${ }^{8}$ Thus, the structure of the natural product was confirmed to be $(7 S, 8 R)$-cis-rodgersinine $B(4)$, the enantiomer of this product.

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-(benzyloxy)phenol ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure $2 .{ }^{13} \mathrm{C}$ NMR spectrum of 2-(benzyloxy)phenol ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-benzyloxy-4-bromophenol $6\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 4. ${ }^{13} \mathrm{C}$ NMR spectrum of 2-benzyloxy-4-bromophenol $6\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 5. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R)-ethyl 2-(2'-(benzyloxy)-4'-bromophenoxy)propanoate 8 ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l} 3$).

Figure 6. ${ }^{13} \mathrm{C}$ NMR spectrum of (2R)-ethyl 2-(2'-(benzyloxy)-4'-bromophenoxy)propanoate 8 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 7. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)propan-1-al 9 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

${ }_{\mid}^{\stackrel{\rightharpoonup}{\circ}} \stackrel{\stackrel{\circ}{\mathrm{m}}}{\stackrel{\infty}{\infty}} \stackrel{\stackrel{-}{\sim}}{ }$

Figure 8. ${ }^{13}$ C NMR spectrum of (2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)propan-1-al 9 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 9. ${ }^{1} \mathrm{H} \quad$ NMR spectrum of (1S,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-(2',4'-dimethoxyphenyl)propan-1-ol 19a ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 10. ${ }^{13} \mathrm{C} \quad$ NMR spectrum of (1S,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-(2', $\mathbf{4}^{\prime \prime}$ -dimethoxyphenyl)propan-1-ol 19a (100 MHz, CDCl_{3}).

Figure 11. ${ }^{1} \mathrm{H}$ NMR spectrum of (1R,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-(2'",4'-dimethoxyphenyl)propan-1-ol 19b and 19a ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 12. ${ }^{13} \mathrm{C}$ NMR spectrum of (1R,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-($2^{\prime \prime}, 4^{\prime \prime}$-dimethoxyphenyl)propan-1-ol 19b and 19a ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 13. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R,3R)-2-methyl-3-($2^{\prime}, 4^{\prime}$-dimethoxyphenyl)-6-bromo-1,4-benzodioxane 20a and ($2 R, 3 S$)-2-methyl-3-(2', 4^{\prime}-dimethoxyphenyl)-6-bromo-1,4-benzodioxane $20 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$).

Figure 14. ${ }^{13} \mathrm{C}$ NMR spectrum of ($2 R, 3 R$)-2-methyl-3-($2^{\prime}, 4^{\prime}$-dimethoxyphenyl)-6-bromo-1,4-benzodioxane 20a and (2R,3S)-2-methyl-3-($2^{\prime}, 4^{\prime}$-dimethoxyphenyl)-6-bromo-1,4-benzodioxane $20 \mathrm{~b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$).

Figure 15. ${ }^{1} \mathbf{H}$ NMR spectrum of (7R,8R)-7-(2,4-dimethoxyphenyl)-8-methyl-3',7-epoxy-8,4'-oxyneolign-7'-ene 21a and (7S,8R)-7-(2,4-dimethoxyphenyl)-8-methyl-3',7-epoxy-8,4'-oxyneolign-7'-ene 21 b ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 16. ${ }^{13} \mathrm{C}$ NMR spectrum of ($7 R, 8 R$)-7-(2,4-dimethoxyphenyl)-8-methyl-3',7-epoxy-8,4'-oxyneolign-7'-ene 21a and (7S,8R)-7-(2,4-dimethoxyphenyl)-8-methyl-3',7-epoxy-8,4'-oxyneolign-7'-ene 21 b ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 , 3 - b i s (b e n z y l o x y) - 4 - b r o m o b e n z e n e ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 18. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 , 3 - b i s}\left(\right.$ benzyloxy)-4-bromobenzene ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 19. ${ }^{1} \mathrm{H}$ NMR spectrum of (1S,2R)-2-(2'-(Benzyloxy)-4'-bromophenoxy)-1-(2' $\mathbf{2}^{\prime \prime} \mathbf{4}^{\prime \prime}$ -bis(benzyloxy)phenyl)propan-1-ol 11a ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 20. ${ }^{13} \mathrm{C} \quad$ NMR spectrum of (1S,2R)-2-(2'-(Benzyloxy)-4'-bromophenoxy)-1-(2', $\mathbf{4}^{\prime \prime}$ -bis(benzyloxy)phenyl)propan-1-ol 11a (100 MHz, CDCl_{3}).

