Preparation of Tri- and Tetrasubstituted Allenes via Regioselective Lateral Metalation of Benzylic (Trimethylsilyl)alkynes Using TMPZnCl·LiCl

Pauline Quinio, Cyril François, Ana Escribano Cuesta, Andreas K. Steib, Florian Achrainer, Hendrik Zipse, Konstantin Karaghiosoff, and Paul Knochel*

Ludwig-Maximilians-Universität München, Department Chemie

Butenandtstrasse 5-13, Haus F, 81377 München (Germany)

Fax: (+49) 089 2180 77680

e-mail: paul.knochel@cup.uni-muenchen.de

Table of Contents

Full experimental details and NMR data	2
NMR spectra	33
Single Crystal X-Ray Diffraction Studies	81
NMR studies	91

General information: All reactions were carried out under an argon atmosphere in flamedried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with argon prior to use. THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen. Yields refer to isolated yields of compounds estimated to be > 95 % pure as determined by ¹H NMR (25 °C) and capillary GC. Chemical shifts are reported as δ -values in ppm relative to the solvent peak. NMR spectra were recorded in a solution of CDCl₃ (residual chloroform: δ = 7.27 ppm for ¹H NMR and δ = 77.0 ppm for ¹³C NMR). Column chromatography was performed using SiO₂ (0.040 – 0.063 mm, 230 – 400 mesh ASTM) from Merck if not indicated. All reagents were obtained from commercial sources.

Starting materials: Commercially available starting materials were purchased from commercial sources and used without further purification. TMPH was distilled under argon prior to use.

General procedures for the preparation of various metal salt solutions:

ZnCl₂ (1M solution in THF):

A *Schlenk*-flask was charged with ZnCl₂ (27.2 g, 0.20 mol) and dried for 6 h at 150 °C under high vacuum ($5 \cdot 10^{-2}$ mbar, dry stirring). After cooling, careful addition of THF (200 mL) under an argon atmosphere and stirring overnight furnishes a clear, colorless solution which is kept over molecular sieves (4 Å).

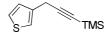
CuCN·2LiCl (1M solution in THF):

A *Schlenk*-flask was charged with LiCl (16.96 g, 0.40 mol), predried under high vacuum $(5 \cdot 10^{-2} \text{ mbar}; \text{ dry stirring})$. CuCN (17.95 g, 0.20 mol) was added and the mixture was dried for 6 h at 150 °C under high vacuum $(5 \cdot 10^{-2} \text{ mbar}; \text{ dry stirring})$. After cooling, careful addition of THF (200 mL) under an argon atmosphere and stirring overnight furnishes a slightly yellowish to greenish solution. A dark green to black color indicates the presence of Cu(II), this solution should not be used.

TMPZnCl·LiCl

A dry and argon-flushed *Schlenk*-flask was charged with TMPH (10.2 mL, 60 mmol) and THF (60 mL). The solution was cooled to -40 °C and *n*BuLi-solution (2.3 M in hexanes; 26 mL, 60 mmol) was added dropwise at this temperature. The solution was slowly warmed to -10 °C over 1 h before the addition of a ZnCl₂-solution (1.0 M in THF; 66 mL, 66 mmol). The solution was maintained at this temperature for 30 min and warmed to 25 °C for another 30 min. All the volatiles were removed under high vacuum before the addition of THF (30-35 mL) and stirring overnight furnishes a slightly yellowish solution. The solution was titrated prior to use at 25 °C in THF with benzoic acid using 4-(phenylazo)diphenylamine as indicator.

Synthesis of starting materials:


Trimethyl(3-phenylprop-1-yn-1-yl)silane (2a)

A dry and argon flushed *Schlenk*-flask was charged with TMS-acetylene (4.26 mL, 30 mmol) and THF (60 mL). The solution was cooled to 0 °C and iPrMgCl.LiCl (25.4 mL, 32 mmol; 1.26 M in THF) was added. The resulting solution was stirred at 25 °C for 2 h and added to a solution of benzyl chloride (2.23 mL, 20 mmol) and Co(acac)₃ (200 mg, 0.56 mmol) in THF (20 mL) at 0 °C. The reaction mixture was stirred at 25 °C for 5 h and quenched with aq. sat. NH₄Cl (20 mL). The aqueous layer was extracted with EtOAc (3 x 40 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel (*i-h*exane) to yield compound **2a** (3.23 g, 86 %) as a brown liquid.

The analytical data matches the reported one in the literature.¹

Trimethyl(3-(thiophen-3-yl)prop-1-yn-1-yl)silane (2b)

A dry and argon-flushed *Schlenk*-flask was charged with TMS-acetylene (4.26 mL, 30 mmol) and THF (60 mL). The solution was cooled to 0 °C and iPrMgCl·LiCl (25.4 mL, 32 mmol; 1.26 M in THF) was added. The resulting solution was stirred at 25 °C for 2 h and added to a solution of 3-(chloromethyl)thiophene² (2.13 mL, 20 mmol) and Co(acac)₃ (200 mg, 0.56 mmol) in THF (20 mL) at 0 °C. The reaction mixture was stirred at 25 °C for 5 h and quenched with aq. sat. NH₄Cl (20 mL). The aqueous layer was extracted with EtOAc (3 x 40

¹ Kuno, A.; Saino, N.; Kamachi, T.; Okamoto, S. Tetrahedron Lett. 2006, 47, 2591

² Shang, R.; Huang, Z.; Xiao, X.; Lu, X.; Fu, Y.; Liu, L. Adv. Synth. Catal. 2012, 354, 2465 – 2472

mL). The combined organic layers were washed with brine, dried over Na_2SO_4 and filtered. Evaporation of the solvents *in vacuo* and purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **2b** (3.4 g, 88 %) as a brown liquid.

¹**H NMR** (300 MHz, CDCl₃) δ/ppm = 7.27 (dd, J = 4.8, 3.0 Hz, 1H), 7.15 (dd, J = 3.0, 1.5 Hz,

1H), 7.00 (dd, *J* = 4.8, 1.5 Hz, 1H), 3.62 (s, 1H), 3.61 (s, 1H), 0.19 (s, 9H).


¹³C NMR (75 MHz, CDCl₃) δ/ppm = 136.8, 127.7, 126.0, 121.4, 104.2, 86.5, 21.5, 0.2 (3C).

IR (Diamond-ATR, neat) $\tilde{\nu}$ /cm⁻¹ = 2950, 2174, 1248, 1024, 832.

MS (EI, 70 eV) *m*/*z* (%) = 42 (100), 73 (80), 179 (21), 194 (7).

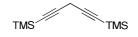
HRMS (EI): *m/z* (M⁺) for C₁₀H₁₄SSi: calc. 194.0585; found 194.0563.

Ethyl 3-(3-(trimethylsilyl)prop-2-yn-1-yl)benzoate (2c)

A dry and argon-flushed 2-necked round-bottom flask equipped with a condenser was charged with ethyl 3-(chloromethyl)benzoate³ (990 mg, 5.0 mmol), TMS-acetylene (3.55 mL, 25 mmol), cesium carbonate (1.95 g, 5.5 mmol), Pd(OAc)₂ (30 mg, 0.125 mmol), X-Phos (150 mg, 0.30 mmol) and THF (10 mL). The resulting mixture was refluxed for 5 h and quenched with aq. sat. NH₄Cl (20 mL). The aqueous layer was extracted with EtOAc (3 x 40 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. Evaporation of the solvents *in vacuo* and purification by flash chromatography (SiO₂, *i*-hexane / EtOAc = 50:1) afforded the desired product **2c** (825 mg, 63 %) as a brown liquid. ¹**H NMR** (300 MHz, CDCl₃) δ /ppm = 8.03 (s, 1H), 7.92 (d, *J* = 7.2 Hz, 1H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.42 - 7.38 (dd, 1H), 4.38 (q, *J* = 7.5 Hz, 2H), 3.70 (s, 2H), 1.40 (t, *J* = 7.5 Hz, 3H),

0.20 (s, 9H).

³ Duez, S.; Bernhardt, S.; Heppekausen, J.; Fleming. F. F.; Knochel. P. Org. Lett. 2011, 13, 1690


¹³**C NMR** (75 MHz, CDCl₃) δ/ppm = 166.6, 136.8, 132.4, 130.9, 129.1, 128.6, 128.0, 103.7, 87.8, 61.1, 26.1, 14.5, 0.2 (3C).

IR (Diamond-ATR, neat) $\tilde{\nu}$ /cm⁻¹ = 2957, 2177, 1717, 1276, 1248, 837.

MS (EI, 70 eV) *m*/*z* (%) = 201 (100), 215 (12), 245 (35), 260 (13).

HRMS (EI): m/z (M⁺) for C₁₅H₂₀O₂Si: calc. 260.1233; found 260.1216.

1,5-bis(trimethylsilyl)penta-1,4-diyne (6)

A dry and argon-flushed 2-necked round-bottom flask equipped with a condenser was charged with THF (20 mL) and CH₃MgCl (6.04 mL, 16.5 mmol; 2.73 M in THF). TMS-acetylene (2.83 mL, 20 mmol) was added dropwise over a period of 15 min, just fast enough to keep the solution at reflux. The catalyst CuCl (50 mg, 0.51 mmol) was added and the mixture was refluxed for 1 h. A solution of propargyl chloride⁴ (1.06 g, 1.03 mL, 14.25 mmol) in THF (2.5 mL) was added to the refluxing solution and the mixture was heated for 1 h. The reaction mixture was poured into 25 mL ice water and acidified with 1.25 mL of concentrated H₂SO₄, extracted with Et₂O (3 x 15 mL), and the organic phase was neutralized with sat. NaHCO₃ solution, washed with water, and dried over Na₂SO₄. Vacuum fractional distillation under argon gave compound **6** (2.00 g, 67 %) as a colorless liquid.

The analytical data matches the reported one in the literature.⁵

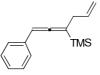
⁴ Verkruijsse, H.D., Brandsma, L. Synth. Commun. 1990 20, 3375.

⁵ Du, B.; Farona, M.F. *Tetrahedron* **1995**, *51*, 4359.

Typical Procedure for the Preparation of Allenylzinc Reagents and Subsequent Allylation (TP1):

A dry and argon-flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a rubber septum, was charged with alkynes **2a-c** (1.0 mmol), followed by dry THF (2 mL). A freshly titrated solution of TMPZnCl·LiCl in THF (**1**, 1.2 equiv) was added dropwise at 25 °C. After 1 h stirring, a solution of CuCN·2LiCl (0.3 equiv; 1M in THF) was added at 25 °C and the resulting solution was stirred 15 min at this temperature before addition of allyl bromide (1.5 equiv). The solution was stirred at 25 °C for 1 h and quenched with aq. ammonia solution (NH₄Cl/NH₃ 25 %, 4:1; 2 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. Evaporation of the solvents *in vacuo* and purification by flash column chromatography (Al₂O₃) afforded the expected trisubstituted allenes.

Typical Procedure for Direct Cross-Coupling of Allenylzinc Reagents (TP2):


A dry and argon-flushed *Schlenk*-tube, equipped with a magnetic stirring bar and a rubber septum, was charged with alkynes **2a-c** (1.0 mmol), followed by dry THF (2 mL). A freshly titrated solution of TMPZnCl·LiCl in THF (**1**, 1.2 equiv) was added dropwise at 25 °C. After 1 h stirring, electrophile (1.0 equiv) was added, followed by a mixture of $Pd(OAc)_2$ (0.02 equiv) and DPE-Phos (0.02 equiv) or $Pd(OAc)_2$ (0.02 equiv) and S-Phos (0.04 equiv) or PEPPSI-iPr (0.02 equiv). The reaction mixture was stirred at 25 or 50 °C until the GC analysis of hydrolyzed reaction aliquots (quenched with aq. sat. NH₄Cl) showed complete conversion of the alkyne (> 98 %). After complete conversion the reaction mixture was quenched with aq. sat. NH₄Cl (2 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. Evaporation of the solvents *in vacuo* and purification by flash column chromatography (SiO₂) afforded the expected trisubstituted allenes.

Typical Procedure for the One-Pot Double Direct Cross-Coupling of Allenylzinc Reagents (TP3):

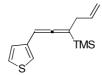
A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a rubber septum, was charged with alkyne **2a** (1.0 mmol), followed by dry THF (2 mL). A freshly titrated solution of TMPZnCl.LiCl in THF (1.2 equiv) was added dropwise at 25 °C. After 1 h stirring, electrophile (1.0 equiv) was added, followed by a mixture of Pd(OAc)₂ (0.02 equiv) and DPE-Phos (0.02 equiv) or Pd(OAc)₂ (0.02 equiv) and S-Phos (0.04 equiv). The reaction mixture was stirred at 25 or 50 °C until the GC analysis of hydrolyzed reaction aliquots (quenched with aq. sat. NH₄Cl) showed complete conversion of the alkyne (> 98 %). After complete conversion, a freshly titrated solution of TMPZnCl.LiCl in THF (1.2 equiv) was added dropwise at 25 °C. After 1 h stirring, electrophile (1.0 equiv) was added, followed by a mixture of Pd(OAc)₂ (0.02 equiv) and DPE-Phos (0.02 equiv) or Pd(OAc)₂ (0.02 equiv) and S-Phos (0.04 equiv). The reaction mixture was stirred at 25 or 50 °C until the GC analysis of hydrolyzed reaction aliquots (quenched with aq. sat. NH₄Cl) showed complete conversion of the tri-substituted allene (> 98 %). After complete conversion the reaction mixture was quenched with aq. sat. NH₄Cl (2 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. Evaporation of the solvents *in vacuo* and purification by flash column chromatography (SiO₂) afforded the expected tetrasubstituted allenes.

Preparation of Allenyl Allylation Products

Trimethyl(1-phenylhexa-1,2,5-trien-3-yl)silane (3a)

According to **TP1**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), THF (2 mL) and freshly titrated TMPZnCl.LiCl (**1**, 1.02 mL, 1.2 equiv; 1.18 M in THF) were used. After stirring the reaction mixture for 1 h at 25 °C, a solution of CuCN.2LiCl (0.30 mL, 0.30 equiv; 1M in THF) was added at 25 °C and the reaction mixture was stirred 15 min at this temperature, followed by the addition of allyl bromide (181 mg , 0.13 mL, 1.50 equiv). The reaction mixture was stirred for 1 h at 25 °C. Purification by flash chromatography (Al₂O₃, *i*-hexane) afforded the desired product **3a** (176 mg, 77 %) as a colourless oil.

¹**H NMR** (300 MHz, CDCl₃) δ/ppm = 7.34-7.25 (m, 4H), 7.20-7.14 (m, 1H), 6.00-5.87 (m, 1H), 5.95 (t, *J* = 3.0 Hz, 1H), 5.17-5.10 (m, 1H), 5.07-5.03 (m, 1H), 2.96-2.91 (m, 2H), 0.20 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 206.4, 137.1, 136.0, 128.7 (2C), 126.0 (3C), 115.6, 99.8, 90.2, 34.4, -1.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2956$, 1922, 1598, 1249, 832.

MS (EI, 70 eV) *m*/*z* (%) = 43 (100), 45 (15), 61 (18), 70 (12), 73 (29), 228 (3).

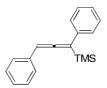
HRMS (EI): *m/z* (M⁺) for C₁₅H₂₀Si: calc. 228.1334; found 228.1338.

Trimethyl(1-(thiophen-3-yl)hexa-1,2,5-trien-3-yl)silane (3b)

According to **TP1**, trimethyl(3-(thiophen-3-yl)prop-1-yn-1-yl)silane (**2b**, 194 mg, 1.00 mmol), THF (2 mL) and freshly titrated TMPZnCl.LiCl (**1**, 1.02 mL, 1.2 equiv; 1.18 M in

THF) were used. After stirring the reaction mixture for 1 h at 25 °C, a solution of CuCN.2LiCl (0.30 mL, 0.30 equiv; 1M in THF) was added at 25 °C and the reaction mixture was stirred 15 min at this temperature, followed by the addition of allyl bromide (181 mg, 0.13 mL, 1.50 equiv). The reaction mixture was stirred for 1 h at 25 °C. Purification by flash chromatography (Al₂O₃, *i*-hexane) afforded the desired product **3b** (166 mg, 71 %) as a colourless oil.

¹H NMR (300 MHz, CDCl₃) δ/ppm = 7.22 (dd, J = 5.1, 3.0 Hz, 1H), 6.99 (dd, J = 5.1, 1.2 Hz, 1H), 6.94 (dd, J = 3.0, 1.2 Hz, 1H), 5.98 (t, J = 3.0 Hz, 1H), 5-95-5.81 (m, 1H), 5.12-4.98 (m, 2H), 2.88-2.85 (m, 2H), 0.14 (s, 9H).


¹³**C NMR** (75 MHz, CDCl₃) δ/ppm = 207.1, 137.1, 137.0, 126.2, 125.7, 118.6, 115.5, 99.1, 84.9, 34.5, -1.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2954$, 1922, 1637, 1246, 832.

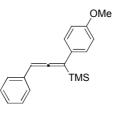
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 165 (18), 234 (20).

HRMS (EI): *m/z* (M⁺) for C₁₃H₁₈SSi: calc. 234.0898, found 234.0881.

(1,3-diphenylpropa-1,2-dien-1-yl)trimethylsilane (3c)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 0.96 mL, 1.2 equiv; 1.25 M in THF), iodobenzene (204 mg, 0.11 mL, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 4 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **3c** (180 mg, 68 %) as a white solid.

¹**H** NMR (600 MHz, CDCl₃) δ /ppm = 7.38-7.28 (m, 8H), 7.23-7.16 (m, 2H), 6.21 (s, 1H), 0.30 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.6, 136.8, 134.9, 128.8 (2C), 128.7 (2C), 127.0 (2C), 126.7, 126.5, 126.3 (2C), 107.8, 91.5, 0.0 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2966$, 1910, 1488, 1242, 833.

MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 189 (9), 264 (6).

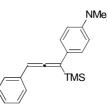
HRMS (EI): m/z (M⁺) for C₁₈H₂₀Si: calc. 264.1334, found 264.132.

(1-(4-methoxyphenyl)-3-phenylpropa-1,2-dien-1-yl)trimethylsilane (3d)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 0.96 mL, 1.2 equiv; 1.25 M in THF), 4-iodoanisole (234 mg, 1.00 mmol) and the catalytic system [PEPPSI-iPr (13.6 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 5 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **3d** (223 mg, 76 %) as a yellow solid.

M.p. (°**C**): 96.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm = 7.31-7.27 (m, 6H), 7.18-7.14 (m, 1H), 6.85 (d, *J* = 8.4 Hz, 2H), 6.20 (s, 1H), 3.79 (s, 3H), 0.29 (s, 9H).


¹³C NMR (100 MHz, CDCl₃) δ/ppm = 209.2, 158.6, 135.1, 129.0 (2C), 128.9 (2C), 128.7, 126.4, 126.3 (2C), 114.2 (2C), 104.0, 91.5, 55.4, 0.0 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2959$, 1905, 1508, 1245, 828.

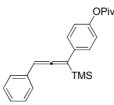
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 178 (14), 221 (21), 279 (100), 294 (14).

HRMS (EI): m/z (M⁺) for C₁₉H₂₂OSi: calc. 294.1440, found 294.1429.

N,*N*-dimethyl-4-(3-phenyl-1-(trimethylsilyl)propa-1,2-dien-1-yl)aniline (3e)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 4-bromo-*N*,*N*-dimethylaniline (200 mg, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (9.0 \text{ mg}, 0.04 \text{ mmol}) / DPE-Phos (21.5 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 4 h at 50 °C. Purification by flash chromatography (SiO₂,$ *i*-hexane/EtOAc, 100:1) afforded the desired product**3e**(203 mg, 66 %) as a yellowish oil.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.30-7.26 (m, 6H), 7.17-7.14 (m, 1H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.20 (s, 1H), 2.94 (s, 6H), 0.30 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.0, 149.6, 135.6, 128.77 (2C), 128.75 (2C), 126.24 (2C), 126.20 (2C), 123.8, 112.9, 104.0, 91.6, 40.7 (2C), 0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2952$, 1904, 1606, 1515, 1247, 833.

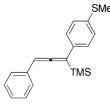
MS (EI, 70 eV) *m*/*z* (%) = 73 (54), 189 (12), 218 (24), 234 (100), 307 (26).

HRMS (EI): *m/z* (M⁺) for C₂₀H₂₅NSi: calc. 307.1756, found 307.1737.

4-(3-phenyl-1-(trimethylsilyl)propa-1,2-dien-1-yl)phenyl pivalate (3f)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 4-bromophenylpivalate⁶ (257 mg, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 6 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc, 100:2) afforded the desired product **3f** (208 mg, 57 %) as yellowish oil.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.34 (d, *J* = 9.0 Hz, 2H), 7.31-7.27 (m, 4H), 7.19-7.16 (m, 1H), 6.99 (d, *J* = 9.0 Hz, 2H), 6.21 (s, 1H), 1.35 (s, 9H), 0.29 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.7, 177.2, 149.9, 134.8, 134.1, 128.9 (2C), 128.8 (2C), 126.6, 126.3 (2C), 121.7 (2C), 104.1, 91.6, 39.2, 27.3 (3C), -0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2961, 1911, 1751, 1108, 835.$

MS (EI, 70 eV) *m*/*z* (%) = 57 (53), 73 (100), 190 (44), 279 (77), 364 (5).

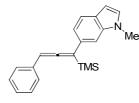
HRMS (EI): *m/z* (M⁺) for C₂₃H₂₈O₂Si: calc. 364.1859, found 364.1854.

Trimethyl(1-(4-(methylthio)phenyl)-3-phenylpropa-1,2-dienyl)silane (3g)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.11 mL, 1.2 equiv; 1.08 M in THF), 4-bromothioanisole (203 mg, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 \text{ mg}, 0.02 \text{ mmol}) / DPE-Phos (10.8 mg, 0.02 mmol)]$ were used. The reaction mixture was stirred for 6 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc, 100:1) afforded the desired product **3g** (233 mg, 75 %) as yellowish oil.

⁶ Lee, J.-s.; Velarde-Ortiz, R.; Guijarro, A.; Wurst, J. R.; Rieke, R. D. J. Org. Chem. 2000, 65, 5428

¹**H** NMR (300 MHz, CDCl₃) δ /ppm = 7.29-7.24 (m, 6H), 7.17-7.13 (m, 3H), 6.20 (s, 1H), 2.45 (s, 3H), 0.27 (s, 9H).


¹³C NMR (75 MHz, CDCl₃) δ/ppm = 209.7, 136.7, 134.8, 133.5, 128.9 (2C), 128.4 (2C), 127.1 (2C), 126.6, 126.3 (2C), 104.2, 91.7, 16.2, 0.0 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2954$, 1907, 1486, 1248, 835.

MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 295 (13), 310 (18).

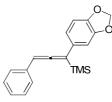
HRMS (EI): *m/z* (M⁺) for C₁₉H₂₂SSi: calc. 310.1211, found 310.1206.

1-methyl-5-(3-phenyl-1-(trimethylsilyl)propa-1,2-dien-1-yl)-1*H*-indole (3h)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 5-bromo,*N*-methylindole (230 mg, 1.10 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 \text{ mg}, 0.02 \text{ mmol}) / DPE-Phos (10.8 \text{ mg}, 0.02 \text{ mmol})]$ were used. The reaction mixture was stirred for 3 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc, 100:2) afforded the desired product **3h** (202 mg, 64 %) as yellow solid.

M.p. (°**C**): 77.

¹**H NMR** (400 MHz, C₆D₆) δ/ppm = 8.00 (d, *J* = 1.6 Hz, 1H), 7.60 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.43 (d, *J* = 1.6 Hz, 2H), 7.22-7.17 (m, *J* = 1.6 Hz, 4H), 6.57 (d, *J* = 2.8 Hz, 1H), 6.50 (dd, *J* = 3.2, 0.8 Hz, 1H), 6.28 (s, 1H), 2.94 (s, 3H), 0.40'4 (s, 9H).


¹³C NMR (75 MHz, C₆D₆) δ/ppm = 209.6, 136.4, 135.9, 129.7, 129.11 (2C), 129.08, 128.2, 126.6 (2C), 126.6 (2C), 120.5, 109.8, 105.8, 101.6, 91.7, 32.0, 0.2 (3C).

IR (Diamond-ATR, neat) $v / cm^{-1} = 2922$, 1909, 1488, 1244, 834.

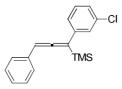
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 244 (54), 317 (29).