Figure 21. ${ }^{1} \mathrm{H} \quad$ NMR spectrum of (1R,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-(2' $\mathbf{2}^{\prime \prime} \mathbf{4}^{\prime \prime}$ -bis(benzyloxy)phenyl)propan-1-ol 11b ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 22. ${ }^{13} \mathrm{C} \quad \mathrm{NMR}$ spectrum of (1R,2R)-2-(2'-(benzyloxy)-4'-bromophenoxy)-1-(2', $\mathbf{4}^{\prime \prime}$ -bis(benzyloxy)phenyl)propan-1-ol $11 \mathrm{~b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 23. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R,3R)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4benzodioxane and(2R,3S)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 24. ${ }^{13} \mathrm{C}$ NMR spectrum of (2R,3R)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4benzodioxane and(2R,3S)-2-methyl-3-(2'-benzyloxy-4'-hydroxyphenyl)-6-bromo-1,4-benzodioxane (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 25. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R,3R)-2-methyl-3-(2',4'-dihydroxyphenyl)-6-bromo-1,4-benzodioxane 12a ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 26. ${ }^{13} \mathrm{C}$ NMR spectrum of ($2 R, 3 R$)-2-methyl-3-(2',4'-dihydroxyphenyl)-6-bromo-1,4-benzodioxane 12a ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 27. ${ }^{1} \mathrm{H}$ NMR spectrum of ($2 R, 3 R$)-2-methyl-3-($\mathbf{2}^{\prime}, 4$ '-dihydroxyphenyl)-6-bromo-1,4-benzodioxane 12a and (2R,3S)-2-methyl-3-(2', $\mathbf{4}^{\prime}$-dihydroxyphenyl)-6-bromo-1,4-benzodioxane $12 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 28. ${ }^{13} \mathrm{C}$ NMR spectrum of ($2 R, 3 R$)-2-methyl-3-($2^{\prime}, 4^{\prime}$-dihydroxyphenyl)-6-bromo-1,4-benzodioxane 12 a and (2R,3S)-2-methyl-3-(2',4'-dihydroxyphenyl)-6-bromo-1,4-benzodioxane $\mathbf{1 2 b}\left(100 \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$.

Figure 29. ${ }^{1} \mathbf{H}$ NMR spectrum of trans-rodgersinine $A(1)\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 30. ${ }^{13}$ C NMR spectrum of trans-rodgersinine $A(1)\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Atom	Synthetic (+)-trans-rodgersinine A (1)		Natural (+)-trans-rodgersinine A (1)	
	$\begin{gathered} { }^{1} \mathrm{H}(\delta)(400 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}(\delta)(100 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right) \end{gathered}$	$\begin{gathered} { }^{1} \mathrm{H}(\delta)(400 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right)^{8} \\ \hline \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}(\delta)(100 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right)^{8} \\ \hline \end{gathered}$
1		114.0		113.9
2		156.2		156.1
3	6.41 (1H, br s)	104.5	6.35 (1H, br s)	104.4
4		157.3		157.4
5	6.41 (1H, d, J 8.0 Hz)	107.9	6.40 (1H, d, J 7.9 Hz)	107.9
6	6.99 (1H, d, J 8.0 Hz)	130.1	6.98 (1H, d, J 7.9 Hz)	130.0
7	4.81 (1H, d, J 8.4 Hz)	80.7	4.80 (1H, d, J 8.0 Hz)	80.5
8	4.32-4.39 (1H, m)	72.5	$\begin{gathered} \hline 4.33(1 \mathrm{H}, \mathrm{dq} J 6.4,8.0 \\ \mathrm{Hz}) \end{gathered}$	72.6
9	1.20 (3H, d, J 6.4 Hz)	17.4	1.19 (3H, d, J 6.6 Hz)	17.4
1^{\prime}		131.8		131.8
2^{\prime}	6.95 (1H, d, J 1.6 Hz)	114.3	6.93 (1H, d, J 1.7 Hz)	114.2
3 '		142.5		142.5
4^{\prime}		142.4		142.4
5'	6.84 (1H, d, J 8.4 Hz)	117.1	6.82 (1H, d, J 8.3 Hz)	117.0
$6{ }^{\prime}$	$\begin{gathered} 6.89(1 \mathrm{H}, \mathrm{dd}, J 1.6,8.4 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	120.3	$\begin{gathered} 6.88(1 \mathrm{H}, \mathrm{dd}, J \text { 1.7, } 8.3 \\ \mathrm{Hz}) \end{gathered}$	120.2
$7{ }^{\prime}$	$\begin{gathered} 6.27(1 \mathrm{H}, \mathrm{dd}, J 1.6,15.2 \\ \mathrm{Hz}) \end{gathered}$	130.4	6.27 (1H, d, J 15.3 Hz)	130.3
8^{\prime}	$\begin{gathered} 6.04(1 \mathrm{H}, \mathrm{dq}, J 6.4,15.2 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	124.4	$\begin{gathered} 6.06(1 \mathrm{H}, \mathrm{dq}, J 6.6,15.3 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	124.4
9^{\prime}	$\begin{gathered} 1.84(3 \mathrm{H}, \mathrm{dd}, \mathrm{~J} 1.6,6.4 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	18.4	1.83 (3H, d, J 6.6 Hz)	18.4