HRMS (EI): *m/z* (M⁺) for C₂₁H₂₃NSi: calc. 317.1600, found: 317.1575.

(1-(benzo[d][1,3]dioxol-5-yl)-3-phenylpropa-1,2-dien-1-yl)trimethylsilane (3i)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.11 mL, 1.2 equiv; 1.08 M in THF), 3-iodobenzodioxole (248 mg, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 4 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc, 50:1) afforded the desired product **3i** (290 mg, 94 %) as yellowish oil.

¹**H NMR** (300 MHz, CDCl₃) δ/ppm = 7.28-7.24 (m, 4H), 7.18-7.13 (m, 1H), 6.85 (d, *J* = 1.8 Hz, 1H), 6.80 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 6.18 (s, 1H), 5.91 (s, 2H), 0.27 (s, 9H).


¹³C NMR (75 MHz, CDCl₃) δ/ppm = 209.3, 148.0, 146.6, 134.9, 130.5, 128.9 (2C), 126.5, 126.3 (2C), 121.2, 108.4 (2C), 104.5, 101.1, 91.7, 0.0 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2954, 2892, 1907, 1479, 1236, 1037, 833.$

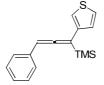
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 276 (15), 278 (11), 308 (15).

HRMS (EI): m/z (M⁺) for C₁₉H₂₀O₂Si: calc. 308.1233, found 308.1237.

(1-(3-chlorophenyl)-3-phenylpropa-1,2-dien-1-yl)trimethylsilane (3j)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 3-chlorobromobenzene (191 mg, 0.12 mL, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 \text{ mg}, 0.02 \text{ mmol}) / DPE-Phos (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 4 h at 50 °C. Purification by flash chromatography (SiO₂,$ *i*-hexane/EtOAc, 100:0.5) afforded the desired product**3j**(180 mg, 60 %) as yellowish oil.

¹**H** NMR (600 MHz, CDCl₃) δ /ppm = 7.32-7.28 (m, 5H), 7.24-7.18 (m, 4H), 6.24 (s, 1H), 0.30 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.9, 138.9, 134.6, 134.4, 129.8, 128.9 (2C), 127.9, 126.8 (2C), 126.4 (2C), 126.0, 104.1, 91.8, -0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2955$, 1914, 1588, 1249, 835.

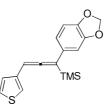
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 189 (23), 285/283 (5), 298 (5).

HRMS (EI): *m/z* (M⁺) for C₁₈H₁₉ClSi: calc. 298.0945, found 298.0948.

Trimethyl(3-phenyl-1-(thiophen-3-yl)propa-1,2-dien-1-yl)silane (3k)

According to **TP2**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.02 mL, 1.2 equiv; 1.18 M in THF), 3-bromothiophene (163 mg, 0.09 mL, 1.00 mmol) and the catalytic system [PEPPSI-iPr (13.6 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 2 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **3k** (197 mg, 73 %) as yellowish oil.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.30-7.27 (m, 4H), 7.26-7.25 (m, 1H) 7.19-7.16 (m, 1H), 7.14-7.13 (m, 1H), 7.12 (dd, *J* = 5.4, 1.8 Hz, 1H), 6.19 (s, 1H), 0.31 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.9, 136.4, 134.9, 128.8 (2C), 128.0, 126.5, 126.4 (2C), 125.3, 120.8, 99.5, 91.4, -0.2 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2960, 1907, 1245, 830.$

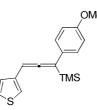
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 197 (5), 270 (7).

HRMS (EI): m/z (M⁺) for C₁₆H₁₈SSi: calc. 270.0898, found: 270.0887.

(1-(benzo[d][1,3]dioxol-5-yl)-3-(thiophen-3-yl)propa-1,2-dien-1-yl)trimethylsilane (3l)

According to **TP2**, trimethyl(3-(thiophen-3-yl)prop-1-yn-1-yl)silane (**2b**, 194 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.11 mL, 1.2 equiv; 1.08 M in THF), 3-bromobenzodioxole (0.12 mL, 207.2 mg, 1 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 \text{ mg}, 0.02 \text{ mmol}) / DPE-Phos$ (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 12 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:1) afforded the desired product **3l** (203 mg, 65 %) as an orange oil.

¹H NMR (400 MHz, CDCl₃) δ/ppm = 7.27 (dd, J = 0.39, 7.80 Hz, 1H), 7.05 (s, 1 H), 7.05 - 7.04 (m, 1 H), 6.87 (d, J = 1.75 Hz, 1 H), 6.83 - 6.81 (ddd, J = 0.39, 1.75, 7.99 Hz, 1 H), 6.78
- 6.76 (dd, J = 0.39, 7.99 Hz, 1H), 6.29 (s, 1H), 5.94 (d, J = 0.78 Hz, 2H), 0.29 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.8, 147.9, 146.4, 135.7, 130.5, 125.9 (2C), 121.0, 119.4, 108.2 (2C), 103.7, 101.0, 86.3, -0.21 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2957, 2893, 1910, 1482, 1237, 1038, 836.$

MS (EI, 70 eV) m/z (%) = 73 (100), 283 (12), 285 (10), 313 (12), 314 (31).

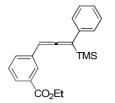
HRMS (EI): *m/z* (M⁺) for C₁₇H₁₈O₂SSi: calc. 314.0797, found 314.0792.

(1-(4-methoxyphenyl)-3-(thiophen-3-yl)propa-1,2-dien-1-yl)trimethylsilane (3m)

According to **TP2**, trimethyl(3-(thiophen-3-yl)prop-1-yn-1-yl)silane (**2b**, 190 mg, 0.98 mmol), TMPZnCl·LiCl (**1**, 1.02 mL, 1.2 equiv; 1.18 M in THF), 4-iodoanisole (229 mg, 0.98 mmol) and the catalytic system and the catalytic system [Pd(OAc)₂ (4.4 mg, 0.02 mmol) / DPE-Phos (10.6 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 2 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:1) afforded the desired product **3m** (233 mg, 78 %) as an orange solid.

M.p. (°**C**): 45.

¹H NMR (600 MHz, CDCl₃) δ/ppm = 7.28 (d, J = 8.4 Hz, 2H), 7.25 (ddd, J = 4.8, 3.0, 0.6 Hz, 1H), 7.05 (dd, J = 4.8, 1.2 Hz, 1H), 7.04 (ddd, J = 3.0, 1.2, 0.6 Hz, 1H), 6.86 (d, J = 8.4 Hz, 2H), 6.28 (s, 1H), 3.80 (s, 3H), 0.29 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.6, 158.4, 135.9, 128.9 (2C), 128.7, 126.0, 125.8, 119.2, 114.0 (2C), 103.2, 86.1, 55.3, -0.2 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2953$, 1909, 1505, 1244, 830.

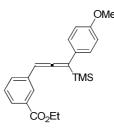
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 227 (14), 285 (50), 300 (18).

HRMS (EI): m/z (M⁺) for C₁₇H₂₀OSSi: calc. 300.1004, found 300.1000.

Ethyl 3-(3-phenyl-3-(trimethylsilyl)propa-1,2-dien-1-yl)benzoate (3n)

According to **TP2**, ethyl 3-(3-(trimethylsilyl)prop-2-yn-1-yl)benzoate (**2c**, 215 mg, 0.83 mmol), TMPZnCl·LiCl (**1**, 1.11 mL, 1.2 equiv; 1.08 M in THF), iodobenzene (169 mg, 0.09 mL, 0.83 mmol) and the catalytic system $[Pd(OAc)_2 (3.7 \text{ mg}, 0.02 \text{ mmol}) / \text{S-Phos} (13.6 \text{ mg}, 0.04 \text{ mmol})]were used. The reaction mixture was stirred for 2 h at 25 °C. Purification by flash chromatography (SiO₂,$ *i*-hexane/EtOAc = 100:2) afforded the desired product**3n**(145 mg, 52 %) as yellowish oil.

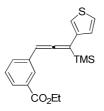
¹H NMR (600 MHz, CDCl₃) δ/ppm = 7.94 (t, J = 1.8 Hz, 1H), 7.84 (dt, J = 7.8 Hz, 1.2 Hz, 1H), 7.47 (dt, J = 7.8, 1.8 Hz, 1H), 7.37-7.30 (m, 5H), 7.22 (dt, J = 7.2, 1.8 Hz, 1H), 6.24 (s, 1H), 4.37 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H), 0.30 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.4, 166.7, 136.4, 135.5, 131.2, 130.3, 128.8 (3C),
128.0 (2C), 127.6, 127.4, 126.7, 105.2, 90.8, 61.1, 14.5, -0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2956$, 1911, 1716, 1276, 1248, 834.

MS (EI, 70 eV) *m*/*z* (%) = 73 (58), 190 (100), 218 (75), 307 (96), 336 (34).

HRMS (EI): m/z (M⁺) for C₂₁H₂₄O₂Si: calc. 336.1546, found 336.1528.

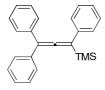

Ethyl 3-(3-(4-methoxyphenyl)-3-(trimethylsilyl)propa-1,2-dien-1-yl)benzoate (30)

According to **TP2**, ethyl 3-(3-(trimethylsilyl)prop-2-yn-1-yl)benzoate (**2c**, 200 mg, 0.77 mmol), TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 4-iodoanisole (162 mg, 0.77 mmol) and the catalytic system [Pd(OAc)₂ (3.4 mg, 0.02 mmol) / S-Phos (12.6 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 2 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:2) afforded the desired product **3o** (165 mg, 59 %) as yellowish oil.

¹**H** NMR (600 MHz, CDCl₃) δ/ppm = 7.93 (s, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 6.23 (s, 1H), 4.36 (q, J = 7.2 Hz, 2H), 3.80 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 0.03 (s, 9H). ¹³**C** NMR (150 MHz, CDCl₃) δ/ppm = 209.0, 166.7, 158.7, 135.2, 131.1, 130.3, 129.1 (2C), 128.8, 128.3, 127.5, 127.3, 114.3 (2C), 104.4, 90.9, 61.1, 55.4, 14.5, 0.0 (3C). **IR** (Diamond-ATR, neat) v/cm⁻¹ = 2955, 1909, 1715, 1506, 1277, 1244, 834. **MS** (EI, 70 eV) m/z (%) = 73 (30), 220 (61), 248 (41), 293 (9), 337 (100), 366 (19). **HRMS** (EI): m/z (M⁺) for **C**₂₂**H**₂₆**O**₃**Si**: calc. 366.1651, found 336.1639.

Ethyl 3-(3-(thiophen-3-yl)-3-(trimethylsilyl)propa-1,2-dien-1-yl)benzoate (3p)

According to **TP2**, ethyl 3-(3-(trimethylsilyl)prop-2-yn-1-yl)benzoate (**2c**, 260 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.18 mL, 1.2 equiv; 1.02 M in THF), 3-bromothiophene (163 mg, 0.09 mL, 1.00 mmol) and the catalytic system [PEPPSI-iPr (13.6 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 2 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:2) afforded the desired product **3p** (252 mg, 74 %) as yellowish oil.


¹**H NMR** (400 MHz, CDCl₃) δ/ppm = 7.91 (t, *J* = 1.6 Hz, 1H), 7.84 (dt, *J* = 8.0, 1.6 Hz, 1H), 7.45 (dt, *J* = 8.0, 1.6 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.26 (dd, *J* = 4.8, 3.2 Hz, 1H), 7.15-7.14 (m, 1H), 7.10 (dd, *J* = 4.8, 1.6 Hz, 1H), 6.22 (s, 1H), 4.36 (q, *J* = 7.2 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H), 0.30 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ/ppm = 209.7, 166.7, 136.0, 135.4, 131.1, 130.4, 128.8, 127.9, 127.6, 127.5, 125.5, 121.1, 99.9, 90.7, 61.1, 14.5, -0.3 (3C).

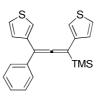
IR (Diamond-ATR, neat) $v/cm^{-1} = 2957, 1907, 1716, 1275, 1248, 832.$

MS (EI, 70 eV) m/z (%) = 73 (36), 196 (67), 224 (56), 313 (100), 342 (34). **HRMS** (EI): m/z (M⁺) for **C**₁₉**H**₂₂**O**₂**SSi**: calc. 342.1110, found 342.1109.

Trimethyl(1,3,3-triphenylpropa-1,2-dienyl)silane (4a)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 184 mg, 0.98 mmol), TMPZnCl·LiCl (**1**, 1.05 mL, 1.18 mmol, 1.2 equiv; 1.12 M in THF), iodobenzene (200 mg, 0.11 mL, 0.98 mmol) and the catalytic system [Pd(OAc)₂ (4.4 mg, 0.02 mmol) / S-Phos (16.1 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 4 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 1.05 mL, 1.18 mmol, 1.2 equiv; 1.12 M in THF), iodobenzene (200 mg, 0.11 mL, 0.98 mmol) and the catalytic system [Pd(OAc)₂ (4.4 mg, 0.02 mmol) / S-Phos (16.1 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 12 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **4a** (216 mg, 65 %) as a white solid.

M.p. (°**C**): 79.


¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.42-7.30 (m, 12H), 7.27-7.26 (m, 1H), 7.25-7.19 (m, 2H), 0.31 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.6, 136.9, 136.8, 128.8 (2C), 128.6 (4C), 128.2 (4C), 128.0 (2C), 126.9, (2C), 126.8 (2C), 106.7, 103.8, 0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2956$, 1898, 1489, 1246, 835.

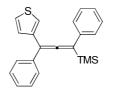
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 165 (12), 267 (12), 340 (9).

HRMS (EI): m/z (M⁺) for C₂₄H₂₄Si: calc. 340.1647, found 340.1638.

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 3-bromothiophene (164 mg, 0.09 mL, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)]$ were used. The reaction mixture was stirred for 2 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 3-bromothiophene (164 mg, 0.09 mL, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.09 mL, 1.00 mmol)]$ and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.09 mL, 1.00 mmol)]$ were used. The reaction mixture was stirred for 12 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 3-bromothiophene (164 mg, 0.09 mL, 1.00 mmol)] were used. The reaction mixture was stirred for 12 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **4b** (180 mg, 51 %) as a yellow solid.

M.p. (°**C**): 72.

¹**H NMR** (300 MHz, CDCl₃) δ /ppm = 7.48-7.12 (m, 11H), 0.34 (s, 9H).


¹³C NMR (75 MHz, CDCl₃) δ/ ppm = 210.1, 137.2, 136.8, 136.4, 128.5 (2C), 127.9, 127.8 (2C), 127.7, 127.0, 125.4, 125.3, 121.4, 120.9, 102.3, 98.5, -0.3 (3C).

IR (**Diamond-ATR**, **neat**) $v/cm^{-1} = 2951$, 1898, 1490, 1247, 829.

MS (EI, 70 eV) m/z (%) = 73 (100), 279 (11), 352 (14).

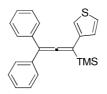
HRMS (EI): m/z (M⁺) for C₂₀H₂₀S₂Si: calc. 352.0776, found: 352.0767.

(1,3-diphenyl-3-(thiophen-3-yl)propa-1,2-dien-1-yl)trimethylsilane (4c)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), iodobenzene (204 mg, 0.11 mL, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 4 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 3-bromothiophene (204 mg, 0.11 mL, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 12 h at 25 °C. Phos (16.4 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 12 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **4c** (219 mg, 63 %) as a yellow solid.

M.p. (°**C**): 83.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.47-7.46 (m, 2H), 7.43-7.41 (m, 2H), 7.38-7.32 (m, 5H), 7.29-7.27 (m, 1H), 7.24-7.22 (m, 1H), 7.15-7.12 (m, 2H), 0.33 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.8, 137.3, 136.9, 136.7, 128.8 (2C), 128.6 (2C), 128.0 (2C), 127.9 (2C), 127.8, 127.1, 126.8, 125.6, 121.5, 103.6, 102.4, -0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2952$, 1900, 1489, 1247.

MS (EI, 70 eV) *m/z* (%) = 73 (100), 273 (13), 346 (18).

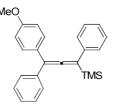
HRMS (EI): *m/z* (M⁺) for C₂₂H₂₂SSi: calc. 346.1211, found 346.1205.

(3,3-diphenyl-1-(thiophen-3-yl)propa-1,2-dien-1-yl)trimethylsilane (4d)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 145 mg, 0.77 mmol), TMPZnCl·LiCl (**1**, 0.82 mL, 0.92 mmol, 1.2 equiv; 1.12 M in THF), 3-bromothiophene (126 mg, 0.07 mL, 0.77 mmol) and the catalytic system [Pd(OAc)₂ (3.5 mg, 0.02 mmol) / S-Phos (12.6 mg, 0.03 mmol)] were used. The reaction mixture was stirred for 2 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 0.82 mL, 0.92 mmol, 1.2 equiv; 1.12 M in THF), iodobenzene (157 mg, 0.08 mL, 0.77 mmol) and the catalytic system $[Pd(OAc)_2 (3.5 \text{ mg}, 0.02 \text{ mmol}) / \text{S-Phos} (12.6 \text{ mg}, 0.03 \text{ mmol})]$ were used. The reaction mixture was stirred for 12 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **4d** (125 mg, 47 %) as a yellow solid.

M.p. (°**C**): 74.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.38-7.33 (m, 8H), 7.28-7.25 (m, 3H), 7.22-7.20 (m, 1H), 7.18-7.17 (m, 1H), 0.33 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 210.0, 136.9, 136.6, 128.6 (4C), 128.2 (4C), 128.0 (2C), 127.0 (2C), 125.4, 120.9, 106.5, 98.6, 0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2950, 1897, 1490, 1248, 829.$

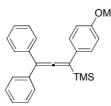
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 165 (9), 273 (9), 346 (6).

HRMS (EI): m/z (M⁺) for C₂₂H₂₂SSi: calc. 346.1211, found 346.1205.

(3-(4-methoxyphenyl)-1,3-diphenylpropa-1,2-dien-1-yl)trimethylsilane (4e)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), iodobenzene (204 mg, 0.11 mL, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 4 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 4-iodoanisole (234 mg, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 4 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 4-iodoanisole (234 mg, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)] were used. The reaction mixture was stirred for 12 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **4e** (251 mg, 68 %) as yellowish oil.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.41-7.39 (m, 2H), 7.38-7.36 (m, 2H), 7.34-7.28 (m, 6H), 7.26-7.23 (m, 1H), 7.22-7.19 (m, 1H), 6.88 (d, *J* = 9.0 Hz, 2H), 3.82 (s, 3H), 0.30 (s, 9H).


¹³C NMR (75 MHz, CDCl₃) δ/ppm = 209.7, 158.8, 137.2, 137.0, 129.3 (2C), 129.1, 128.7 (2C), 128.6 (2C), 128.1 (2C), 128.0 (2C), 126.9, 126.7, 114.1 (2C), 106.3, 103.6, 55.4, 0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2952$, 1901, 1506, 1244, 832.

MS (EI, 70 eV) m/z (%) = 73 (40), 252 (19), 297 (24), 355 (100), 370 (7).

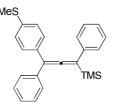
HRMS (EI): m/z (M⁺) for C₂₅H₂₆OSi: calc. 370.1753, found 370.1744.

(1-(4-methoxyphenyl)-3,3-diphenylpropa-1,2-dien-1-yl)trimethylsilane (4f)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 162 mg, 0.86 mmol), TMPZnCl·LiCl (**1**, 0.92 mL, 1.03 mmol, 1.2 equiv; 1.12 M in THF), 4-iodoanisole (201 mg, 0.86 mmol) and the catalytic system [Pd(OAc)₂ (3.9 mg, 0.02 mmol) / S-Phos (14.1 mg, 0.03 mmol)] were used. The reaction mixture was stirred for 5 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 0.92 mL, 1.03 mmol, 1.2 equiv; 1.12 M in THF), iodobenzene (175 mg, 0.09 mL, 1.86 mmol) and the catalytic system [Pd(OAc)₂ (3.9 mg, 0.02 mmol) / S-Phos (14.1 mg, 0.03 mmol)] were used. The reaction mixture was stirred for 12 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:1) afforded the desired product **4f** (213 mg, 67 %) as a yellow solid.

M.p. (°**C**): 104.

¹**H NMR** (200 MHz, CDCl₃) δ/ppm = 7.40-7.24 (m, 12H), 6.86 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H), 0.30 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.3, 158.7, 137.1 (2C), 129.1 (2C), 128.7, 128.6 (4C), 128.2 (4C), 126.9 (2C), 114.3 (2C), 106.8, 103.0, 55.4, 0.1 (3C)

IR (Diamond-ATR, neat) $v/cm^{-1} = 2960, 1895, 1507, 1244, 833.$

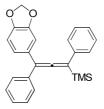
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 165 (14), 252 (23), 297 (32), 355 (91), 370 (12).

HRMS (EI): m/z (M⁺) for C₂₅H₂₆OSi: calc. 370.1753, found 370.1740.

Trimethyl(3-(4-(methylthio)phenyl)-1,3-diphenylpropa-1,2-dien-1-yl)silane (4g)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), iodobenzene (204 mg, 0.11 mL, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 2 h at 50 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 4-bromothioanisole (203 mg, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 2 h at 50 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 4-bromothioanisole (203 mg, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 2 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:1) afforded the desired product **4g** (247 mg, 64 %) as yellowish oil.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.41-7.27 (m, 11H), 7.25-7.21 (m, 3H), 2.50 (s, 3H), 0.31 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.6, 136.9, 136.8, 136.7, 133.8, 128.8 (2C), 128.6 (2C), 128.5 (2C), 128.2 (2C), 128.0 (2C), 127.0, 126.9 (2C), 126.8, 106.3, 103.9, 16.1, 0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2953$, 1899, 1487, 1247, 832, 693.

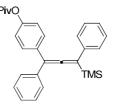
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 265 (14), 313 (14), 371 (16), 386 (13).

HRMS (EI): *m/z* (M⁺) for C₂₅H₂₆SSi: calc. 386.1524, found 386.1508.

(3-(benzo[d][1,3]dioxol-5-yl)-1,3-diphenylpropa-1,2-dien-1-yl)trimethylsilane (4h)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), iodobenzene (204 mg, 0.11 mL, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 2 h at 50 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 3-iodobenzodioxole (248 mg, 1.00 mmol) and the catalytic system [Pd(OAc)₂ (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 3 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:1) afforded the desired product **4h** (268 mg, 70 %) as yellowish oil.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.43-7.39 (m, 4H), 7.37-7.32 (m, 4H), 7.28-7.22 (m, 2H), 6.90 (d, *J* = 1.8 Hz, 1H), 6.85 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 5.98 (A of AB system, *J* = 1.8 Hz, 1H), 5.97 (B of AB system, *J* = 1.8 Hz, 1H), 0.34 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.5, 147.9, 146.7, 137.0, 136.8, 130.8, 128.8 (2C), 128.6 (2C), 128.1 (2C), 128.0 (2C), 127.0, 126.8, 121.7, 108.6, 108.4, 106.5, 103.8, 101.2, 0.1 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 1955$, 1901, 1438, 1224, 1037, 833.

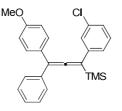
MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 252 (31), 311 (22), 356 (18), 384 (14).

HRMS (EI): m/z (M⁺) for C₂₅H₂₄O₂Si: calc. 384.1546, found 384.1551.

4-(1,3-diphenyl-3-(trimethylsilyl)propa-1,2-dien-1-yl)phenyl pivalate (4i)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), iodobenzene (204 mg, 0.11 mL, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)]$ were used. The reaction mixture was stirred for 2 h at 50 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 4-bromophenylpivalate (257 mg, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)]$ were used. The reaction mixture was stirred for 12 h at 50 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 4-bromophenylpivalate (257 mg, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)]$ were used. The reaction mixture was stirred for 12 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:2) afforded the desired product **4i** (287 mg, 65 %) as yellowish oil.

¹**H NMR** (600 MHz, CDCl₃) δ/ppm = 7.40-7.36 (m, 6H), 7.34-7.31 (m, 4H), 7.27-7.21 (m, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 1.36 (s, 9H), 0.30 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.5, 177.3, 150.1, 136.8, 136.7, 134.3, 129.1 (2C), 128.8 (2C), 128.6 (2C), 128.1 (2C), 128.0 (2C), 127.0, 126.8, 121.6 (2C), 106.0, 104.0, 39.2, 27.3 (3C), 0.0 (3C).