Table 1. NMR data comparison table for natural and synthetic (+)-trans rodgersinine A (1).

Figure 31. ${ }^{1} \mathrm{H}$ NMR spectrum of cis-rodgersinine $A(2)\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 32. ${ }^{13}$ C NMR spectrum of cis-rodgersinine $A(2)\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Atom	Synthetic (+)-cis-rodgersinine A (2)		Natural (+)-cis-rodgersinine A (2)	
	$\begin{gathered} { }^{1} \mathrm{H}(\delta)(400 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}(\delta)(100 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right) \end{gathered}$	$\begin{gathered} { }^{1} \mathrm{H}(\delta)(400 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right)^{8} \\ \hline \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}(\delta)(100 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right)^{8} \\ \hline \end{gathered}$
1		113.8		113.7
2		155.6		155.6
3	6.41 (1H, br s)	103.9	6.35 (1H, d, J 2.4 Hz)	103.9
4		156.7		156.6
5	$\begin{gathered} 6.41(1 \mathrm{H}, \mathrm{dd}, J 1.2,8.0 \\ \mathrm{Hz}) \end{gathered}$	107.8	$\begin{gathered} 6.40(1 \mathrm{H}, \mathrm{dd}, J 2.4,8.3 \\ \mathrm{Hz}) \end{gathered}$	107.8
6	7.04 (1H, d, J 8.0 Hz)	128.6	7.02 (1H, d, J 8.3 Hz)	128.6
7	5.38 (1H, d, J 2.4 Hz)	77.2	5.37 (1H, d, J 2.4 Hz)	77.0
8	$\begin{gathered} 4.55(1 \mathrm{H}, \mathrm{dq}, J 2.4,6.4 \\ \mathrm{Hz}) \end{gathered}$	72.8	$\begin{gathered} 4.56(1 \mathrm{H}, \mathrm{qd}, J 2.4,6.5 \\ \mathrm{Hz}) \end{gathered}$	72.9
9	1.20 (3H, d, J 6.4 Hz)	12.5	1.20 (3H, d, J 6.5 Hz)	12.5
1^{\prime}		131.7		131.7
2^{\prime}	6.95 (1H, d, J 2.0 Hz)	114.2	6.94 (1H, d, J 2.0 Hz)	114.2
3^{\prime}		142.2		142.1
4^{\prime}		140.8		140.7
5'	6.81 (1H, d, J 8.0 Hz)	117.8	6.81 (1H, d, J 8.4 Hz)	117.8
6^{\prime}	$\begin{gathered} 6.88(1 \mathrm{H}, \mathrm{dd}, J 2.0,8.0 \\ \mathrm{Hz}) \end{gathered}$	120.4	$\begin{gathered} 6.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{~J} 2.0,8.4 \\ \mathrm{Hz}) \end{gathered}$	120.4
$7{ }^{\prime}$	$\begin{gathered} 6.28(1 \mathrm{H}, \mathrm{dd}, J 1.6,16.0 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	130.1	6.28 (1H, d, J 14.0 Hz)	130.1
8^{\prime}	$\begin{gathered} 6.05(1 \mathrm{H}, \mathrm{qd}, J 6.4,16.0 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	124.3	$\begin{gathered} \hline 6.10(1 \mathrm{H}, \mathrm{qd}, \mathrm{~J} 6.5,14.0 \\ \mathrm{Hz}) \end{gathered}$	124.4
9^{\prime}	$\begin{gathered} 1.84(3 \mathrm{H}, \mathrm{dd}, \mathrm{~J} 1.2,6.4 \\ \mathrm{Hz}) \end{gathered}$	18.4	1.83 (3H, d, J 6.5 Hz)	18.4

Table 2. NMR data comparison table for natural and synthetic (+)-cis rodgersinine A (2).