IR (Diamond-ATR, neat) $v / cm^{-1} = 2959, 1901, 1752, 1108, 834.$

MS (EI, 70 eV) *m*/*z* (%) = 57 (73), 73 (100), 266 (44), 355 (82), 440 (4).

HRMS (EI): *m/z* (M⁺) for C₂₉H₃₂O₂Si: calc. 440.2172, found 440.2170.

(1-(3-chlorophenyl)-3-(4-methoxyphenyl)-3-phenylpropa-1,2-dien-1-yl)trimethylsilane (4j)

According to **TP3**, trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**, 188 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 3-chlorobromobenzene (191 mg, 0.12 mL, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / DPE-Phos$ (10.8 mg, 0.02 mmol)] were used. The reaction mixture was stirred for 4 h at 50 °C. Then, TMPZnCl·LiCl (**1**, 1.07 mL, 1.2 equiv; 1.12 M in THF), 4-iodoanisole (234 mg, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / DPE-Phos (10.8 mg, 0.02 mmol)]$ were used. The reaction mixture was stirred for 12 h at 50 °C. Purification by flash chromatography (SiO₂, *i*-hexane/EtOAc = 100:1) afforded the desired product **4j** (170 mg, 42 %) as yellowish oil.

¹**H NMR** (400 MHz, CDCl₃) δ/ppm = 7.36-7.16 (m, 11H), 6.89 (d, *J* = 9.2 Hz, 2H), 3.81 (s, 3H), 0.29 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ/ppm = 209.9, 158.9, 139.1, 136.8, 134.6, 129.9, 129.3 (2C), 128.65 (2C), 128.59, 128.1 (2C), 127.9, 127.1, 126.7, 126.1, 114.2 (2C), 106.7, 102.9, 55.4, 0.0 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2954$, 1907, 1507, 1245, 830.

MS (EI, 70 eV) *m*/*z* (%) = 73 (50), 252 (13), 296 (19), 331 (14), 389 (100), 391 (35), 404 (11).

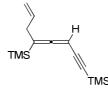
HRMS (EI): *m/z* (M⁺) for C₂₅H₂₅ClOSi: calc. 404.1363, found 404.1362.

Trimethyl(1,3,3-tri(thiophen-3-yl)propa-1,2-dien-1-yl)silane (4k)

According to **TP3**, trimethyl(3-(thiophen-3-yl)prop-1-yn-1-yl)silane (**2b**, 194 mg, 1.00 mmol), TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 3-bromothiophene (164 mg, 0.09 mL, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)]$ were used. The reaction mixture was stirred for 2 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 3-bromothiophene (164 mg, 0.09 mL, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.09 mL, 1.00 mmol) and the catalytic system <math>[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.09 mL, 1.00 mmol)]$ were used. The reaction mixture was stirred for 12 h at 25 °C. Then, TMPZnCl·LiCl (**1**, 1.14 mL, 1.2 equiv; 1.05 M in THF), 3-bromothiophene (164 mg, 0.09 mL, 1.00 mmol) and the catalytic system $[Pd(OAc)_2 (4.5 mg, 0.02 mmol) / S-Phos (16.4 mg, 0.04 mmol)]$ were used. The reaction mixture was stirred for 12 h at 25 °C. Purification by flash chromatography (SiO₂, *i*-hexane) afforded the desired product **4k** (233 mg, 65 %) as white solid.

M.p. (°**C**): 71.

¹**H NMR** (300 MHz, CDCl₃) δ/ppm = 7.30 (dd, *J* = 5.1, 3.0 Hz, 2H), 7.27-7.25 (m, 1H), 7.22 (dd, *J* = 3.0, 1.2 Hz, 2H), 7.16-7.12 (m, 4H), 0.31 (s, 9H).


¹³C NMR (75 MHz, CDCl₃) δ/ppm = 210.5, 137.1 (2C), 136.3, 128.0, 127.6 (2C), 125.4 (2C), 125.3, 121.1 (2C), 121.0, 98.7, 98.0, -0.3 (3C).

IR (Diamond-ATR, neat) $v/cm^{-1} = 2955$, 1900, 1248, 829.

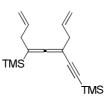
MS (EI, 70 eV) *m*/*z* (%) = 73 (100). 285 (13), 358 (19).

HRMS (EI): m/z (M⁺) for C₁₈H₁₈S₃Si: calc. 358.0340, found 358.0331.

octa-3,4,7-trien-1-yne-1,5-diylbis(trimethylsilane) (7)

According to **TP1**, 1,5-bis(trimethylsilyl)penta-1,4-diyne (**6**, 208 mg, 1.00 mmol), THF (2 mL) and TMPZnCl·LiCl (**1**, 1.10 mL, 1.2 equiv; 1.09 M in THF) were used. After stirring the reaction mixture for 1 h at 25 °C, a solution of CuCN·2LiCl (0.30 mL, 0.30 equiv, 1M in THF) was added at 25 °C and the reaction mixture was stirred 15 min at this temperature, followed by the addition of allyl bromide (181 mg , 0.13 mL, 1.50 equiv). The reaction mixture was stirred for 1 h at 25 °C. Purification by flash chromatography (Al₂O₃, *i*-hexane) afforded the desired product **7** (149 mg, 60 %) as an orange oil.

¹H NMR (400 MHz, CDCl₃) δ/ppm = 5.82 (ddt, J = 6.5, 10.2, 17.2 Hz, 1H), 5.08 (t, J = 2.9 Hz, 1H), 5.08-4.99 (ddt, J = 1.8 Hz, 2H), 2.83 (A of AB system, J = 1.2, 6.9, 15.9 Hz, 1H)
2.75 (B of AB system, J = 1.2, 6.9, 15.9 Hz, 1H), 0.14 (s, 9H), 0.12 (s, 9H).


¹³C NMR (101 MHz, CDCl₃) δ/ppm = 211.8, 136.2, 115.8, 99.1, 97.3, 94.3, 70.4, 33.6, 0.07 (3C), -1.5 (3C).

²⁹Si NMR (79 MHz, CDCl₃) δ /ppm = -1.65, -18.5.

IR (Diamond-ATR, neat) $\upsilon/cm^{-1} = 3080, 2959, 2899, 2151, 1924, 1639, 1407, 1370, 1248, 1044.$

MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 159 (11), 160 (47), 248 (7).

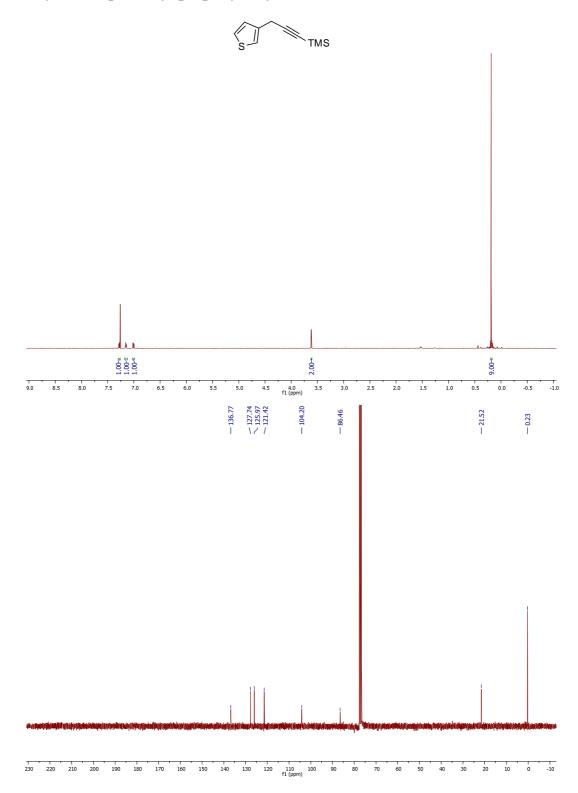
HRMS (EI): m/z (M⁺) for C₁₄H₂₄Si₂: calc. 248.1417, found 248.1409.

According to **TP1**, octa-3,4,7-trien-1-yne-1,5-diylbis(trimethylsilane) (**7**, 124 mg, 0.50 mmol), THF (1 mL) and TMPZnCl·LiCl (**1**, 0.55 mL, 0.60 mmol 1.2 equiv; 1.09 M in THF) were used. After stirring the reaction mixture for 1 h at 25 °C, a solution of CuCN·2LiCl (0.15 mL, 0.30 equiv; 1M in THF) was added at 25 °C and the reaction mixture was stirred 15 min at this temperature, followed by the addition of allyl bromide (91 mg , 0.07 mL, 1.50 equiv). The reaction mixture was stirred for 1 h at 25 °C. Purification by flash chromatography (Al₂O₃, *i*-hexane) afforded the desired product **8** (193 mg, 67 %) as an orange oil.

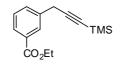
¹**H NMR** (400 MHz, CDCl₃) δ/ppm = 5.66 (tdd, *J* = 6.4, 6.8, 10.1, 17.0 Hz, 1H), 5.63 (tdd, *J* = 6.9, 10.1, 17.0 Hz, 1H), 4.90 (d, *J* = 17.0 Hz, 2H), 4.85(d, *J* = 10.1 Hz, 2H), 2.66 (A of AB system, *J* = 1.4, 6.9, 15.8 Hz, 1H), 2.64-2.62 (m, 2H), 5.59 (B of AB system, *J* = 1.4, 6.4, 15.8 Hz, 1H), 0.00 (s, 9H), - 0.05 (s, 9H).

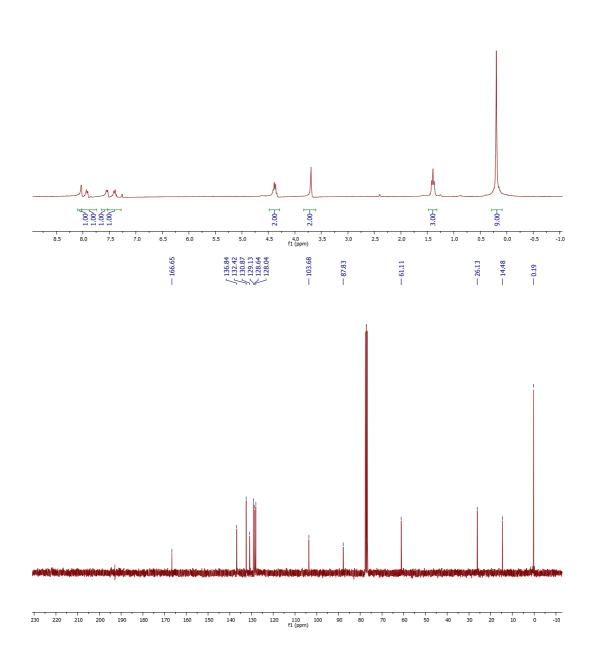
¹³C NMR (101 MHz, CDCl₃) δ/ppm = 210.1, 136.6, 135.2, 116.0, 115.5, 101.8, 98.3, 95.8, 83.9, 37.8, 34.0, 0.10 (3C), -1.31 (3C).

²⁹Si NMR (79 MHz, CDCl₃) δ /ppm = -1.65, -18.5.

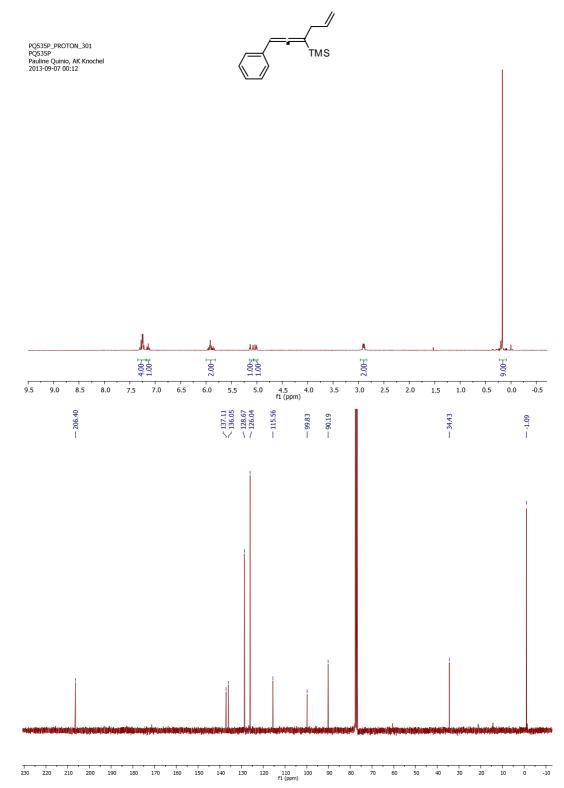

IR (Diamond-ATR, neat) v/cm⁻¹ = 3080, 2958, 2899, 2143, 1923, 1639, 1432, 1409, 1360, 1248, 1162, 1014, 990.

MS (EI, 70 eV) *m*/*z* (%) = 73 (100), 159 (9), 200 (11), 288 (2).

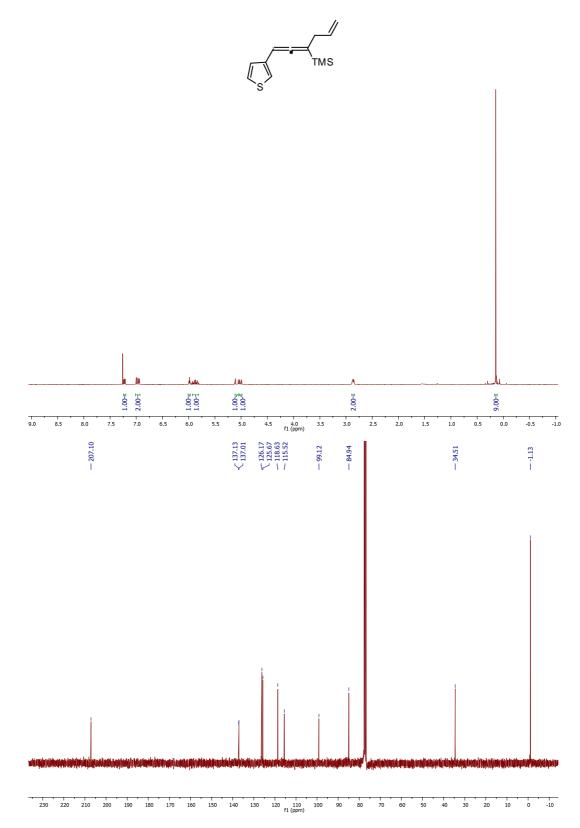

HRMS (EI): m/z (M⁺) for C₁₇H₂₈Si₂: calc. 288.1730, found 288.1703.


NMR spectra

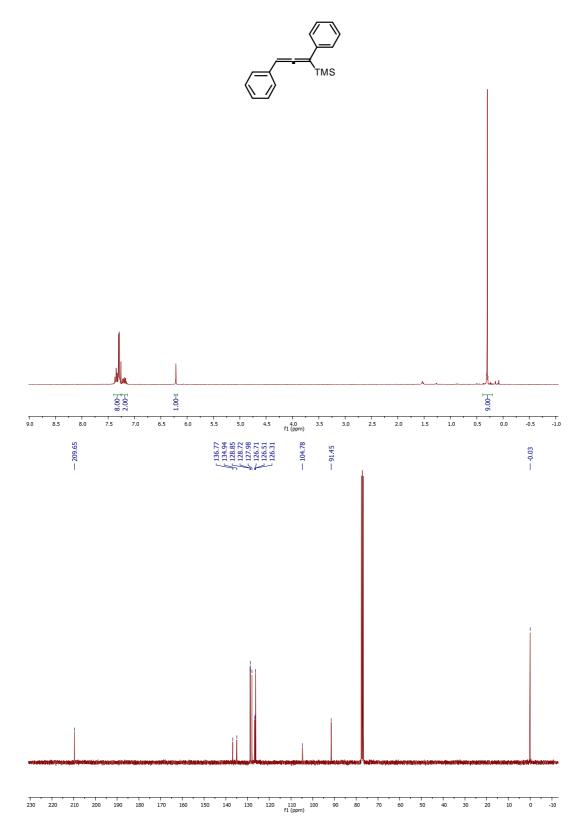
Trimethyl(3-(thiophen-3-yl)prop-1-yn-1-yl)silane (2b)



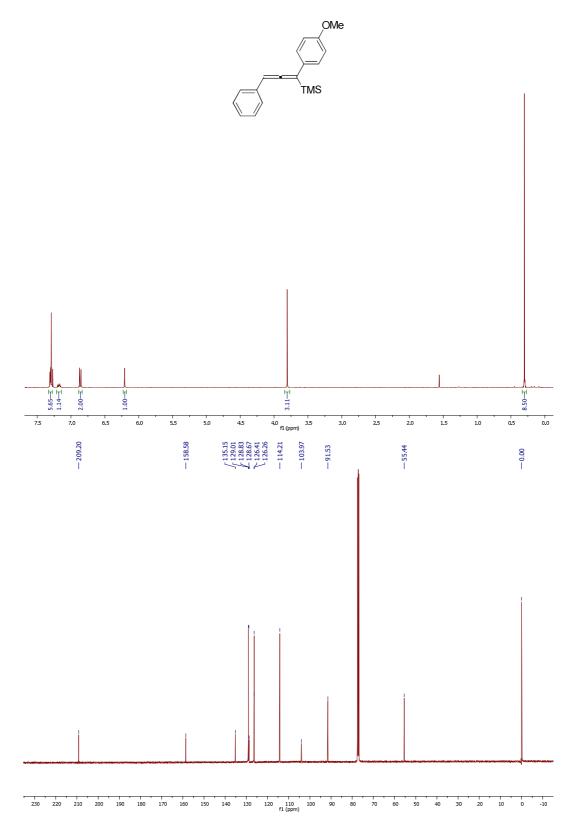
Ethyl 3-(3-(trimethylsilyl)prop-2-yn-1-yl)benzoate (2c)

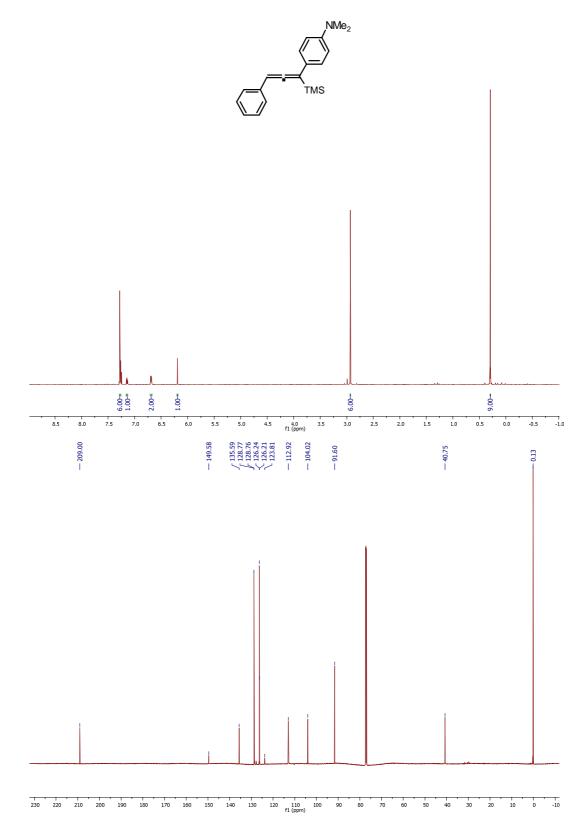


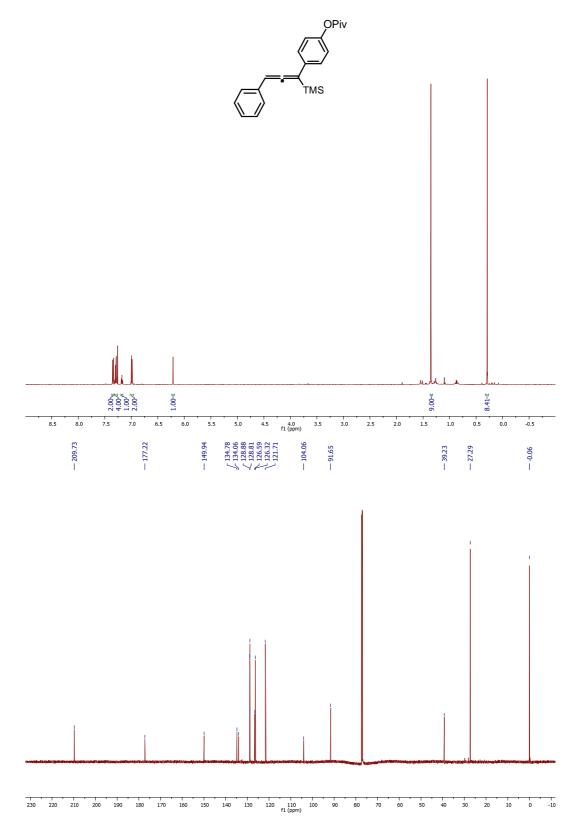
Trimethyl(1-phenylhexa-1,2,5-trien-3-yl)silane (3a)

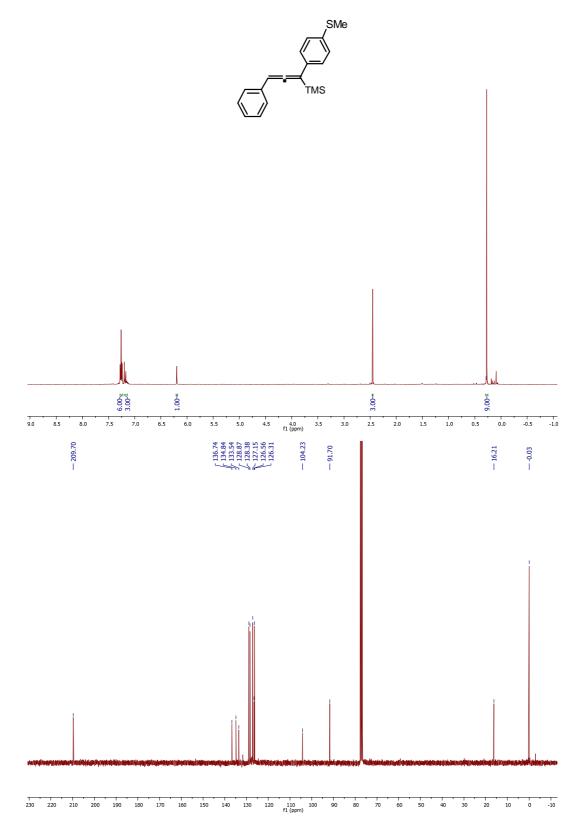


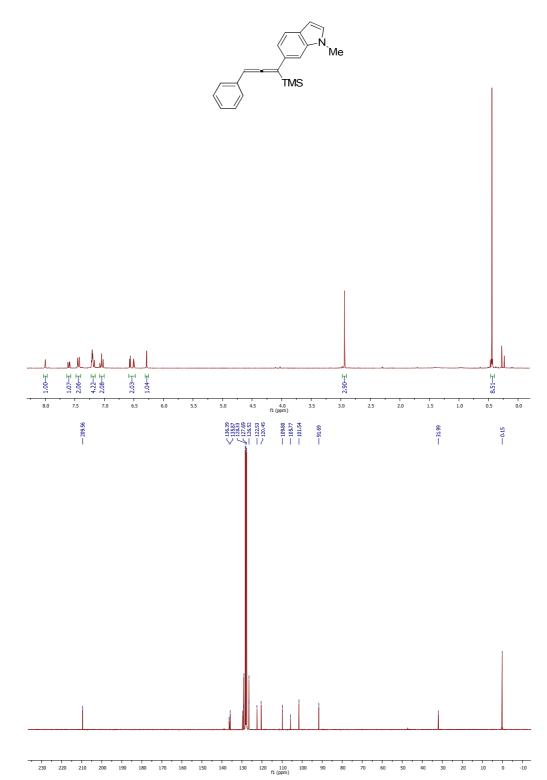
35

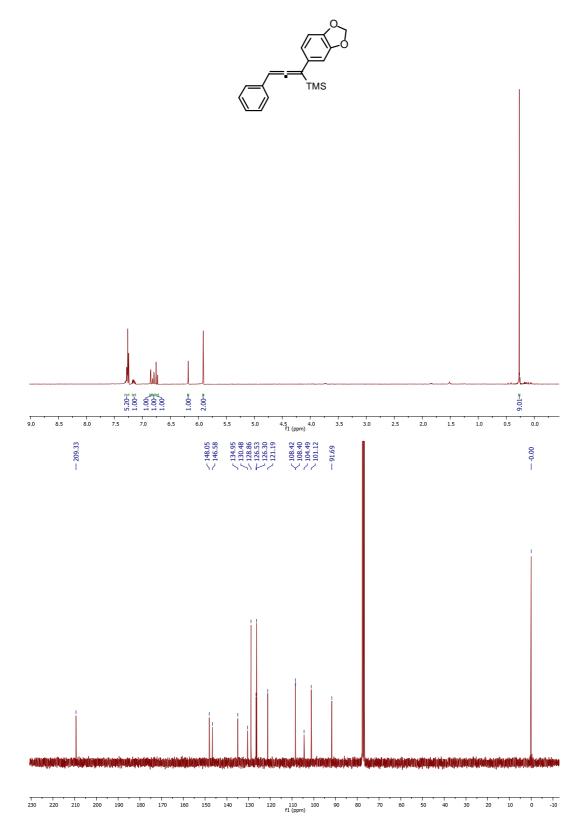

Trimethyl(1-(thiophen-3-yl)hexa-1,2,5-trien-3-yl)silane (3b)