Figure 33. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R,3R)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-bromo-1,4benzodioxane and ($2 R, 3 S$)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure $34 .{ }^{13} \mathrm{C}$ NMR spectrum of (2R,3R)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-bromo-1,4benzodioxane and (2R,3S)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-bromo-1,4-benzodioxane (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 35. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R,3R)-2-methyl-3-(2',4'-bis(methoxymethoxy)phenyl)-6-formyl-1,4benzodioxane ($2 R, 3 R$)-13a and ($2 R, 3 S$)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-formyl-1,4benzodioxane ($2 R, 3 S$)-13b ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 36. ${ }^{13} \mathrm{C}$ NMR spectrum of (2R,3R)-2-methyl-3-($2^{\prime}, 4{ }^{\prime}$-bis(methoxymethoxy)phenyl)-6-formyl-1,4benzodioxane ($2 R, 3 R$)-13a and (2R,3S)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-formyl-1,4benzodioxane ($2 R, 3 S$)-13b ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 37. ${ }^{1} \mathrm{H}$ NMR spectrum of (2R,3R)-2-methyl-3-($\mathbf{2}^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-ethynyl-1,4benzodioxane ($2 R, 3 R$)-14a and (2R,3S)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-ethynyl-1,4benzodioxane ($2 R, 3 S$)-14b ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 38. ${ }^{13} \mathrm{C}$ NMR spectrum of (2R,3R)-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-ethynyl-1,4benzodioxane $(2 R, 3 R)-14 a$ and $(2 R, 3 S)$-2-methyl-3-($2^{\prime}, 4^{\prime}$-bis(methoxymethoxy)phenyl)-6-ethynyl-1,4benzodioxane ($2 R, 3 S$)-14b ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$).

Figure 39. ${ }^{1}$ H NMR spectrum of (7R,8R)-trans-(2,4-bis(methoxymethoxy))-rodgersinine B and (7S,8R)-cis-(2,4-bis(methoxymethoxy))-rodgersinine \mathbf{B} ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 40. ${ }^{13} \mathrm{C}$ NMR spectrum of (7R,8R)-trans-(2,4-bis(methoxymethoxy))-rodgersinine B and (7S,8R)-cis-(2,4-bis(methoxymethoxy))-rodgersinine $\mathbf{B}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 41. ${ }^{1} \mathrm{H}$ NMR spectrum of trans-rodgersinine $\mathbf{B (3)}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 42. ${ }^{13} \mathrm{C}$ NMR spectrum of trans-rodgersinine $\mathbf{B (3)}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Atom	Synthetic (+)-trans-rodgersinine B (3)		Natural (+)-trans-rodgersinine B (3)	
	$\begin{gathered} { }^{1} \mathrm{H}(\delta)(500 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right) \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}(\delta)(125 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right) \end{gathered}$	$\begin{gathered} { }^{1} \mathrm{H}(\delta)(400 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right)^{8} \\ \hline \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}(\delta)(100 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right)^{8} \\ \hline \end{gathered}$
1		113.9		113.9
2		156.0		156.0
3	6.40 (1H, d, J 2.5 Hz)	104.4	6.38 (1H, br s)	104.4
4		157.4		157.4
5	$\begin{gathered} \hline 6.41(1 \mathrm{H}, \mathrm{~d}, J 2.5,8.5 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	108.0	6.40 (1H, d, J 8.4 Hz$)$	108.0
6	7.00 (1H, d, J 8.5 Hz)	130.3	6.99 (1H, d, J 8.4 Hz)	130.5
7	4.81 (1H, d, J 8.5 Hz)	80.1	4.81 (1H, d, J 8.0 Hz)	80.1
8	4.32-4.37 (1H, m)	72.8	$\begin{gathered} 4.32(1 \mathrm{H}, \mathrm{qd}, J 6.4,8.0 \\ \mathrm{Hz}) \end{gathered}$	72.8
9	1.21 (3H, d, J 6.0 Hz)	17.3	1.21 (3H, d, J 6.4 Hz)*	17.3
1^{\prime}		116.9		116.9
2^{\prime}	7.00 (1H, d, J 2.0 Hz)	120.3	6.97 (1H, br s)	120.3
3^{\prime}		143.5		143.5
$4 '$		142.2		142.2
5'	6.82 (1H, d, J 8.5 Hz)	117.0	6.80 (1H, d, J 8.3 Hz)	117.0
6^{\prime}	$\begin{gathered} \hline 6.95(1 \mathrm{H}, \mathrm{dd}, J 2.0,8.5 \\ \mathrm{Hz}) \end{gathered}$	126.0	6.94 (1H, d, J 8.3 Hz)	126.0
7'		79.1		79.1
8^{\prime}		84.3		84.3
9^{\prime}	2.02 (3H, s)	4.3	2.00 (3H, s)	4.3