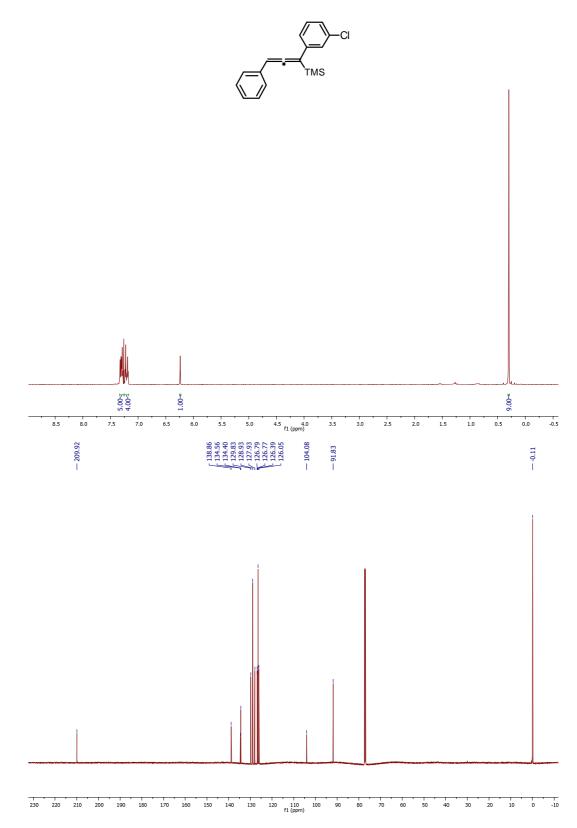

(1,3-diphenylpropa-1,2-dien-1-yl)trimethylsilane (3c)

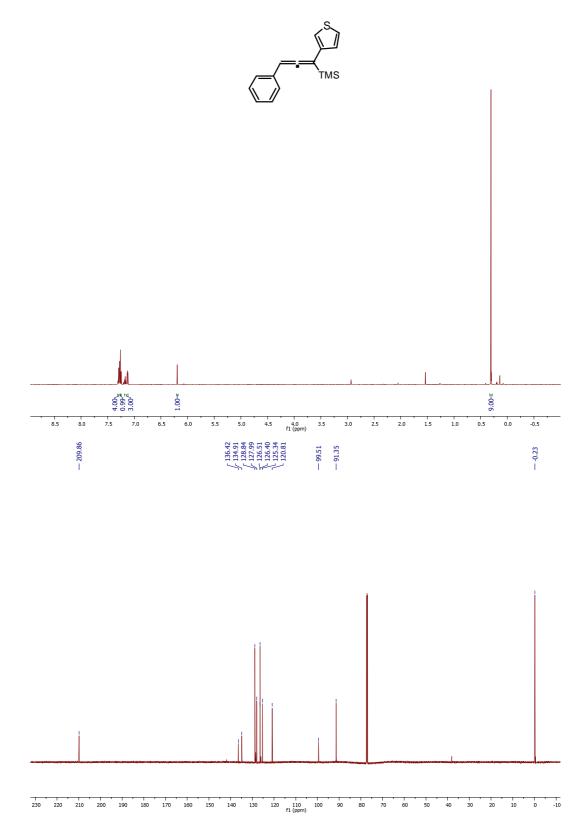

(1-(4-methoxyphenyl)-3-phenylpropa-1,2-dien-1-yl)trimethylsilane (3d)

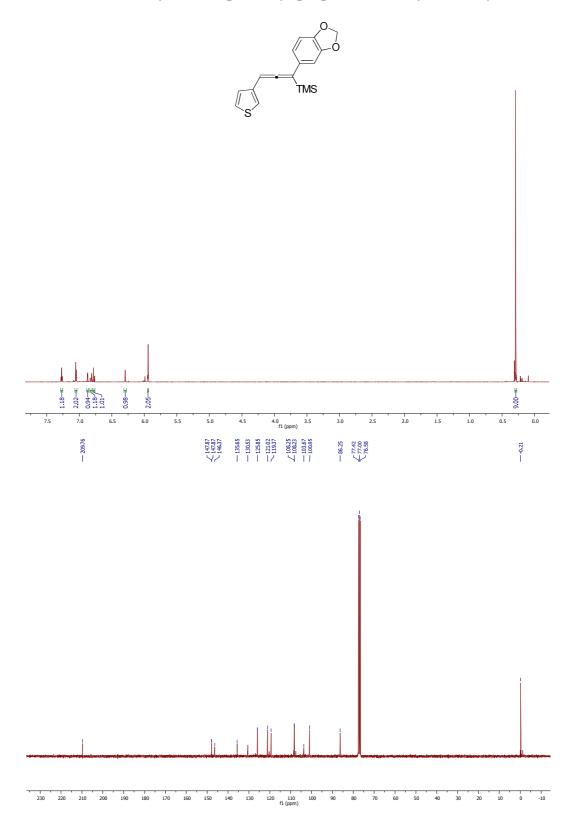

N,N-dimethyl-4-(3-phenyl-1-(trimethylsilyl)propa-1,2-dien-1-yl)aniline (3e)

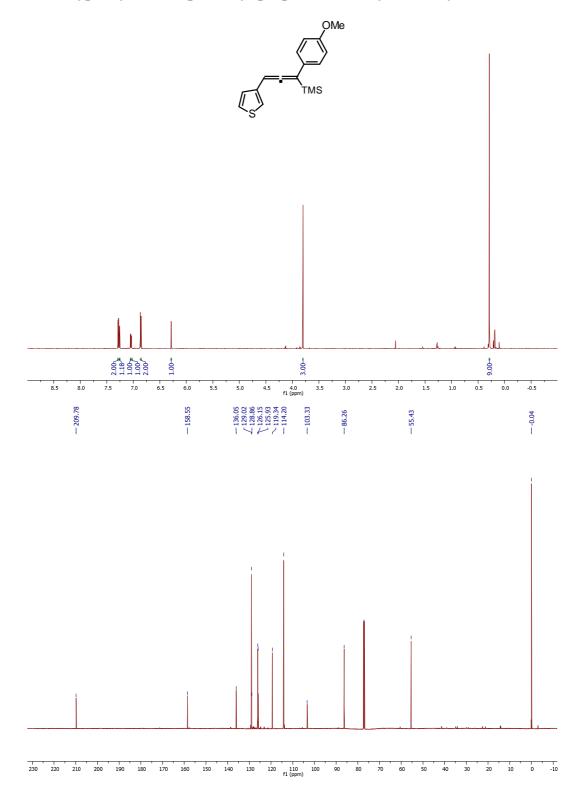

4-(3-phenyl-1-(trimethylsilyl)propa-1,2-dien-1-yl)phenyl pivalate (3f)

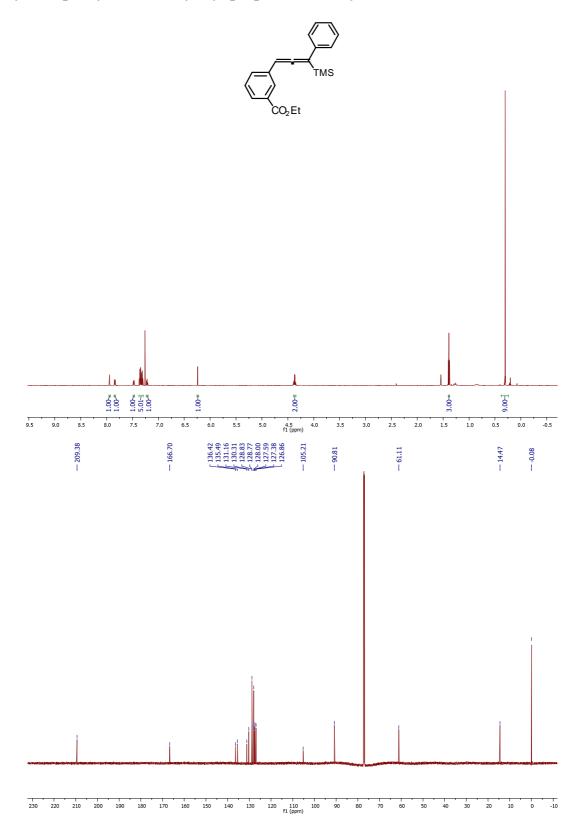

Trimethyl(1-(4-(methylthio)phenyl)-3-phenylpropa-1,2-dienyl)silane (3g)

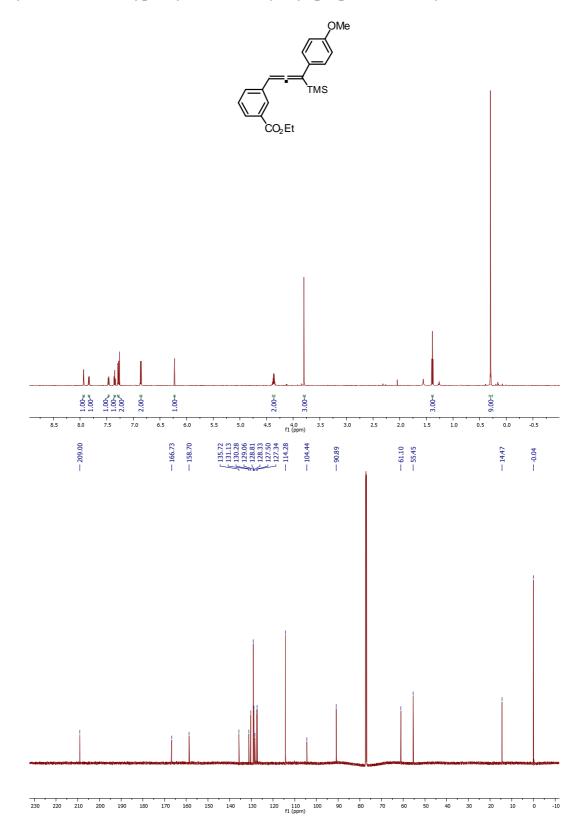

1-methyl-5-(3-phenyl-1-(trimethylsilyl)propa-1,2-dien-1-yl)-1*H*-indole (3h)

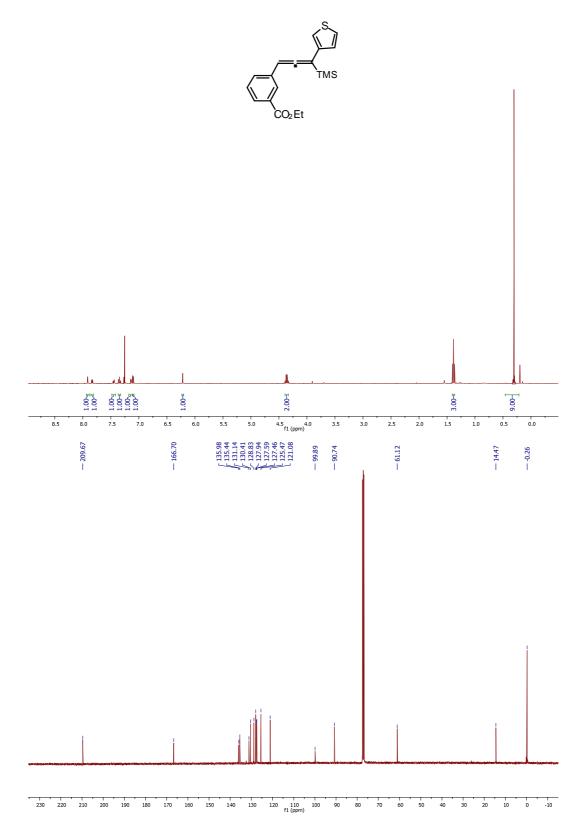

(1-(benzo[d][1,3]dioxol-5-yl)-3-phenylpropa-1,2-dien-1-yl)trimethylsilane (3i)

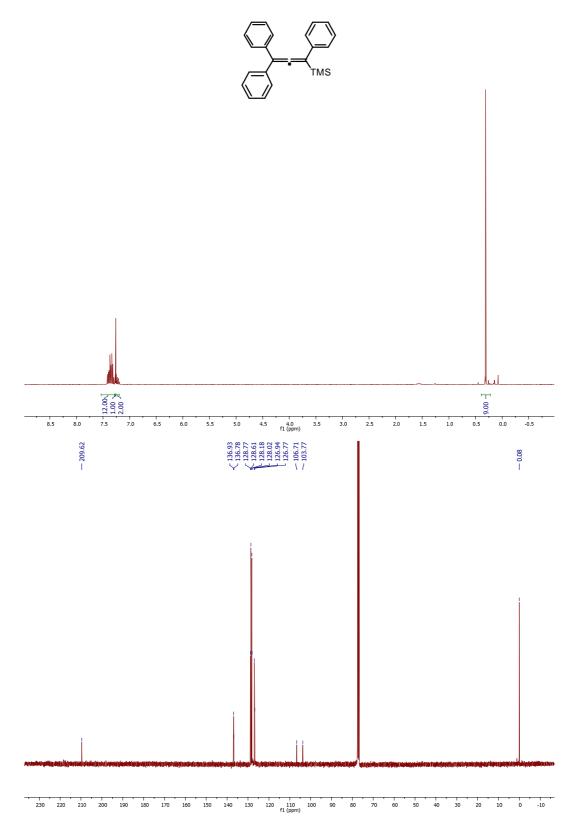

(1-(3-chlorophenyl)-3-phenylpropa-1,2-dien-1-yl)trimethylsilane (3j)

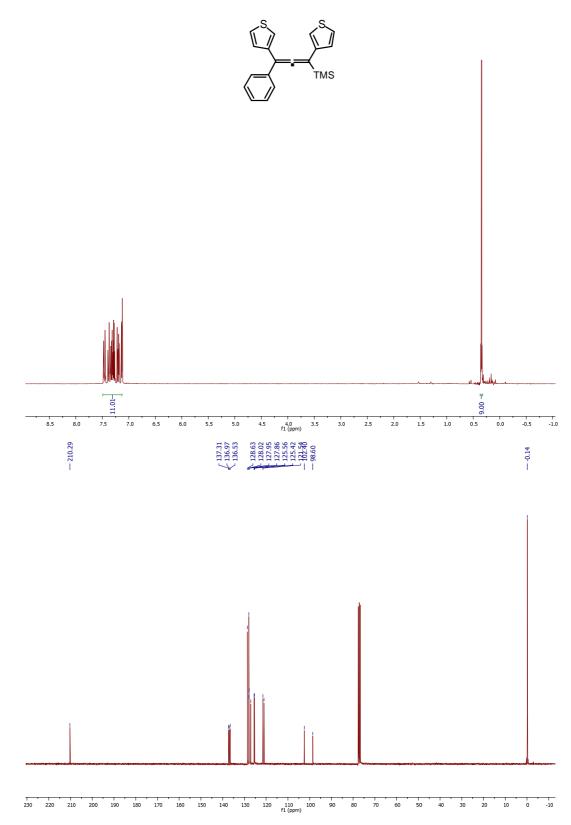

Trimethyl(3-phenyl-1-(thiophen-3-yl)propa-1,2-dien-1-yl)silane (3k)

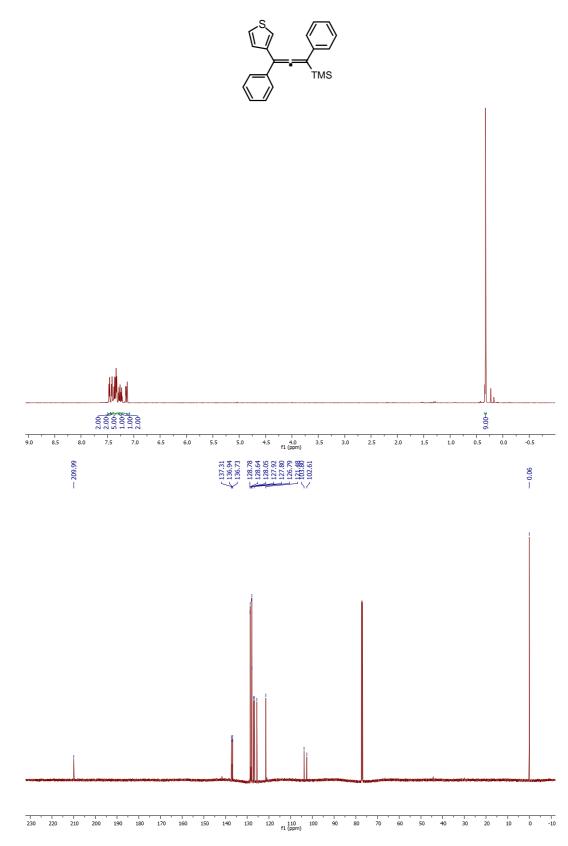

(1-(benzo[d][1,3]dioxol-5-yl)-3-(thiophen-3-yl)propa-1,2-dien-1-yl)trimethylsilane (3l)

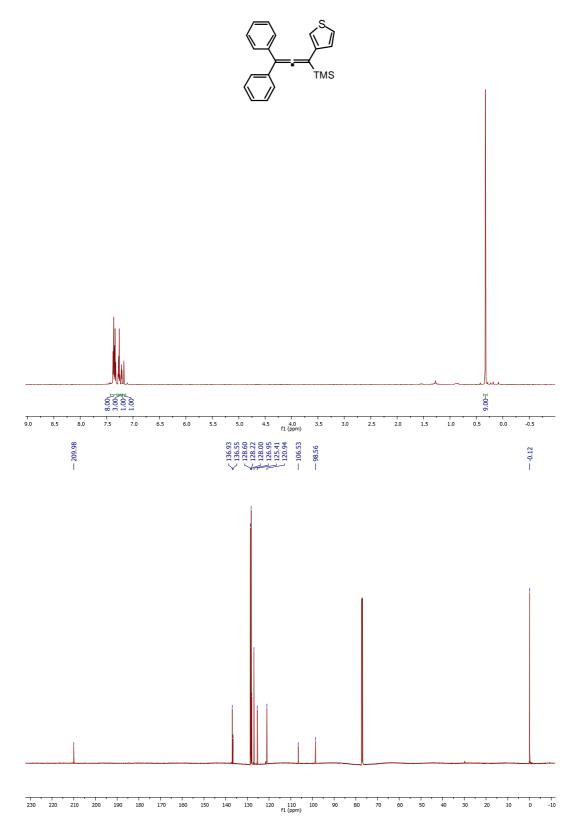

(1-(4-methoxyphenyl)-3-(thiophen-3-yl)propa-1,2-dien-1-yl)trimethylsilane (3m)

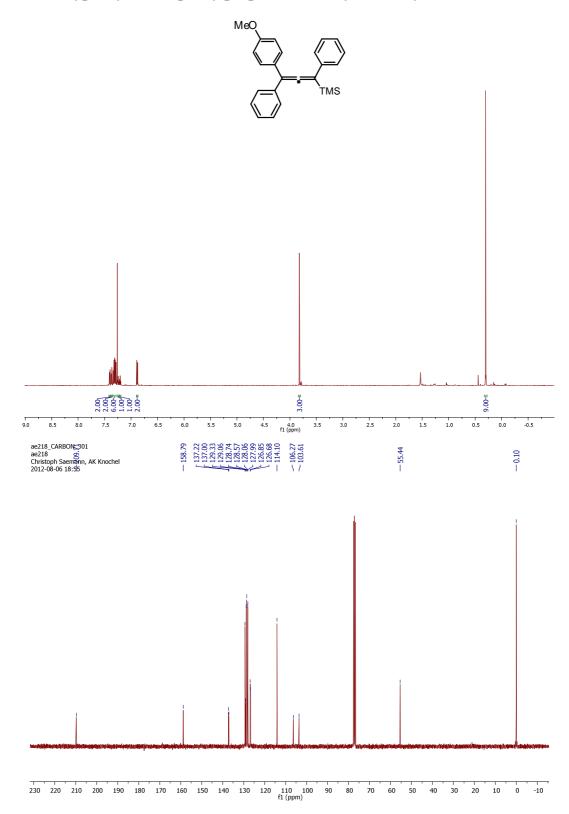

Ethyl 3-(3-phenyl-3-(trimethylsilyl)propa-1,2-dien-1-yl)benzoate (3n)

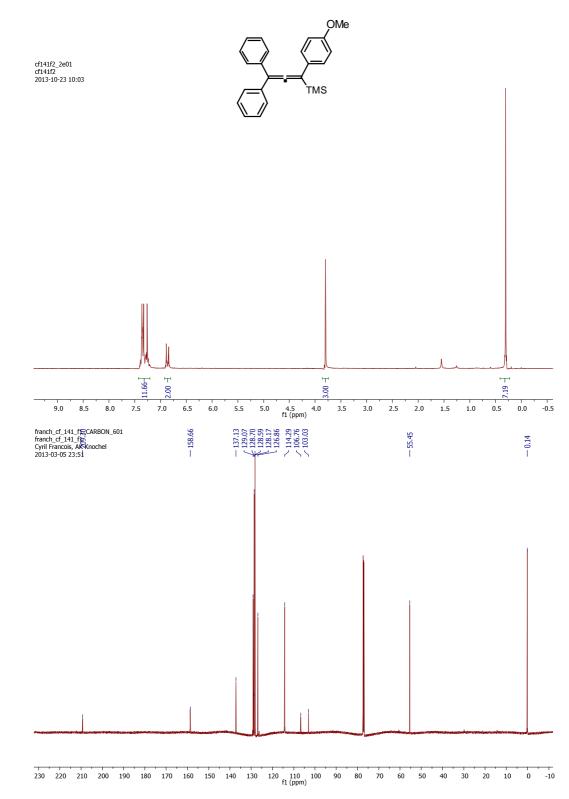

Ethyl 3-(3-(4-methoxyphenyl)-3-(trimethylsilyl)propa-1,2-dien-1-yl)benzoate (30)

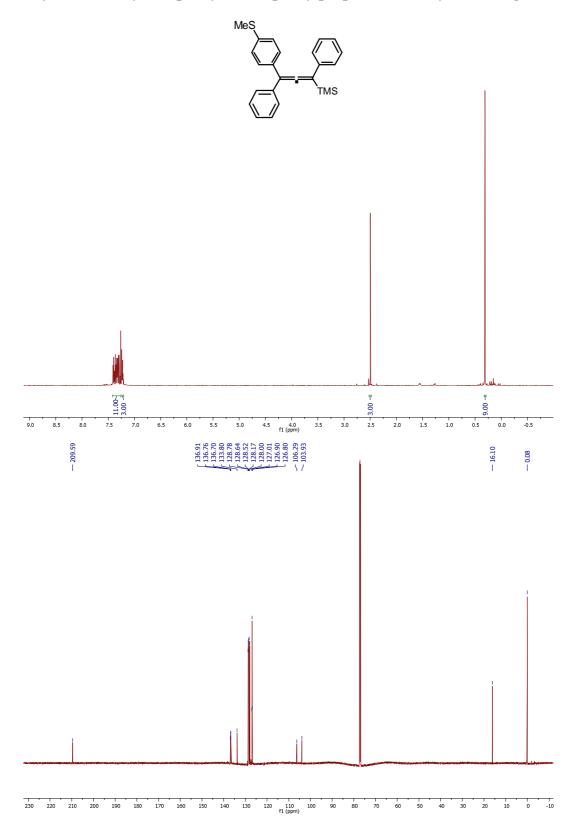

Ethyl 3-(3-(thiophen-3-yl)-3-(trimethylsilyl)propa-1,2-dien-1-yl)benzoate (3p)