* Signal misprinted in original isolation paper.

Table 3. NMR data comparison table for natural and synthetic (+)-trans rodgersinine B (3).

Figure 43. ${ }^{1} \mathrm{H}$ NMR spectrum of cis-rodgersinine $B(4)\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 44. ${ }^{13}$ C NMR spectrum of cis-rodgersinine $B(4)\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Atom	Synthetic (+)-cis-rodgersinine B (4)		Natural (+)-cis-rodgersinine B (4)	
	$\begin{gathered} { }^{1} \mathrm{H}(\delta)(500 \mathrm{MHz} \\ \left.\mathrm{CDCl}_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}(\delta)(125 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right) \end{gathered}$	$\begin{gathered} { }^{1} \mathrm{H}(\delta)(400 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right)^{8} \\ \hline \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}(\delta)(100 \mathrm{MHz}, \\ \left.\mathrm{CDCl}_{3}\right)^{8} \end{gathered}$
1		113.7		113.7
2		155.3		155.3
3	6.36 (1H, J 2.5 Hz)	103.8	6.43 (1H, br s)	103.8
4		156.7		156.7
5	$\begin{gathered} 6.41(1 \mathrm{H}, \mathrm{dd}, J 2.5,8.5 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	107.9	6.39 (1H, d, J 8.3 Hz)	107.9
6	7.03 (1H, d, J 8.5 Hz)	128.5	7.03 (1H, d, J 8.3 Hz)	128.5
7	5.37 (1H, d, J 2.5 Hz)	77.0	5.36 (1H, d, J 2.2 Hz)	77.0
8	$\begin{gathered} 4.57(1 \mathrm{H}, \mathrm{qd}, J 2.5,6.5 \\ \mathrm{Hz}) \end{gathered}$	72.9	$\begin{gathered} 4.58(1 \mathrm{H}, \mathrm{qd}, J 2.2,6.6 \\ \mathrm{Hz}) \end{gathered}$	72.9
9	1.21 (3H, d, J 6.5 Hz)	12.6	1.18 (3H, d, J 6.6 Hz)*	12.6
1^{\prime}		116.7		116.7
2^{\prime}	7.01 (1H, d, J 1.5 Hz)	120.2	6.99 (1H, d, J 1.7 Hz)	120.2
3'		141.8		141.8
$4 '$		141.8		141.7
5'	6.81 (1H, d, J 8.5 Hz)	117.7	6.80 (1H, d, J 8.3 Hz)	117.7
$6{ }^{\prime}$	$\begin{gathered} 6.95(1 \mathrm{H}, \mathrm{dd}, J 1.5,8.5 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	126.1	$\begin{gathered} 6.91(1 \mathrm{H}, \mathrm{dd}, J 1.7,8.3 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	126.2
$7{ }^{\prime}$		79.1		79.0
8^{\prime}		84.3		84.3
9^{\prime}	2.02 (3H, s)	4.3	2.00 (3H, s)	4.3

Table 4. NMR data comparison table for natural and synthetic (+)-cis rodgersinine B (4).

Figure 45. ${ }^{1} \mathrm{H}$ NMR spectrum of (2S)-methyl 2-(2'-(benzyloxy)-4'-bromophenoxy)propanoate 16 (400 MHz, $\mathbf{C D C l}_{3}$.