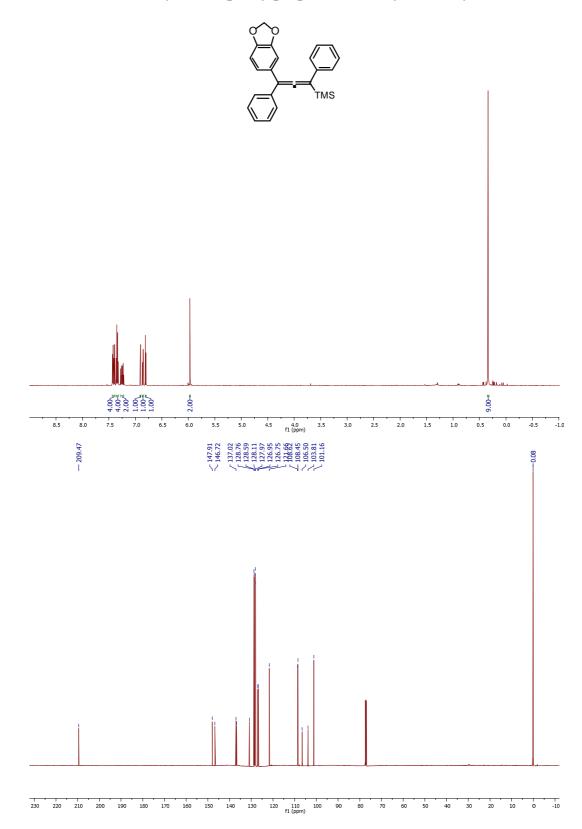

Trimethyl(1,3,3-triphenylpropa-1,2-dienyl)silane (4a)

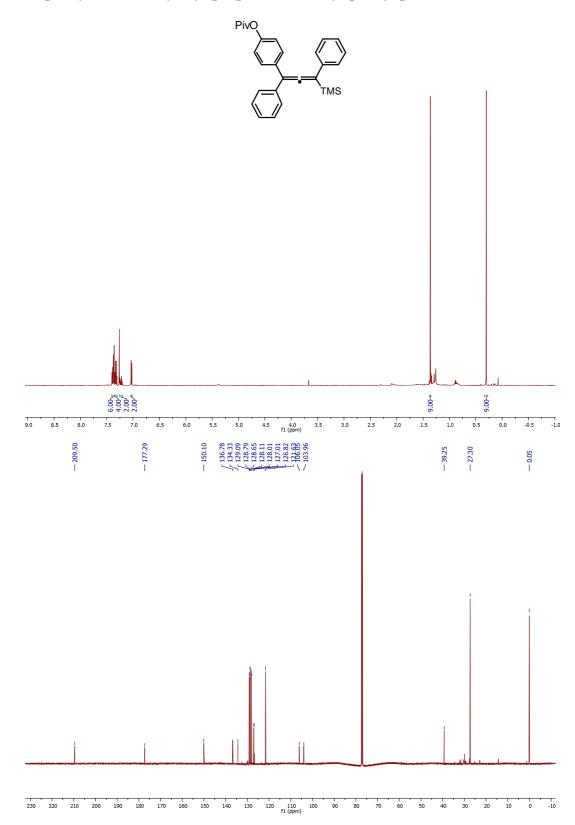

Trimethyl(3-phenyl-1,3-di(thiophen-3-yl)propa-1,2-dien-1-yl)silane (4b)

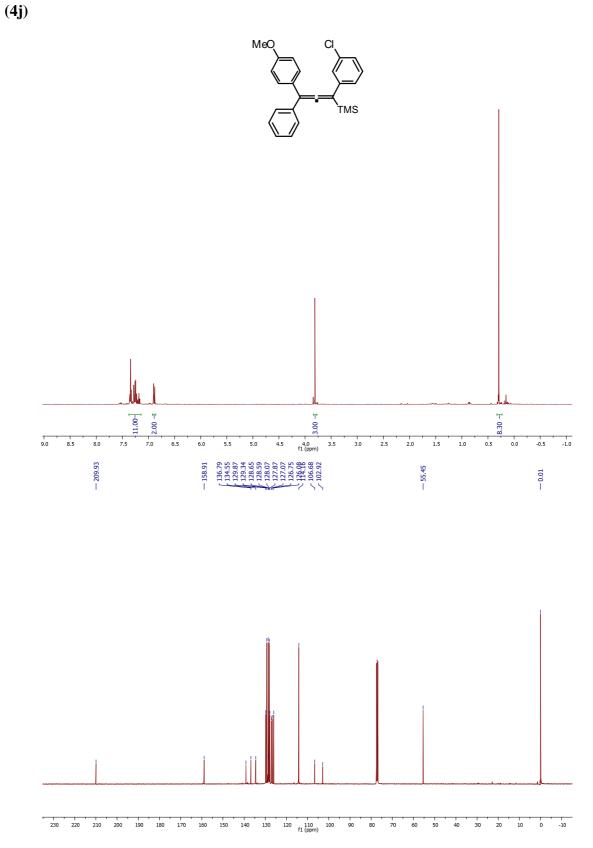

(1,3-diphenyl-3-(thiophen-3-yl)propa-1,2-dien-1-yl)trimethylsilane (4c)

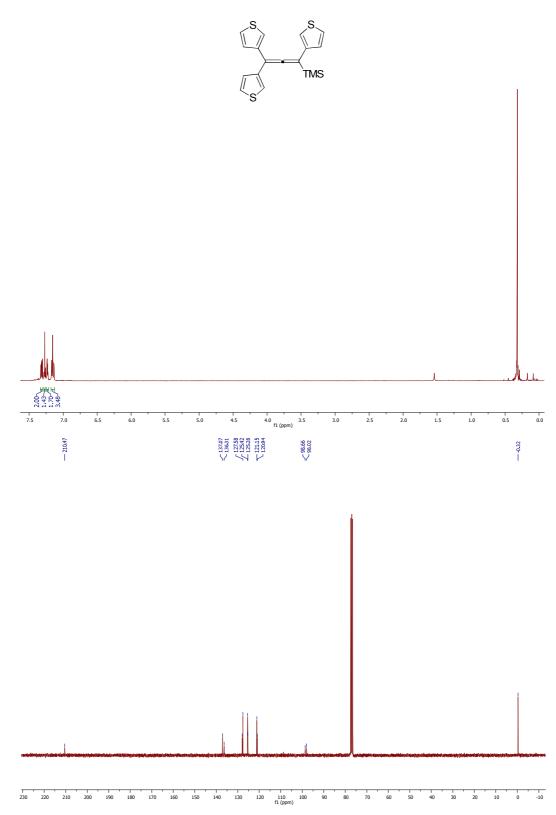

(3,3-diphenyl-1-(thiophen-3-yl)propa-1,2-dien-1-yl)trimethylsilane (4d)

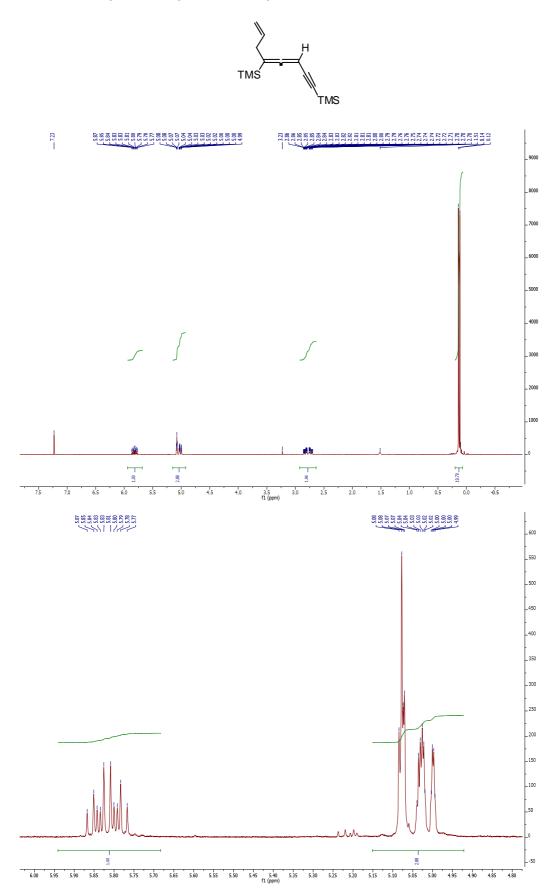

(3-(4-methoxyphenyl)-1,3-diphenylpropa-1,2-dien-1-yl)trimethylsilane (4e)

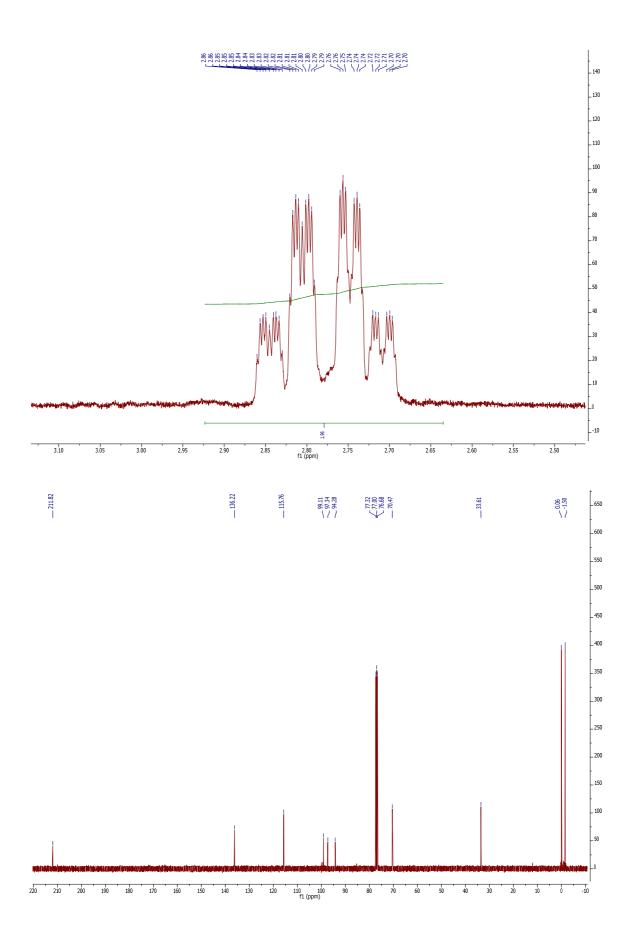

(1-(4-methoxyphenyl)-3,3-diphenylpropa-1,2-dien-1-yl)trimethylsilane (4f)

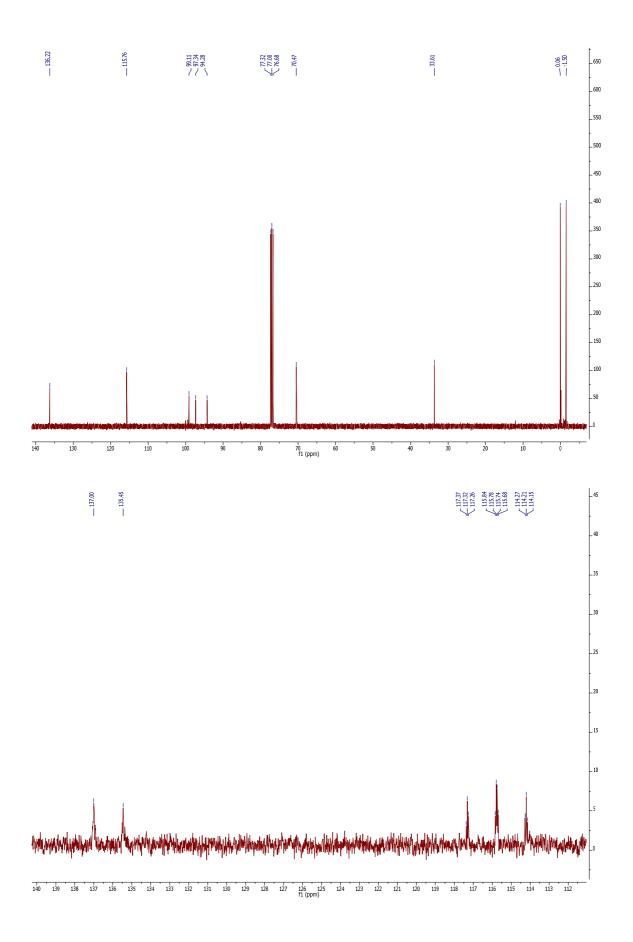

Trimethyl(3-(4-(methylthio)phenyl)-1,3-diphenylpropa-1,2-dien-1-yl)silane (4g)

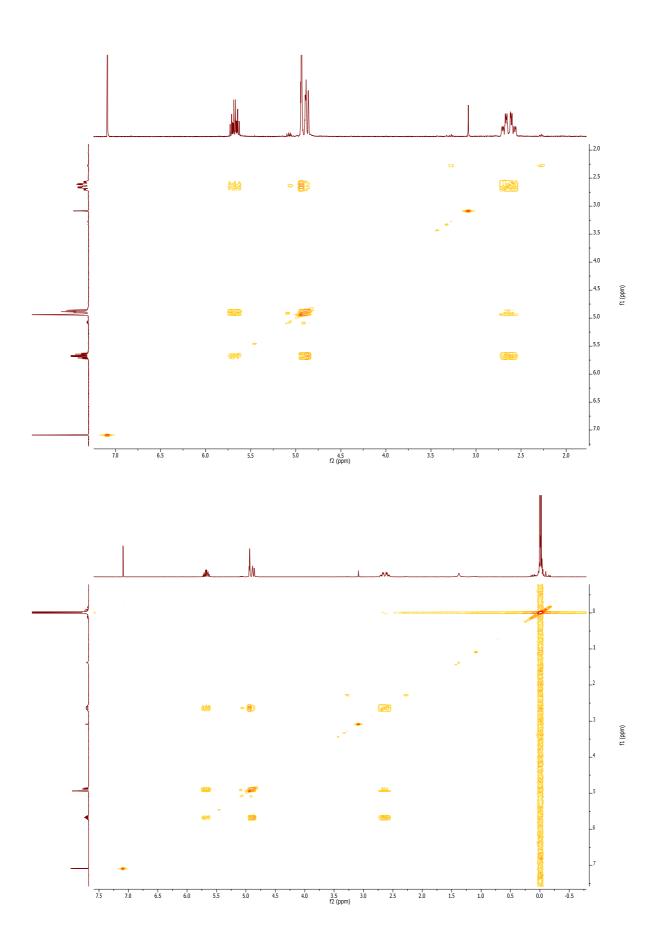

(3-(benzo[d][1,3]dioxol-5-yl)-1, 3-diphenylpropa-1, 2-dien-1-yl) trimethylsilane~(4h)

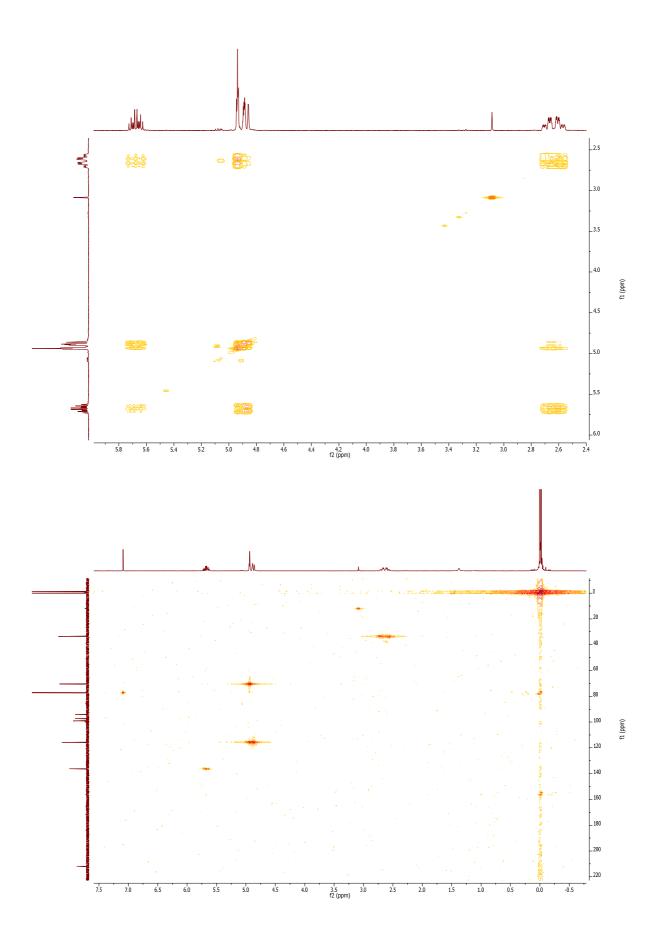

4-(1,3-diphenyl-3-(trimethylsilyl)propa-1,2-dien-1-yl)phenyl pivalate (4i)

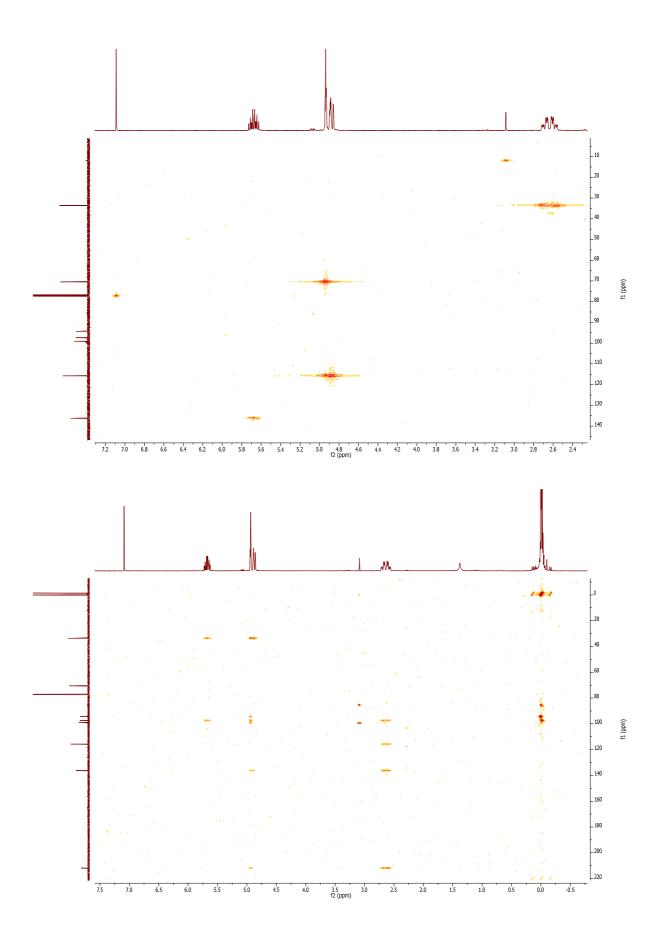

(1-(3-chlorophenyl)-3-(4-methoxyphenyl)-3-phenylpropa-1, 2-dien-1-yl) trimethyl silane (1-(3-chlorophenyl)-3-(4-methoxyphenyl)-3-phenylpropa-1, 2-dien-1-yl) trimethyl silane (1-(3-chlorophenyl)-3-(4-methoxyphenyl)-3-phenylpropa-1, 2-dien-1-yl) trimethyl silane (1-(3-chlorophenyl)-3-(4-methoxyphenyl)-3-phenylpropa-1, 2-dien-1-yl) trimethyl silane (1-(3-chlorophenyl)-3-phenylpropa-1, 2-dien-1-yl) trimethyl silane (1-(3-chlorophenyl)-3-phenylpropa-1, 2-dien-1-yl) trimethyl silane (1-(3-chlorophenylpropa-1)) trim

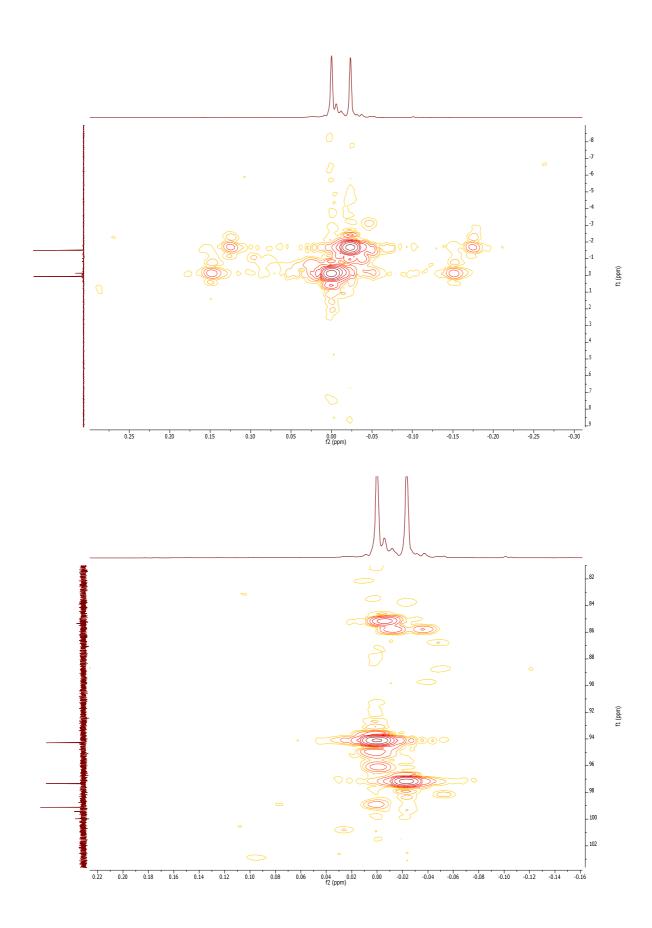


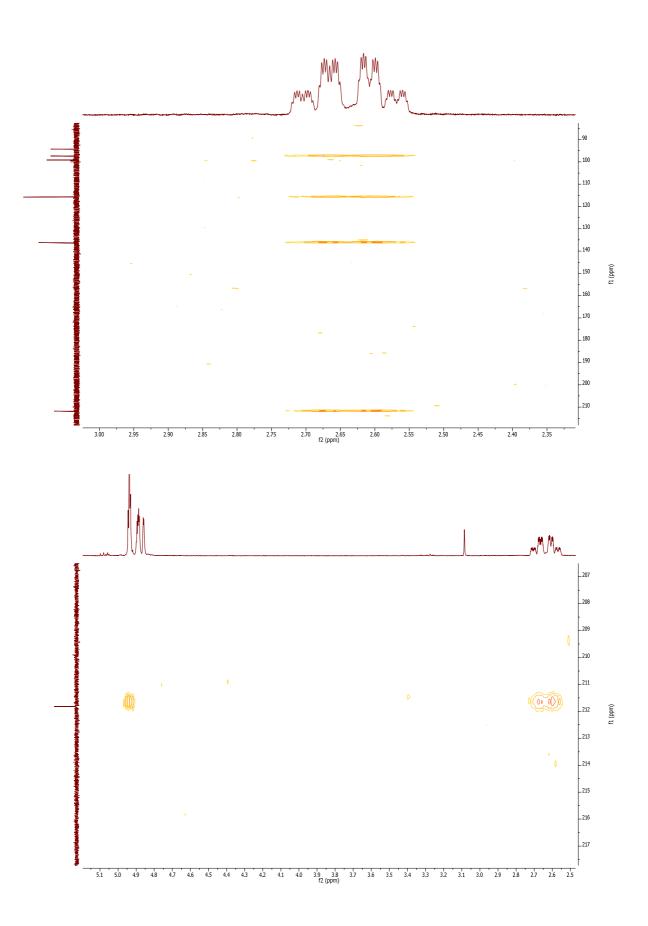

Trimethyl(1,3,3-tri(thiophen-3-yl)propa-1,2-dien-1-yl)silane (4k)

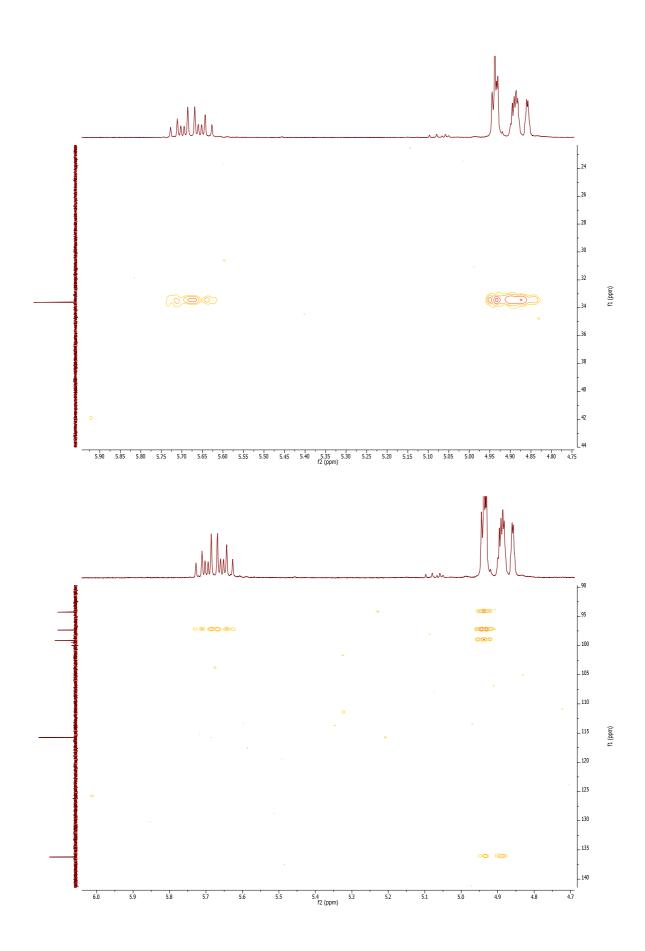


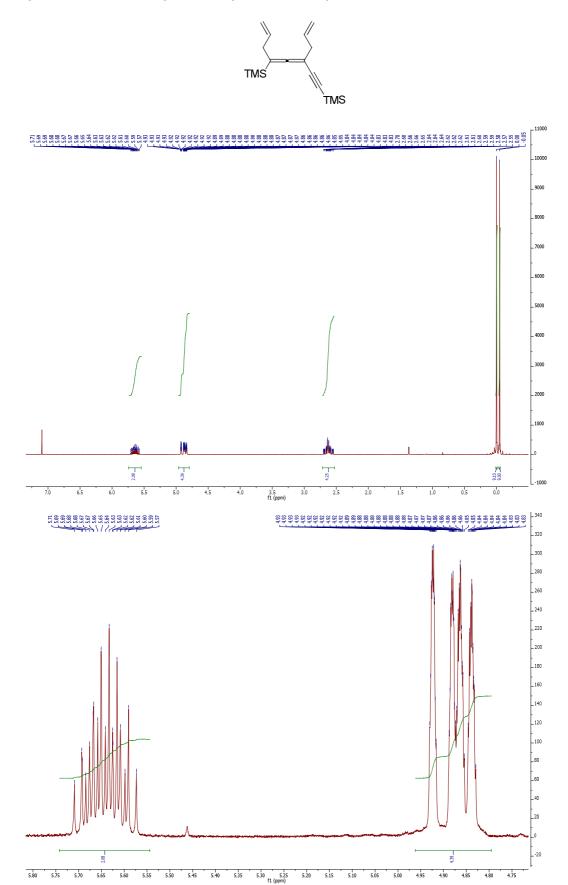

octa-3,4,7-trien-1-yne-1,5-diylbis(trimethylsilane) (7)

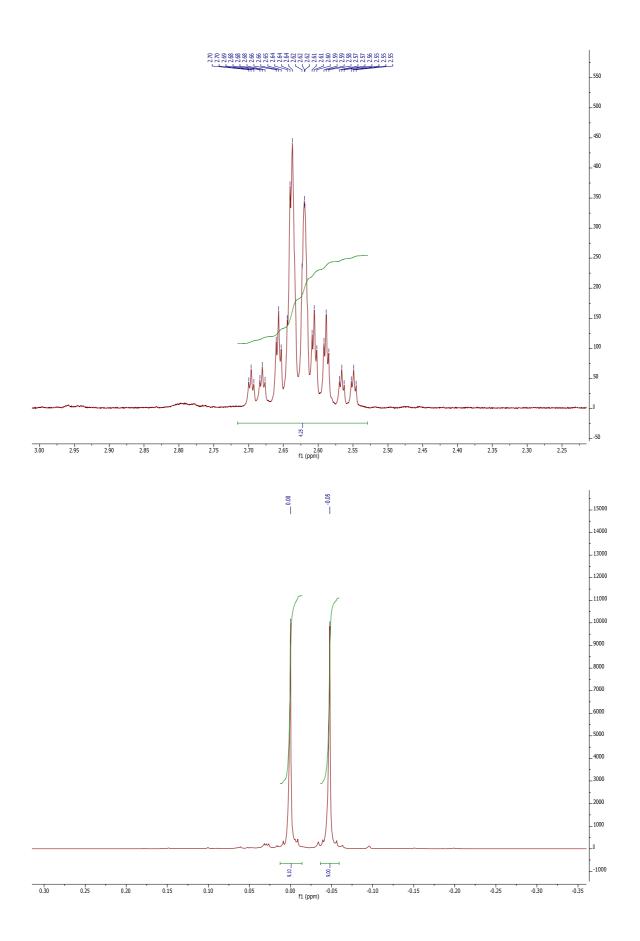


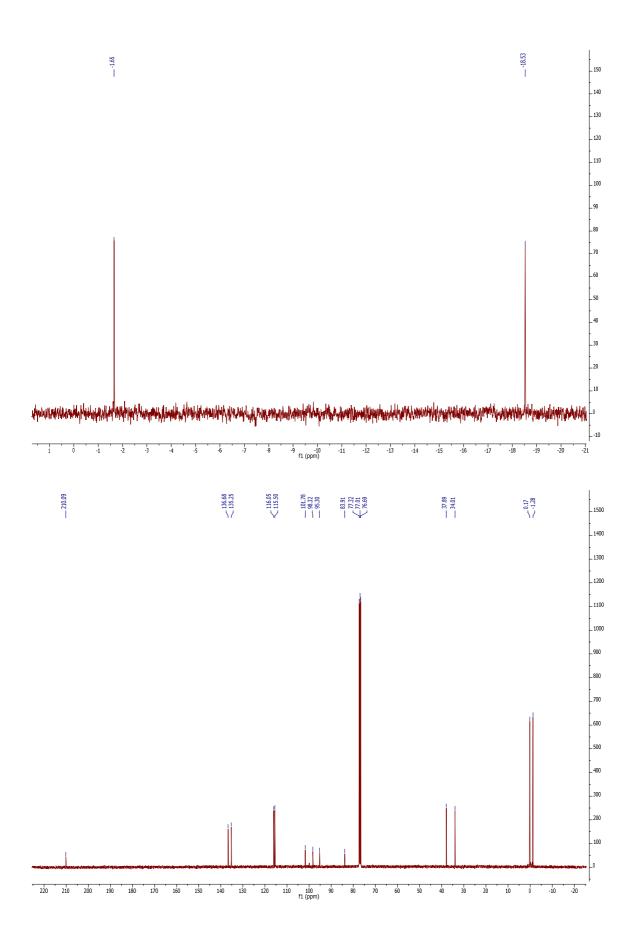


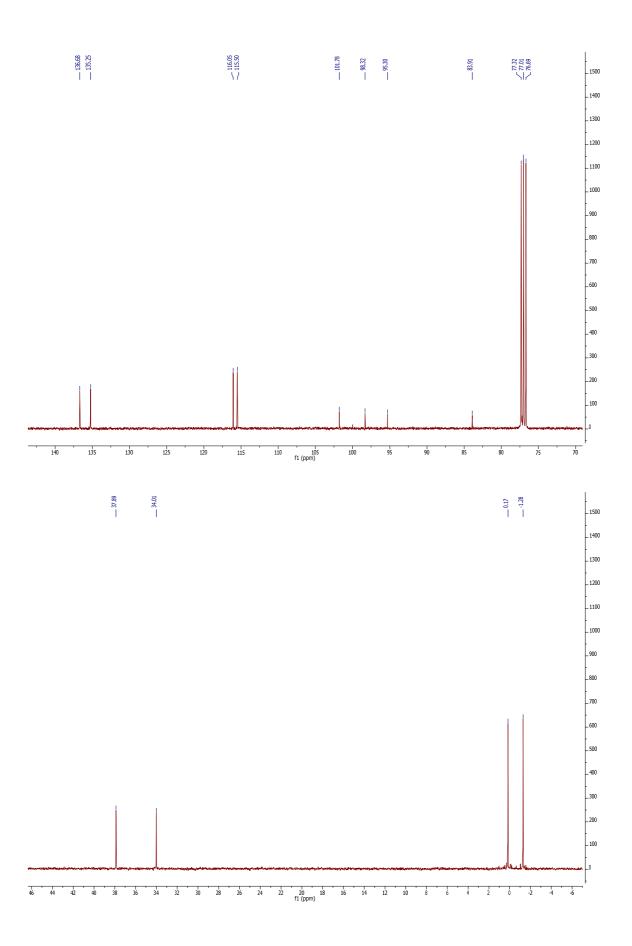




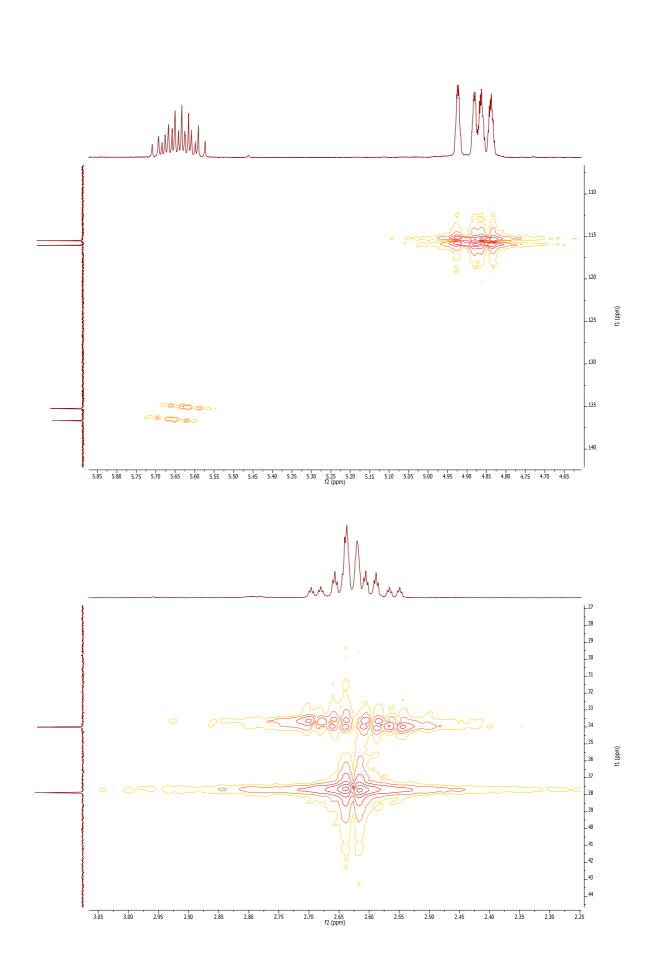




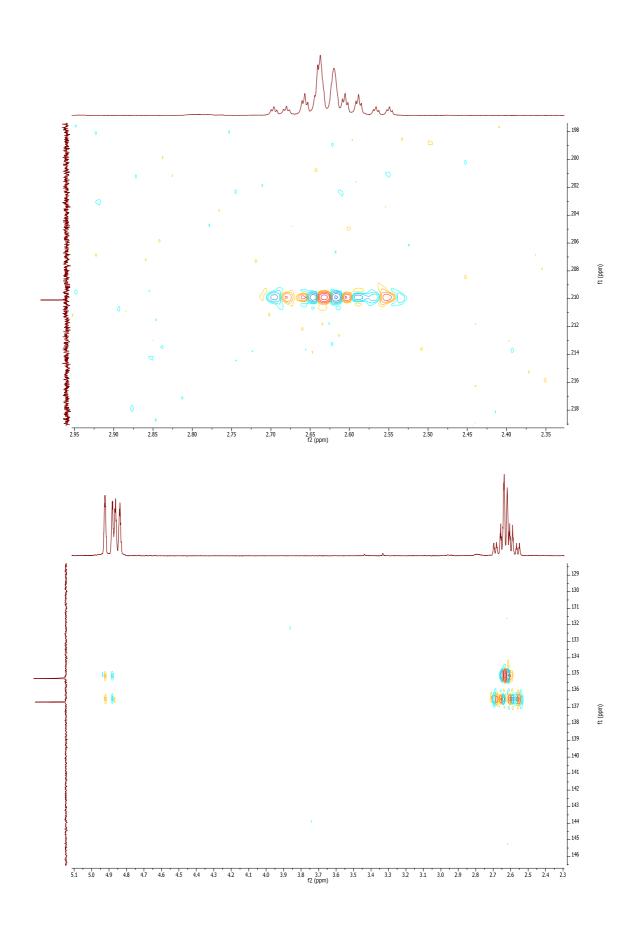


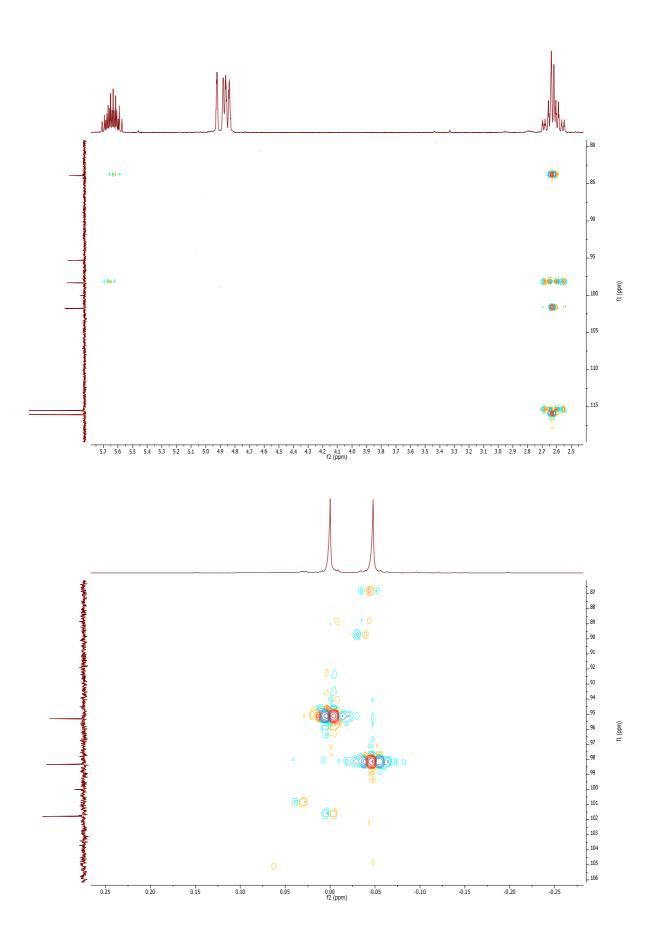


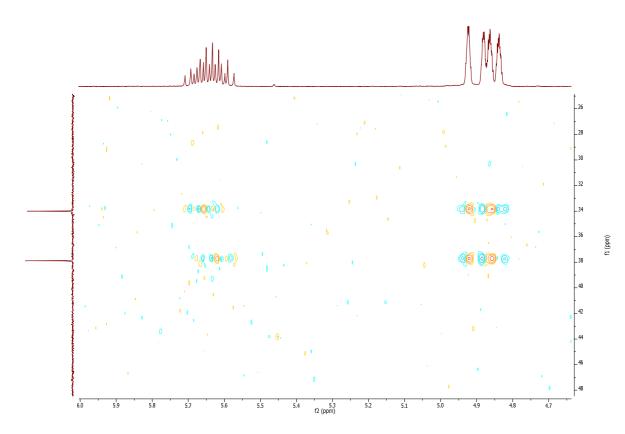
(3-allylocta-3,4,7-trien-1-yne-1,5-diyl)bis(trimethylsilane) (8)







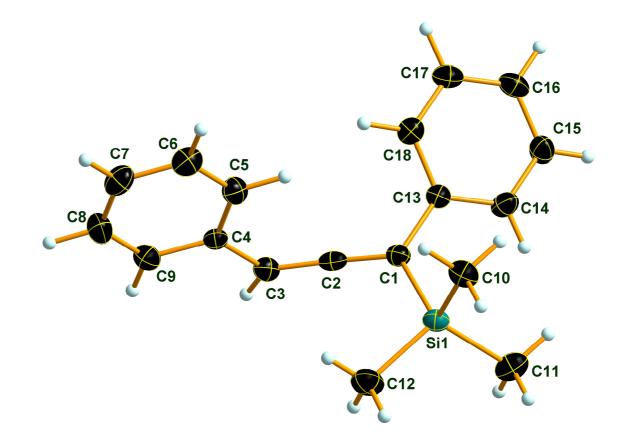




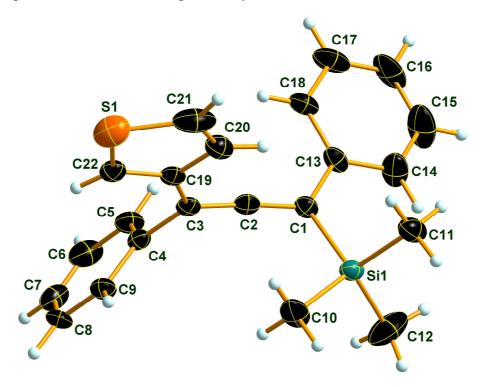
Single Crystal X-Ray Diffraction Studies

Single crystals of allenes **3c**, **4c**, **4f**, **4k**, suitable for X-ray diffraction, were obtained by slow evaporation of *i*-hexane-ethylacetate solutions. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an Oxford Xcalibur 3 diffractometer equipped with a Spellman generator (50 kV, 40 mA) and a Kappa CCD detector, operating with Mo-K_g radiation ($\lambda = 0.71071$ Å).

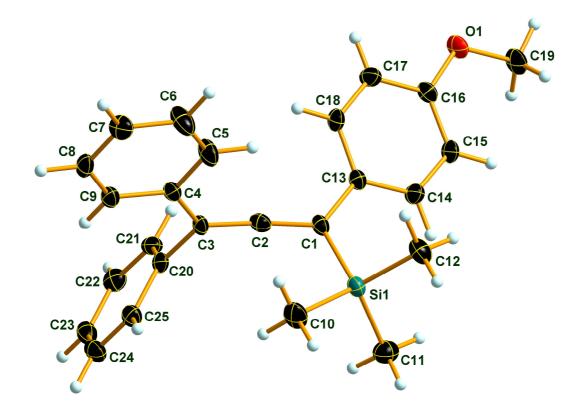
Data collection was performed with the CrysAlis CCD software;^{a)} CrysAlis RED software^{b)} was used for data reduction. Absorption correction using the SCALE3 ABSPACK multiscan method^{c)} was applied. The structures were solved with SHELXS-97,^{d)} refined with SHELXL-97^{e)} and finally checked using PLATON.^{f)} Details for data collection and structure refinement are summarized in Table 1.


CCDC-1038905 (for 3c), CCDC-1038906 (for 4c), CCDC-1038907 (for 4f) and CCDC-

1038908 (for 4k) contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via*


www.ccdc.cam.ac.uk/data_request/cif.

	3c	4c	4f	4k
Empirical formula	$C_{18}H_{20}Si$	$C_{22}H_{22}SSi$	C ₂₅ H ₂₆ OSi	$C_{18}H_{18}S_3Si$
Formula mass	264.43	346.55	370.55	358.59
T[K]	100(2)	100(2)	100(2)	100(2)
Crystal size [mm]	$0.40 \times 0.17 \times 0.07$	$0.45\times0.35\times0.25$	$0.34 \times 0.28 \times 0.21$	$0.32 \times 0.06 \times 0.05$
Crystal description	colorless platelet	colorless block	colorless block	colorless rod
Crystal system	monoclinic	triclinic	triclinic	orthorhombic
Space group	<i>P</i> 21/ <i>c</i>	<i>P</i> -1	<i>P</i> -1	Pccn
a [Á]	11.7536(9)	9.8470(10)	7.7678(8)	39.103(3)
b [Å]	6.0009(6)	10.6857(12)	11.5078(7)	15.3784(9)
c [Å]	21.9793(19)	10.7187(16)	12.8935(12)	6.1528(4)
α [°]	90	73.657(11)	97.150(7)	90
β [°]	95.951(8)	77.949(11)	105.425(9)	90
γ [°]	90	64.606(11)	108.269(8)	90
V [Å ³]	1541.9(2)	972.6(2)	1027.48(2)	3699.9(4)
Z	4	2	2	8
$\rho_{calcd.} [g \text{ cm}^{-3}]$	1.139	1.183	1.198	1.288
μ [mm ⁻¹]	0.137	0.228	0.126	0.459
<i>F</i> (000)	568	368	396	1504
Θ range [°]	4.17 – 25.68	4.25 - 25.34	4.20 - 25.35	4.27 - 25.35
Index ranges	$-14 \le h \le 12$	$-11 \le h \le 11$	$-9 \le h \le 9$	$-46 \le h \le 47$
	$-5 \le k \le 7$	$-12 \le k \le 12$	$-11 \le k \le 13$	$-17 \le k \le 18$
	$-26 \le l \le 26$	$-12 \le l \le 12$	$-15 \le l \le 15$	$-7 \leq l \leq 7$
Reflns. collected	9465	7048	6573	21824
Reflns. obsd.	1868	2786	2727	2474
Reflns. unique	2921	3528	3633	3365
	$(R_{int} = 0.0778)$	$(R_{int} = 0.0375)$	$(R_{int} = 0.0766)$	$(R_{int} = 0.1120)$
R_1 , wR_2 (2 σ data)	0.0557, 0.0980	0.0714, 0.1888	0.0476, 0.1096	0.0722, 0.1378
R_1 , wR_2 (all data)	0.1005, 0.1169	0.0886, 0.2121	0.0715, 0.1299	0.1034, 0.1525
GOOF on F^2	0.975	1.046	1.044	1.079
Peak/hole [e Á ⁻³]	0.355 / -0.321	1.508 / -0.647	0.429 / -0.473	0.498 / -0.412


Table 1. Details for X-ray data collection and structure refinement for allenes 3c, 4c, 4f, 4k.

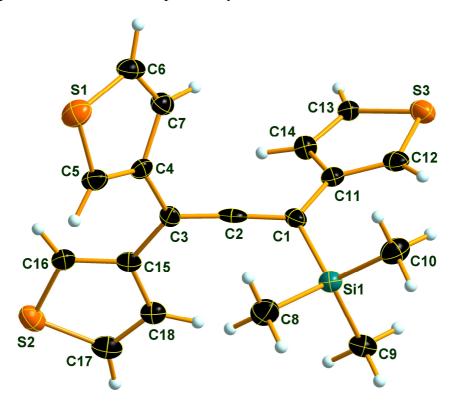

Figure 1. Molecular structure of compound 3c in the crystal, DIAMOND^{g)} representation; thermal ellipsoids are drawn at 50 % probability level.

Figure 2. Molecular structure of compound **4c** in the crystal, DIAMOND^{g)} representation; thermal ellipsoids are drawn at 50 % probability level.

Figure 3. Molecular structure of compound **4f** in the crystal, DIAMOND^{g)} representation; thermal ellipsoids are drawn at 50 % probability level.

Figure 4. Molecular structure of compound **4k** in the crystal, DIAMOND^{g)} representation; thermal ellipsoids are drawn at 50 % probability level. **Table 2.** Selected bond lengths (Å) of compound **1**.

Si1 – C1	1.900(2)	C5 – C6	1.388(4)
Si1 - C10	1.862(3)	C6 - C7	1.382(4)
Si1 – C11	1.860(3)	C7 - C8	1.385(4)
Si1 - C12	1.856(3)	C8 – C9	1.383(4)
C1 - C2	1.305(4)	C13 - C14	1.391(4)
C1 – C13	1.502(3)	C13 – C18	1.395(4)
C2 - C3	1.317(4)	C14 - C15	1.389(4)
C3 - C4	1.481(4)	C15 - C16	1.383(4)
C4-C5	1.398(4)	C16 – C17	1.388(4)
C4 - C9	1.391(4)	C17 – C18	1.382(4)

 Table 3. Selected bond angles (°) of compound 1.