Figure 46. ${ }^{13} \mathrm{C}$ NMR spectrum of (2S)-methyl 2-(2'-(benzyloxy)-4'-bromophenoxy)propanoate 16 (100 MHz , CDCl_{3}.
(7R,8R)-trans-Rodgersinine A

Figure 47. ECD spectrum of (7R,8R)-trans rodgersinine A (1).
(7S,8S)-trans-Rodgersinine A

Figure 48. ECD spectrum of (7S,8S)-trans rodgersinine A (1).

Figure 49. ECD spectrum of (7S,8R)-cis rodgersinine A (2).
(7R,8S)-cis-Rodgersinine A

Figure 50. ECD spectrum of (7R,8S)-cis rodgersinine A (2).

Figure 51. ECD spectrum of (7S,8S)-trans rodgersinine B (3).

Figure 52. ECD spectrum of (7R,8R)-trans rodgersinine B (3).

Figure 53. ECD spectrum of (7R,8S)-cis rodgersinine B (4).

Figure 54. ECD spectrum of (7S,8R)-cis rodgersinine B (4).

Enantiomers of trans-Rodgersinine A and B

Figure 55. ECD spectra of trans rodgersinine A (1) and B (3) and enantiomers.

Enantiomers of cis-Rodgersinine A and B

Figure 56. ECD spectra of cis rodgersinine A (2) and B (4) and enantiomers.

Biological testing:

Experimental Details:

Methods similar to previously described ${ }^{9}$ were used with the following modifications. Human hepatoma Huh7.5.1 cells were cultured in DMEM containing 9\% fetal bovine serum, $1 \times$ penicillin/streptomycin/fungizone, 4 mM L-glutamine, and $1 \times$ non-essential amino acids. For cytotoxicity testing, cells were plated at 15,000 cells/well in 96 -well plates, and compounds were added 24 hours after plating to existing medium. Addition of DMSO to cells served as the negative control. Seventytwo hours later, an equal volume of ATPlite reagent to medium was added directly to each well and mixed by pipetting up and down. The plate was read immediately on PerkinElmer Victor X2 plate reader. The concentration of compound that resulted in a 50% reduction of cellular ATP levels $\left(\mathrm{CC}_{50}\right)$ was determined performing in Prism 6 (GraphPad Software) a 4parameter regression of ATP levels using log-transformed concentration data. For antiviral testing, cells were plated in 12well plates and infected with HCV at a multiplicity of infection of 0.05 for 5 hours. Virus inoculum was removed and replaced with fresh media containing three different doses approaching the CC_{50} (in $\mu \mathrm{M}$) of each compound. Cytoplasmic protein lysates were harvested 72 hours post-infection and HCV proteins were detected by western blot using HCV positive patient serum. The cellular protein Actin was detected to verify equal loading of protein in each sample. For western blotting, luminescent based-film detection was employed as previously described. ${ }^{9}$ For some compounds, western blotting using infra-red-based detection was performed using an Odyssey CLx Imaging System (LiCor). For this, after separation of proteins by electrophoresis, proteins were transferred to nitrocellulose membranes, and membranes were allowed to dry for 1 hr or overnight. Membranes were then wetted for 2 minutes in PBS and incubated for a maximum of 1 hour in Odyssey Blocking Buffer (part \#927-40003). Primary antibodies for western blotting (human anti-HCV serum or goat anti-actin) were diluted in Odyssey Blocking Buffer containing 0.2% Tween (Fisher). Following one hour at room temperature or overnight incubation at $4^{\circ} \mathrm{C}$, blots were washed and infrared-coupled secondary antibodies (donkey anti-human IgG (H+L) DyLight 800 (Part \#SA510132; Thermo Fisher Pierce) or donkey anti-goat IgG (H+L) DyLight 680 (Part \#PISA510090; Thermo Fisher Pierce), were diluted $1: 15,000$ and incubated for 1 hour at room temperature in the dark. Blots were washed and infrared images collected by imaging the membrane on the CLx instrument.