. Selected bond angle	s () of compound	1.	
C1 - Si1 - C10	107.3(1)	C4 - C5 - C6	121.1(3)
C1 - Si1 - C11	114.5(1)	C5 - C6 - C7	120.4(3)
C1-Si1-C12	107.3(1)	C6 - C7 - C8	118.9(3)
C10 - Si1 - C11	107.6(1)	C7 - C8 - C9	121.0(3)
C10-Si1-C12	110.9(1)	C4 - C9 - C8	120.8(3)
C11 - Si1 - C12	109.4(1)	C1 - C13 - C14	121.1(2)
Si1 - C1 - C2	115.9(2)	C1 - C13 - C18	121.0(2)
Si1 - C1 - C13	122.8(2)	C14 - C13 - C18	117.9(2)
C2 - C1 - C13	120.9(2)	C13 - C14 - C15	120.9(3)
C1 - C2 - C3	174.2(2)	C14 - C15 - C16	120.8(3)
C2 - C3 - C4	124.1(2)	C15 - C16 - C17	118.6(3)
C3 - C4 - C5	121.0(2)	C16 - C17 - C18	120.8(3)
C3 - C4 - C9	121.2(2)	C13 - C18 - C17	121.0(3)
C5 - C4 - C9	117.8(2)		

 Table 4. Selected torsion angles (°) of compound 1.

able 4. Selected torsion ang	les () of compour	IU I .	
C10 - Si1 - C1 - C2	-113.5(2)	C3 - C4 - C9 - C8	-179.3(2)
C10 - Si1 - C1 - C13	60.0(2)	C5 - C4 - C9 - C8	0.3(4)
C11-Si1-C1-C2	127.2(2)	C4 - C5 - C6 - C7	0.4(4)
C11 - Si1 - C1 - C13	-59.3(2)	C5 - C6 - C7 - C8	-0.1(4)
C12-Si1-C1-C2	5.6(2)	C6 - C7 - C8 - C9	0.0(4)
C12 - Si1 - C1 - C13	179.1(2)	C7 - C8 - C9 - C4	-0.1(4)
Si1 - C1 - C13 - C14	44.7(3)	C1 - C13 - C14 - C15	-179.8(2)

Si1 - C1 - C13 - C18	-134.0(2)	C18 - C13 - C14 - C15	-1.1(4)
C2 - C1 - C13 - C14	-142.2(3)	C1 - C13 - C18 - C17	179.9(2)
C2 - C1 - C13 - C18	39.2(4)	C14 - C13 - C18 - C17	1.2(4)
C2 - C3 - C4 - C5	9.7(4)	C13 - C14 - C15 - C16	0.4(4)
C2 - C3 - C4 - C9	-170.6(3)	C14 - C15 - C16 - C17	0.1(4)
C3 - C4 - C5 - C6	179.2(2)	C15 - C16 - C17 - C18	0.0(4)
C9 - C4 - C5 - C6	-0.4(4)	C16 - C17 - C18 - C13	-0.7(4)

 Table 5. Selected bond lengths (Å) of compound 2.

ected bond leng	ths (A) of comp	ound 2.	
S1 - C21	1.763(4)	C5 - C6	1.389(5)
S1-C22	1.703(3)	C6 - C7	1.244(6)
Si1 - C1	1.894(3)	C7 – C8	1.412(6)
Si1 - C10	1.864(5)	C8 – C9	1.414(4)
Si1 – C11	1.864(3)	C13 – C14	1.393(5)
Si1 – C12	1.854(4)	C13 – C18	1.404(5)
C1 - C2	1.306(4)	C14 - C15	1.394(7)
C1 - C13	1.494(5)	C15 – C16	1.378(7)
C2 - C3	1.322(4)	C16 – C17	1.358(6)
C3 - C4	1.495(4)	C17 – C18	1.401(6)
C3 – C19	1.482(4)	C19 – C20	1.435(4)
C4 - C5	1.395(5)	C19 – C22	1.375(4)
C4 - C9	1.398(4)	C20 - C21	1.361(5)

 Table 6. Selected bond angles (°) of compound 2.

C21 - S1 - C22	92.1(2)	C5 - C6 - C7	120.4(5)
C1-Si1-C10	107.5(2)	C6 - C7 - C8	124.0(4)
C1 - Si1 - C11	106.7(2)	C7 - C8 - C9	117.6(3)
C1-Si1-C12	113.2(2)	C4 - C9 - C8	118.8(3)
C10 - Si1 - C11	110.2(2)	C1 - C13 - C14	121.0(3)
C10-Si1-C12	107.4(2)	C1 - C13 - C18	120.4(3)
C11-Si1-C12	111.8(2)	C14 - C13 - C18	118.6(3)
Si1 - C1 - C2	113.8(3)	C13 - C14 - C15	120.8(4)
Si1 - C1 - C13	124.1(2)	C14 - C15 - C16	119.1(4)
C2 - C1 - C13	121.8(3)	C15 - C16 - C17	121.7(4)
C1 - C2 - C3	172.6(4)	C16 – C17 – C18	119.8(4)
C2 - C3 - C4	118.9(3)	C13 - C18 - C17	119.9(4)

C2 - C3 - C19	119.8(3)	C3 - C19 - C20	123.1(3)
C4 - C3 - C19	121.4(3)	C3 - C19 - C22	124.6(3)
C3 - C4 - C5	119.5(3)	C20 - C19 - C22	112.3(3)
C3 - C4 - C9	122.4(3)	C19 - C20 - C21	113.3(3)
C5 - C4 - C9	118.2(3)	S1 - C21 - C20	110.2(3)
C4-C5-C6	121.1(4)	S1 - C22 - C19	112.1(2)

 Table 7. Selected torsion angles (°) of compound 2.

able 7. Selected torsion ang	gles (°) of compou	nd 2.	
C22 - S1 - C21 - C20	0.3(4)	C9 - C4 - C5 - C6	-0.5(5)
C21 - S1 - C22 - C19	-0.6(3)	C3 - C4 - C9 - C8	-177.8(3)
C10 - Si1 - C1 - C2	1.8(3)	C5 - C4 - C9 - C8	0.4(4)
C10 - Si1 - C1 - C13	175.8(3)	C4 - C5 - C6 - C7	0.3(6)
C11 - Si1 - C1 - C2	-116.4(3)	C5 - C6 - C7 - C8	0.1(6)
C11 - Si1 - C1 - C13	57.6(3)	C6 - C7 - C8 - C9	-0.1(5)
C12 - Si1 - C1 - C2	120.3(3)	C7 - C8 - C9 - C4	-0.1(4)
C12 - Si1 - C1 - C13	-65.7(3)	C1 – C13 – C14 – C15	178.2(4)
Si1 - C1 - C13 - C14	19.8(4)	C18 - C13 - C14 - C15	-0.8(6)
Si1 - C1 - C13 - C18	-161.2(2)	C1 – C13 – C18 – C17	-179.0(3)
C2 - C1 - C13 - C14	-166.6(3)	C14 - C13 - C18 - C17	0.0(5)
C2 - C1 - C13 - C18	12.3(5)	C13 - C14 - C15 - C16	2.7(7)
C2 - C3 - C4 - C5	-54.8(4)	C14 - C15 - C16 - C17	-3.9(7)
C2 - C3 - C4 - C9	123.4(4)	C15 - C16 - C17 - C18	3.1(6)
C19 - C3 - C4 - C5	124.8(3)	C16 - C17 - C18 - C13	-1.1(6)
C19 - C3 - C4 - C9	-56.9(4)	C3 - C19 - C20 - C21	178.7(4)
C2 - C3 - C19 - C20	-4.4(5)	C22 - C19 - C20 - C21	-0.6(5)
C2 - C3 - C19 - C22	174.7(3)	C3 - C19 - C22 - S1	-178.4(3)
C4 - C3 - C19 - C20	175.9(3)	C20 - C19 - C22 - S1	0.8(4)
C4 - C3 - C19 - C22	-4.9(5)	C19 - C20 - C21 - S1	0.1(5)
C3 - C4 - C5 - C6	177.8(3)		

Table 8. Selected bond lengths (Å) of compound 3.	Table 8.	Selected	bond l	engths ()	Å) of	compound	13
---	----------	----------	--------	-----------	-------	----------	----

cied bolid lengths	(A) of compound	1 5.	
Si1 – C1	1.891(3)	C7 - C8	1.378(3)
Si1 - C10	1.851(2)	C8 - C9	1.388(3)
Si1 – C11	1.850(3)	C13 - C14	1.377(3)
Si1 - C12	1.855(2)	C13 - C18	1.396(3)
O1 – C16	1.365(3)	C14 - C15	1.387(3)
O1 – C19	1.429(3)	C15 - C16	1.387(3)
C1 - C2	1.306(3)	C16 – C17	1.373(3)
C1 - C13	1.487(3)	C17 - C18	1.373(3)
C2 - C3	1.320(3)	C20 – C21	1.382(3)

C3 - C4	1.485(3)	C20 - C25	1.389(3)
C3 - C20	1.500(3)	C21 - C22	1.387(3)
C4 - C5	1.397(3)	C22 - C23	1.374(3)
C4 - C9	1.389(3)	C23 - C24	1.378(3)
C5 - C6	1.380(4)	C24 - C25	1.378(3)
C6 - C7	1.380(3)		

Table 9. Selected bond angles (°) of compound 3.

e 9. Selected bond ang	gles (°) of compou	and 3 .	
C1 - Si1 - C10	107.7(1)	C7 - C8 - C9	120.3(2)
C1 - Si1 - C11	111.6(1)	C4 - C9 - C8	121.2(2)
C1 - Si1 - C12	108.6(1)	C1 - C13 - C14	122.2(2)
C10 - Si1 - C11	108.6(1)	C1 - C13 - C18	120.9(2)
C10 - Si1 - C12	110.7(1)	C14 - C13 - C18	116.9(2)
C11 - Si1 - C12	109.7(1)	C13 - C14 - C15	122.8(2)
C16 - O1 - C19	117.4(2)	C14 - C15 - C16	118.6(2)
Si1 - C1 - C2	114.1(2)	O1 – C16 – C15	124.2(2)
Si1 - C1 - C13	123.0(2)	O1 – C16 – C17	116.0(2)
C2 - C1 - C13	122.6(2)	C15 – C16 – C17	119.8(2)
C1 - C2 - C3	171.9(2)	C16 – C17 – C18	120.5(2)
C2 - C3 - C4	121.0(2)	C13 – C18 – C17	121.4(2)
C2 - C3 - C20	119.3(2)	C3 - C20 - C21	121.1(2)
C4 - C3 - C20	119.7(2)	C3 - C20 - C25	121.0(2)
C3 - C4 - C5	120.1(2)	C21 - C20 - C25	117.9(2)
C3 - C4 - C9	122.2(2)	C20 - C21 - C22	121.1(2)
C5 - C4 - C9	117.7(2)	C21 - C22 - C23	120.0(2)
C4 - C5 - C6	120.9(2)	C22 - C23 - C24	119.7(2)
C5 - C6 - C7	120.8(2)	C23 - C24 - C25	120.1(2)
C6 - C7 - C8	119.1(2)	C20 - C25 - C24	121.2(2)

Table 10.	Selected	torsion	angles (°) of	compound	3.
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			, ,	• • • • • • • • • • • • • • • • • • • •	-

able 10. Selected torstoll all	gies () of compo	und J.	
C10 - Si1 - C1 - C2	-11.8(2)	C9 - C4 - C5 - C6	-0.1(4)
C10 - Si1 - C1 - C13	162.7(2)	C4 - C5 - C6 - C7	0.9(4)
C11-Si1-C1-C2	107.4(2)	C5 - C6 - C7 - C8	-0.9(4)
C11 - Si1 - C1 - C13	-78.2(2)	C6 - C7 - C8 - C9	0.1(4)
C12-Si1-C1-C2	-131.6(2)	C7 - C8 - C9 - C4	0.7(4)
C12 - Si1 - C1 - C13	42.9(2)	C1 – C13 – C18 – C17	178.4(2)
C19 - O1 - C16 - C17	-178.6(2)	C14 - C13 - C18 - C17	-0.2(3)
C19 - O1 - C16 - C15	0.6(3)	C1 - C13 - C14 - C15	-178.5(2)
Si1 - C1 - C13 - C18	-146.2(2)	C18 - C13 - C14 - C15	0.1(3)
Si1 - C1 - C13 - C14	32.4(3)	C13 - C14 - C15 - C16	0.1(3)

C2 - C1 - C13 - C14	-153.6(2)	C14 - C15 - C16 - C17	-0.3(3)
C2 - C1 - C13 - C18	27.8(3)	C14 - C15 - C16 - O1	-179.5(2)
C2 - C3 - C4 - C5	5.4(4)	O1 - C16 - C17 - C18	179.5(2)
C20 - C3 - C4 - C9	5.0(3)	C15 - C16 - C17 - C18	0.2(3)
C2 - C3 - C20 - C21	-67.1(3)	C16 - C17 - C18 - C13	0.0(3)
C2 - C3 - C20 - C25	111.7(3)	C3 - C20 - C21 - C22	-179.9(2)
C4 - C3 - C20 - C21	113.1(3)	C25 - C20 - C21 - C22	1.4(4)
C4 - C3 - C20 - C25	-68.2(3)	C3 - C20 - C25 - C24	-179.6(2)
C2 - C3 - C4 - C9	-174.8(2)	C21 - C20 - C25 - C24	-0.8(4)
C20 - C3 - C4 - C5	-174.8(2)	C20 - C21 - C22 - C23	-1.4(4)
C3 - C4 - C9 - C8	179.5(2)	C21 - C22 - C23 - C24	0.8(4)
C5 - C4 - C9 - C8	-0.7(4)	C22 - C23 - C24 - C25	-0.3(4)
C3 - C4 - C5 - C6	179.7(2)	C23 - C24 - C25 - C20	0.3(4)

 Table 11. Selected bond lengths (Å) of compound 4.

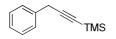
U			
S1 - C5	1.719(5)	C2 - C3	1.325(7)
S1 - C6	1.703(5)	C3 – C4	1.482(6)
S2 - C16	1.715(5)	C3 – C15	1.481(6)
S2 - C17	1.710(5)	C4 - C5	1.363(6)
S3-C12	1.706(5)	C4 - C7	1.428(7)
S3 - C13	1.732(5)	C6 - C7	1.354(7)
Si1 – C1	1.891(5)	C11 – C12	1.369(6)
Si1 – C8	1.858(5)	C11 – C14	1.432(7)
Si1 – C9	1.869(5)	C13 – C14	1.385(7)
Si1 - C10	1.860(5)	C15 – C16	1.368(6)
C1 - C2	1.314(7)	C15 - C18	1.425(6)
C1 – C11	1.488(6)	C17 – C18	1.362(7)

 Table 12. Selected bond angles (°) of compound 4.

Selected bolid aligie	s () of compound	4.	
C5-S1-C6	91.6(2)	C3 - C4 - C7	122.6(4)
C16 - S2 - C17	91.7(2)	C5 - C4 - C7	111.0(4)
C12 - S3 - C13	92.4(2)	S1 - C5 - C4	112.3(4)
C1 - Si1 - C8	107.7(2)	S1 - C6 - C7	111.8(4)
C1 – Si1 – C9	107.1(2)	C4 - C7 - C6	113.3(4)
C1 - Si1 - C10	113.1(2)	C1 - C11 - C12	125.5(4)
C8 – Si1 – C9	110.9(2)	C1 - C11 - C14	123.7(4)
C8 - Si1 - C10	108.1(2)	C12 - C11 - C14	110.9(4)
C9 - Si1 - C10	109.9(2)	S3 - C12 - C11	113.1(4)
Sil - Cl - C2	113.5(3)	S3 - C13 - C14	109.8(4)
Si1 - C1 - C11	125.6(3)	C11 - C14 - C13	113.9(4)

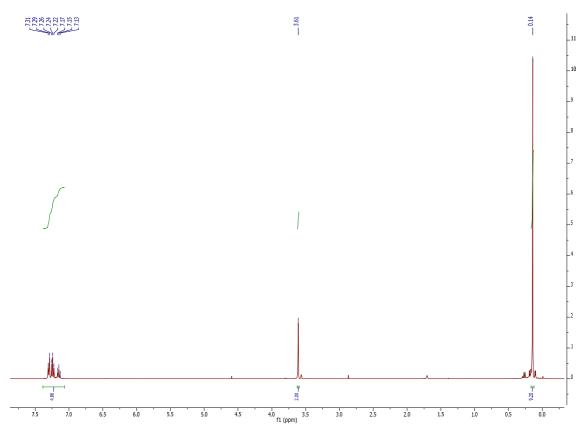
C2 - C1 - C11	120.7(4)	C3 – C15 – C16	125.4(4)
C1 - C2 - C3	173.1(5)	C3 - C15 - C18	123.6(4)
C2 - C3 - C4	117.9(4)	C16 - C15 - C18	111.0(4)
C2 - C3 - C15	120.9(4)	S2 - C16 - C15	112.4(3)
C4 - C3 - C15	121.1(4)	S2 - C17 - C18	111.5(3)
C3 - C4 - C5	126.4(4)	C15 - C18 - C17	113.4(4)

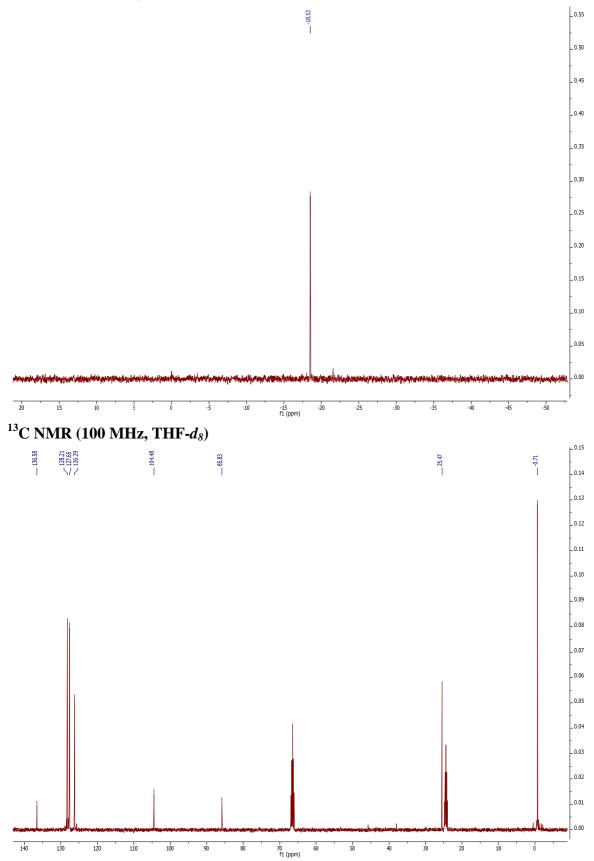
 Table 13. Selected torsion angles (°) of compound 4.


-168.6(5)
9.7(7)
9.5(7)
-172.2(4)
178.3(4)
-0.8(5)
-179.4(4)
-0.3(6)
1.2(5)
-178.6(4)
0.9(5)
179.3(4)
3 -0.2(6)
-0.5(5)
178.1(4)
-0.3(5)
-178.1(4)
7 0.4(6)
-0.2(5)

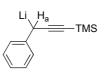
#### References

- a) CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET) (compiled Apr 1 2005, 17:53:34).
- b) CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET) (compiled Apr 1 2005, 17:53:34).
- c) SCALE3 ABSPACK An Oxford Diffraction Program (1.0.4, gui:1.0.3) (C), Oxford Diffraction, Ltd., 2005.
- d) Sheldrick, G. M. (1997) SHELXS-97: *Program for Crystal Structure Solution*, University of Göttingen, Germany.
- e) Sheldrick, G. M. (1997) SHELXL-97: *Program for the Refinement of Crystal Structures*, University of Göttingen, Germany.
- f) Spek, A. L. (1999) PLATON: *A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, The Netherlands.
- g) DIAMOND, Crystal Impact GbR., Version 3.2i.


### **NMR studies**


Trimethyl(3-phenylprop-1-yn-1-yl)silane (2a)




¹**H NMR** (400 MHz, THF-*d*₈) δ/ppm = 7.30 (2H, dd, 2-H_{meta}), 7.24 (2H, d, 2-H_{ortho}), 7.15 (1H, t, 1-H_{para}), 3.61 (1H, s, CH₂), 0.03 (9H, s, CH₃). ¹³**C NMR** (100 MHz, THF-*d*₈) δ/ppm = 104.5 (-C^Ξ), 136.6 (C_{ipso}), 128.2 (2C_{meta}) 127.7 (2C_{ortho}), 126.3 (C_{para}), 85.8 (=C-Si), 25.5 (CH₂), -0.71 (CH₃). ²⁹Si NMR (79 MHz, THF-*d*₈) δ/ppm = -18.53.

¹H NMR (400 MHz, THF-*d*₈)



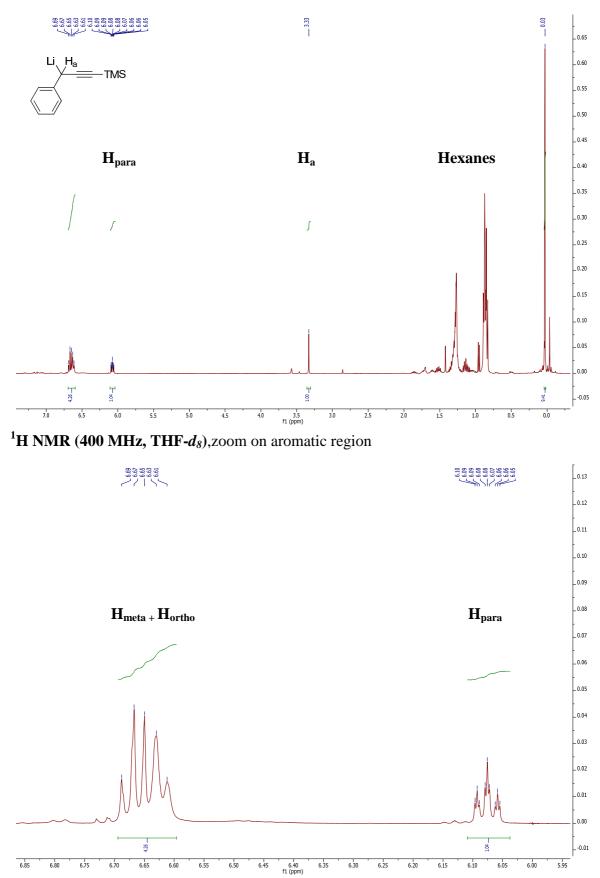


#### NMR studies of the metalated intermediate 9

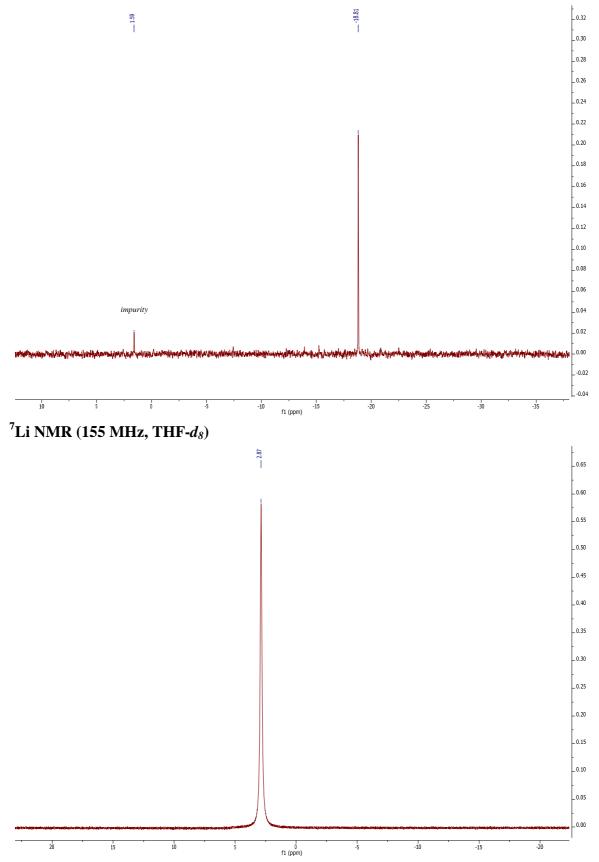


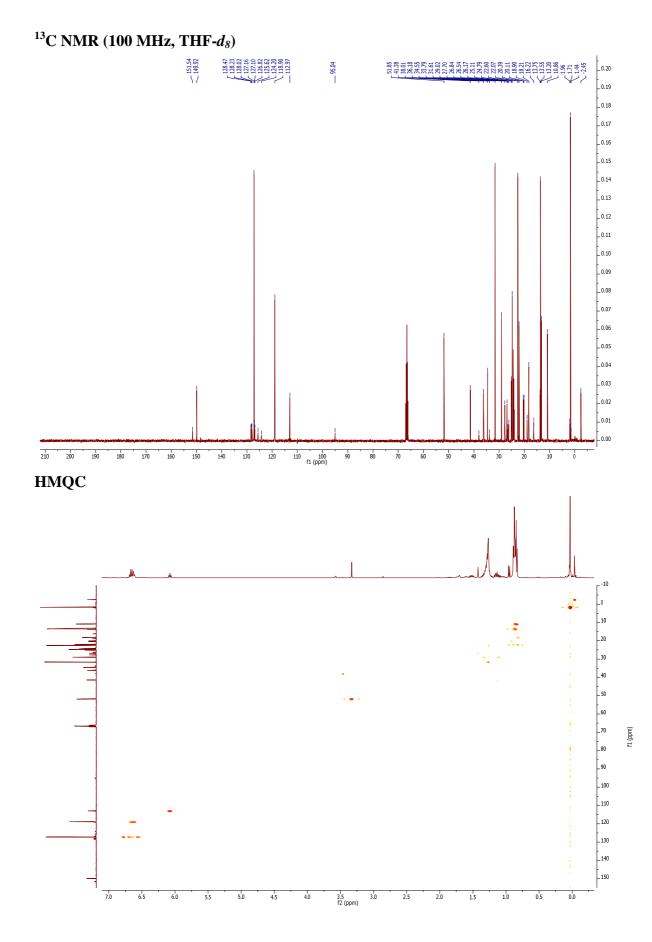
In order to provide structural information on the metalated TMS-alkyne of type **9**, we investigated the metalation of trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**) with *n*BuLi at 25°C. Therefore trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**; 0.25 mmol, 47.0 mg) and THF- $d_8$  (0.5 mL) were charged in a dry, argon flushed NMR tube. The NMR tube was cooled to 0°C and *n*BuLi (1.00 equiv, 0.10 mL, 2.45 M in hexanes) was slowly added and the tube was shaken once. The NMR tube was warmed up to 25 °C and NMR studies were performed at 25 °C, including ¹H, ¹³C, ²⁹Si, ⁷Li and 2D NMR.