Analysis:

($7 R, 8 R$)-trans-Rodgersinine A (1) has an approximate anti-HCV IC ${ }_{50}$ of $\sim 125 \mu \mathrm{M}$, well below that of it's cytoxicity CC_{50} (Figures 57 and 58). (7S,8S)-trans-Rodgersinine A (1), (7R,8R)-trans-rodgersinine B (3) and (7S,8S)-trans-rodgersinine B (3) all had similar cytotoxicity and anti-HCV profiles. The CC_{50} of $(7 S, 8 S)$-trans-rodgersinine $\mathrm{A}(1)$ was approximately 33 $\mu \mathrm{M}$, while for both enantiomers of $\mathbf{3},(7 R, 8 R)-3$ and $(7 S, 8 S)-3$, the C_{50} is $\sim 40-45 \mu \mathrm{M}$. Once again, these cytotoxicity values are well above the anti-HCV IC_{50} values; for $(7 R, 8 R)-3$ and $(7 S, 8 S)-\mathbf{3}$ this figure is approximately $15 \mu \mathrm{M}$, while $(7 R, 8 R)-\mathbf{1}$ is slightly more potent with an $\mathrm{IC}_{50} \sim 10 \mu \mathrm{M}$.

Figure 57. Cytotoxicity profile in human hepatoma Huh7.5.1 cells of (7R,8R)-trans-rodgersinine A (1), (7S,8S)-trans-rodgersinine A (1), (7R,8R)-trans-rodgersinine B (3) and (7S,8S)-trans-rodgersinine B (3). Compounds were added to cells at the indicated concentrations and 72 hours later, ATP levels were measured using the ATPlite assay.

Figure 58. Anti-HCV profile of ($7 R, 8 R$)-trans-rodgersinine $A(1)$. Huh7.5.1 cells were infected with HCV at a multiplicity of infection of 0.05 for 5 hours. Virus inoculum was removed and replaced with fresh media containing the indicated concentrations (in $\mu \mathrm{M}$) of each compound. Cytoplasmic protein lysates were harvested 72 hours postinfection and HCV proteins were detected by western blot using HCV positive patient serum. NS3 and NS5A refer to the HCV nonstructural 3 and 5A proteins. Actin was detected to verify equal loading of protein in each sample.

Compound	Cytotoxicity $\mathbf{C C}_{50}(\mu \mathrm{M})^{\mathrm{a}}$	Antiviral $\mathbf{I C}_{50}(\mu \mathrm{M})^{\mathrm{b}}$
$(7 R, 8 R)$-trans- rodgersinine A (1)	>250	125
$(75,8 S)$-trans- rodgersinine A (1)	32.87	15
$(7 R, 8 R)$-trans- rodgersinine B (3)	45.93	10
(7S,8S)-trans- rodgersinine B (3)	40.11	15

Table 5. ${ }^{\text {a }}$ Cytotoxicity $\mathbf{C C}_{50}$ data are derived from regression fitting of data in Fig. 57. ${ }^{\mathrm{b}}$ Antiviral IC_{50} data are approximations based on visual inspection of the western blots shown in Fig. 58.

References:

1. Chen, B.; Baumeister, U.; Pelzl, G.; Das, M. K.; Zeng, X.; Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2005, 127, 16578-16591.
2. Brimble, M. A.; Liu, Y.-C.; Trzoss, M. Synthesis 2007, 9, 1392-1402.
3. Prehm, M.; Enders, C.; Anzahaee, M. Y.; Glettner, B.; Baumeister, U.; Tschierske, C. Chem. - Eur. J. 2008, 14, 63526368.
4. Heshmatollah, A.; Tavakkoli, S. M.; Salehian, F. Synth. Commun. 2010, 40, 3226-3232.
5. Kikushima, K.; Moriuchi, T.; Hirao, T. Tetrahedron Lett. 2010, 51, 340-342.
6. Sharma, R. A.; Bobek, M.; Bloch, A. J. Med. Chem. 1975, 18, 473-476.
7. Jacobs, R.; Shenvi, A. Preparation of 4-(substituted aryl)piperidines as neurokinin receptor antagonists. EP 630887, December 28, 1994.
8. Chin, Y.-W.; Kim, J. Tetrahedron Lett. 2004, 45, 339-341.
9. Polyak, S. J.; Morishima, C.; Lohmann, V.; Pal, S.; Lee, D.Y.; Liu, Y.; Graf, T.N.; Oberlies, N.H. Proc. Natl. Acad. Sci. U.S.A. 2010, 13, 5995-5999.