¹**H NMR** (400 MHz, THF- $d_8$ )  $\delta$ /ppm = 6.67 (2H, dd, 2-H_{meta}), 6.63 (2H, d, 2-H_{ortho}), 6.07 (1H, t, 1-H_{para}), 3.33 (1H, s, H_a), 0.03 (9H, s, CH₃).

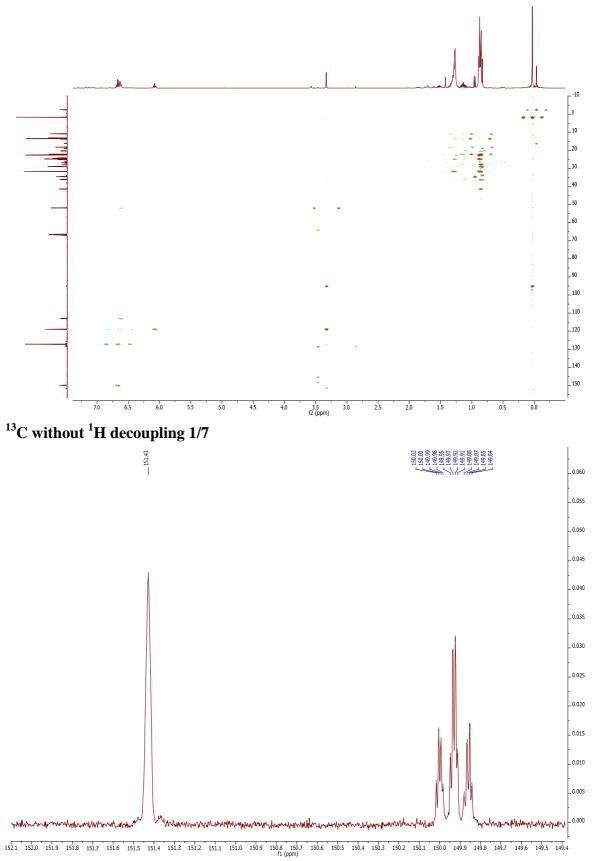

¹³C NMR (100 MHz, THF- $d_8$ )  $\delta$ /ppm = 151.4 (-C[±])^{*}, 149.9 (C_{ipso}), 127.2 (2C_{meta}) 118.9 (2C_{ortho}), 112.9 (C_{para}), 95.0 ([±]C-Si), 51.9 (C-H_a), 1.71 (CH₃).

²⁹Si NMR (79 MHz, THF- $d_8$ ) δ/ppm = -18.83.

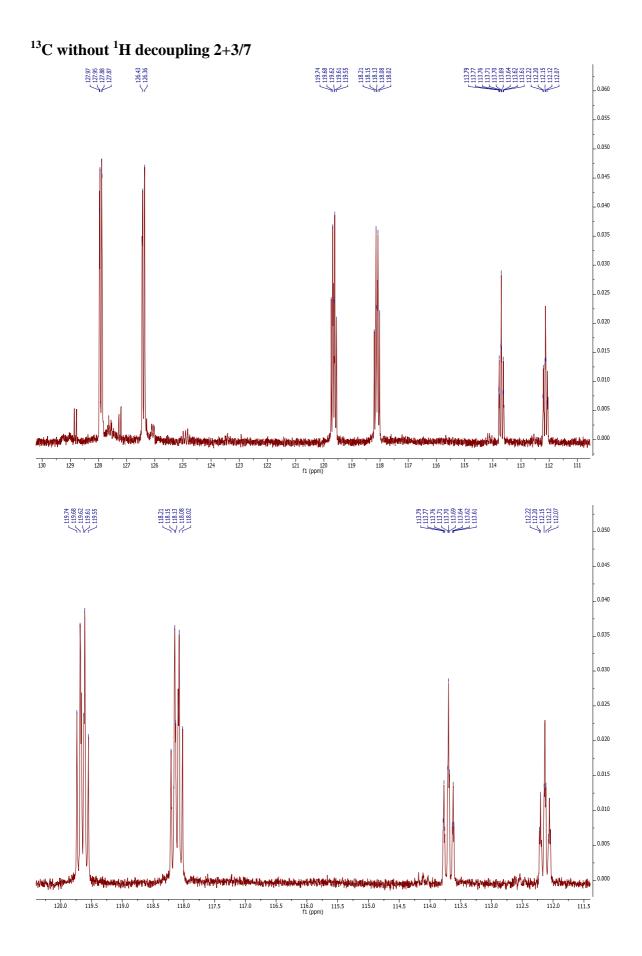

⁷Li NMR (155 MHz, THF- $d_8$ ) δ/ppm = 2.87.


^{*} we found surprisingly that the acetylenic carbon directly next to the carbon bearing the Lithium was extremly shifted. Running of ¹³C without ¹H decoupling confirmed that the signal was the right one, since it is a singulet.

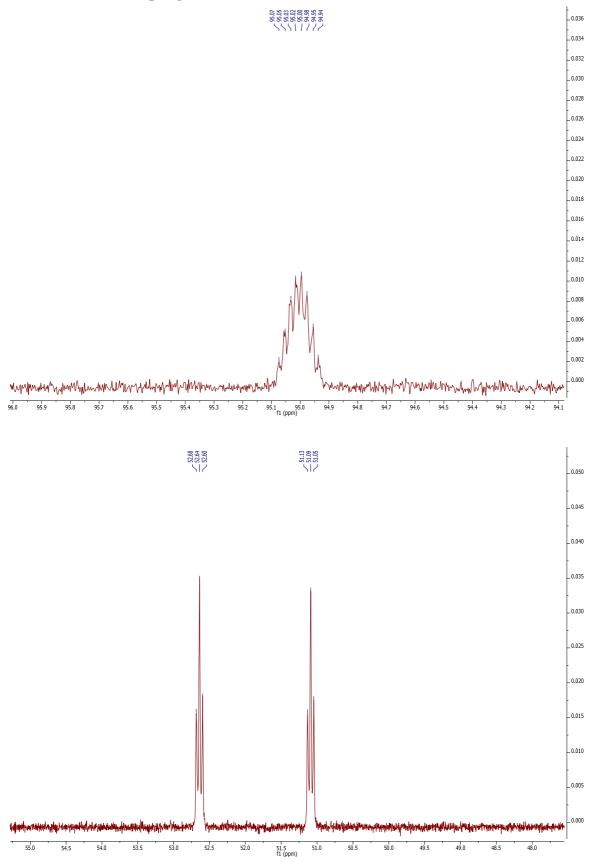
## ¹H NMR (400 MHz, THF- $d_8$ )



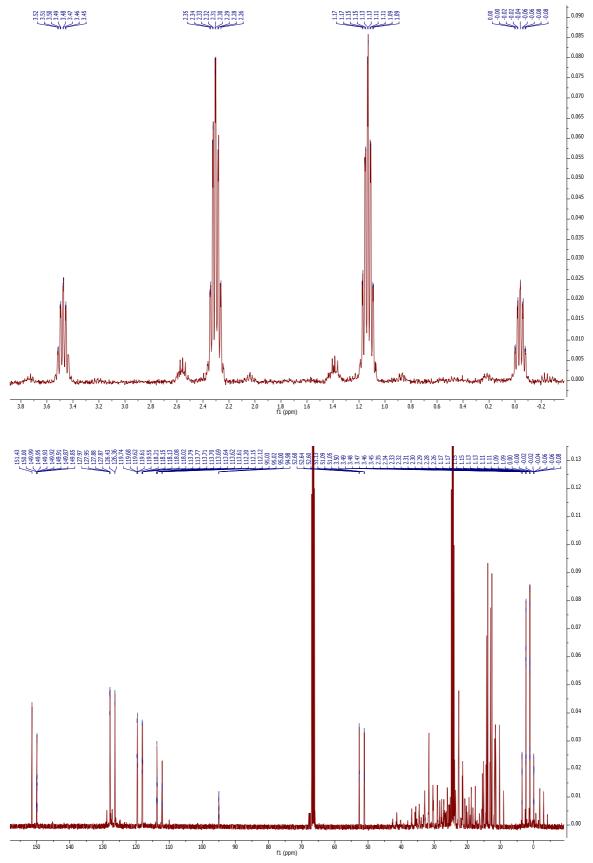


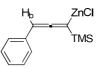




<b>HMBC</b>
-------------




f1 (ppm)




## ¹³C without ¹H decoupling 4+5/7

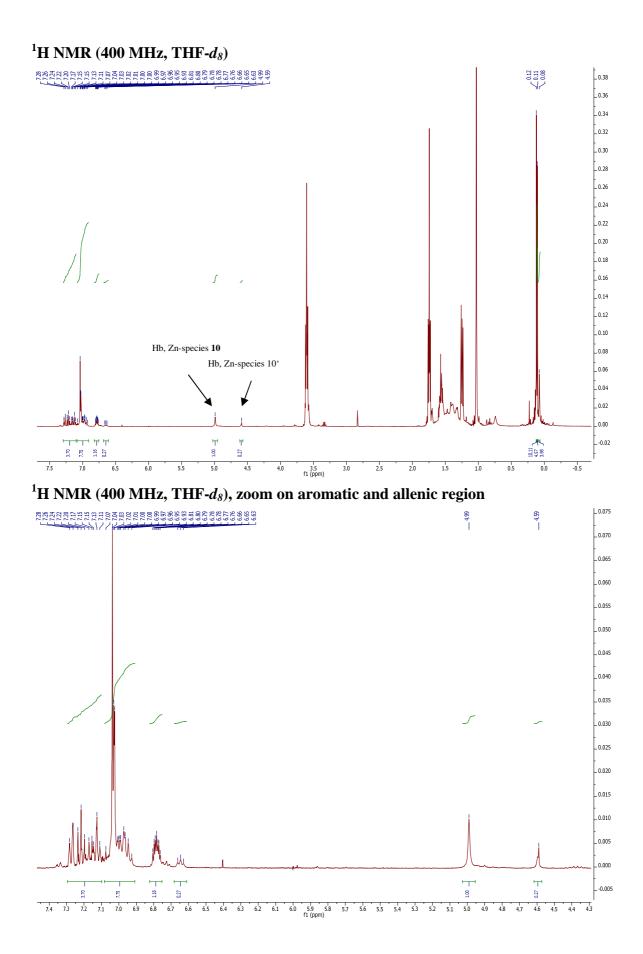


# ¹³C without ¹H decoupling 6+7/7

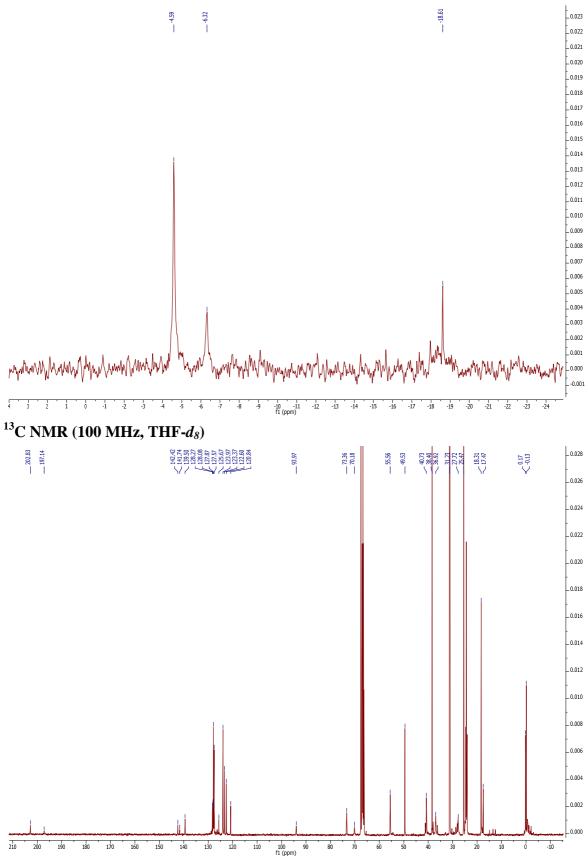


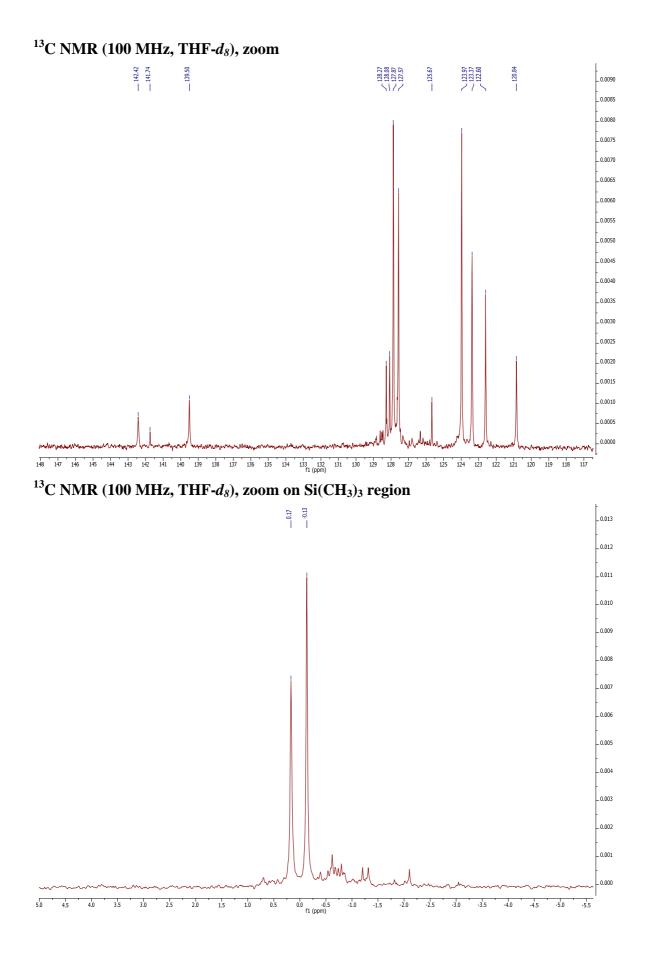
#### NMR studies of the metalated intermediate 10



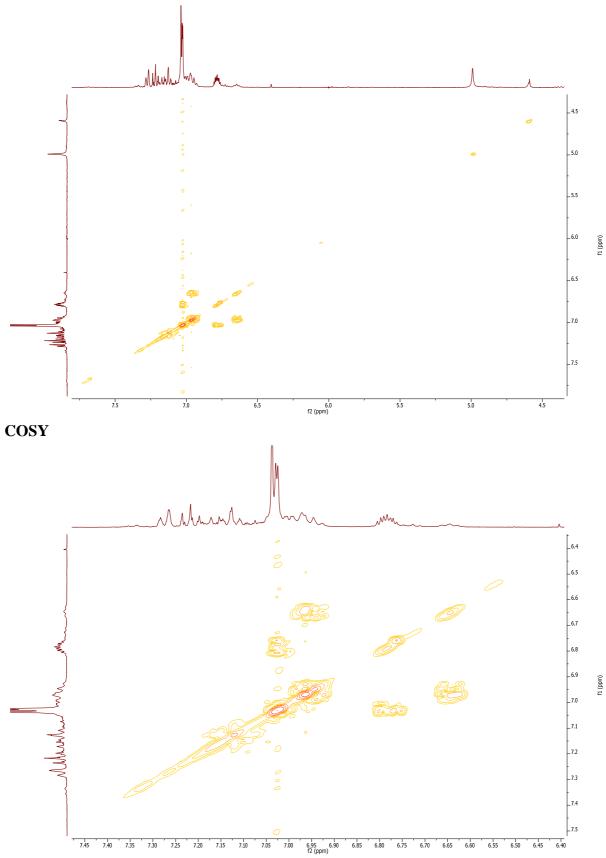

In order to provide structural information on the metalated allene of type **10**, we investigated the metalation of trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**) with TMPZnCl·LiCl at 25°C. Therefore trimethyl(3-phenylprop-1-yn-1-yl)silane (**2a**; 0.25 mmol, 47.0 mg) and THF- $d_8$  (0.5 mL) were charged in a dry, argon flushed NMR tube. TMPZnCl·LiCl (1.2 equiv, 0.27 mL; 1.10 M in THF- $d_8$ ) was slowly added and the tube was shaken once. The NMR tube was kept at 25 °C and NMR studies were performed at 25 °C, including ¹H, ¹³C, ²⁹Si and 2D NMR.

¹**H** NMR (400 MHz, THF- $d_8$ )  $\delta$ /ppm = 7.04 (2H, dd, 2-H_{ortho}), 7.03 (2H, d, 2-H_{meta}), 6.78 (1H, t, 1-H_{para}), 4.99 (1H, s, H_b), 0.12 (9H, s, CH₃).

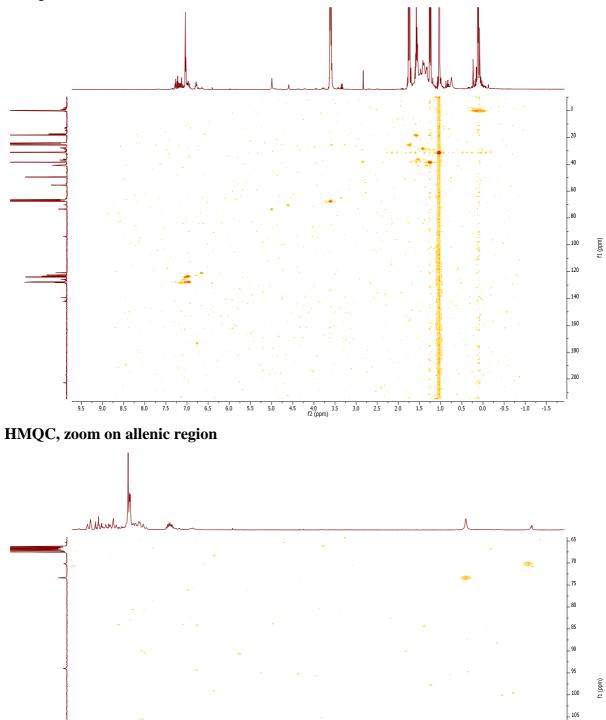

¹³C NMR (100 MHz, THF- $d_8$ )  $\delta$ /ppm = 202.8 (=C=), 139.4 (C_{ipso}), 127.9 (2C_{meta}) 124.0 (2C_{ortho}), 122.7 (C_{para}), 94.0 (C-Zn), 73.4 (C-H_b), - 0.13 (CH₃).


²⁹Si NMR (79 MHz, THF- $d_8$ )  $\delta$ /ppm = -4.59.

NMR studies of the metalated intermediate **10** were done again after 3 and 6 days measuring the same NMR tube (under argon) to show that the zinc species **10** equilibrates to another allenylzinc species.





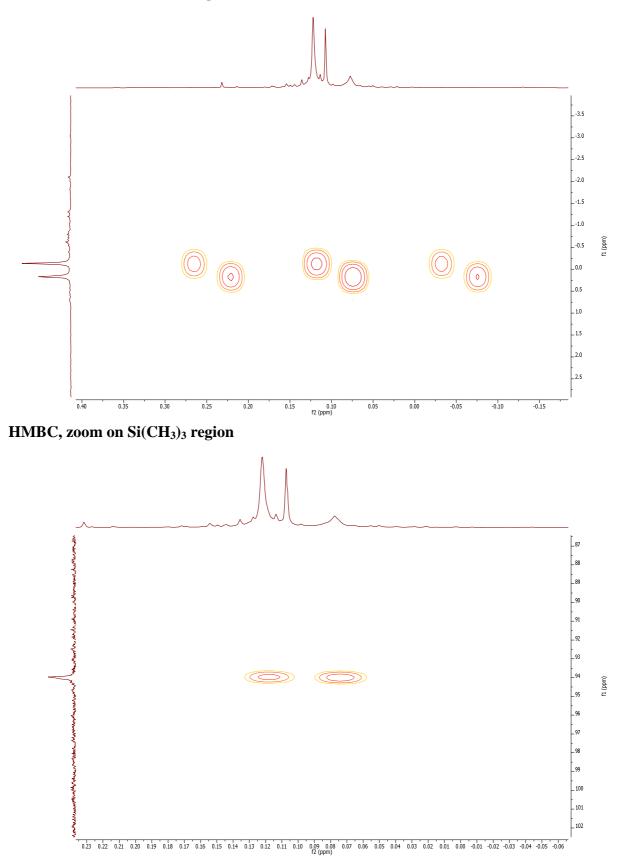



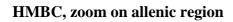


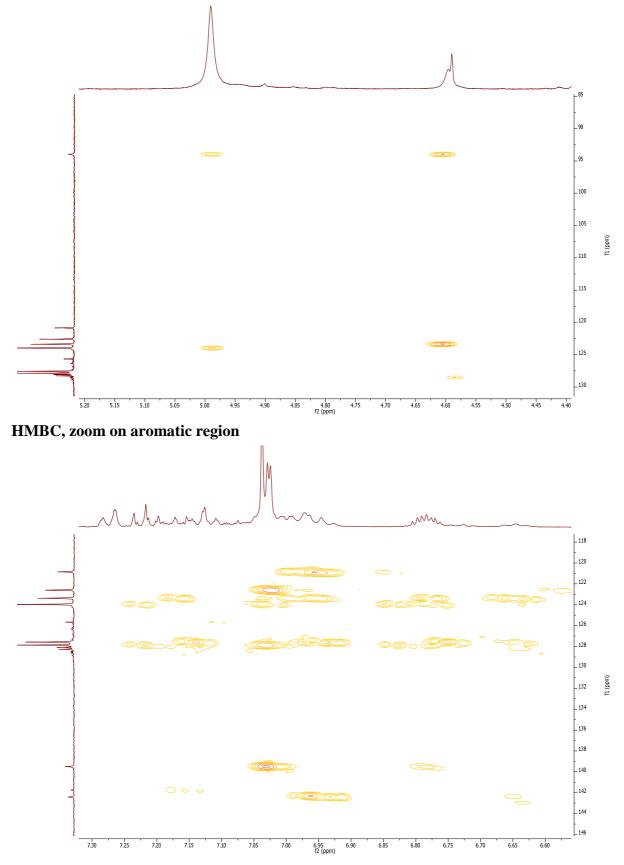




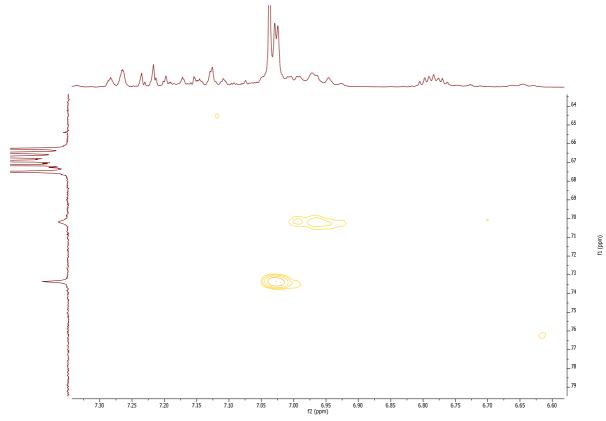

HMQC

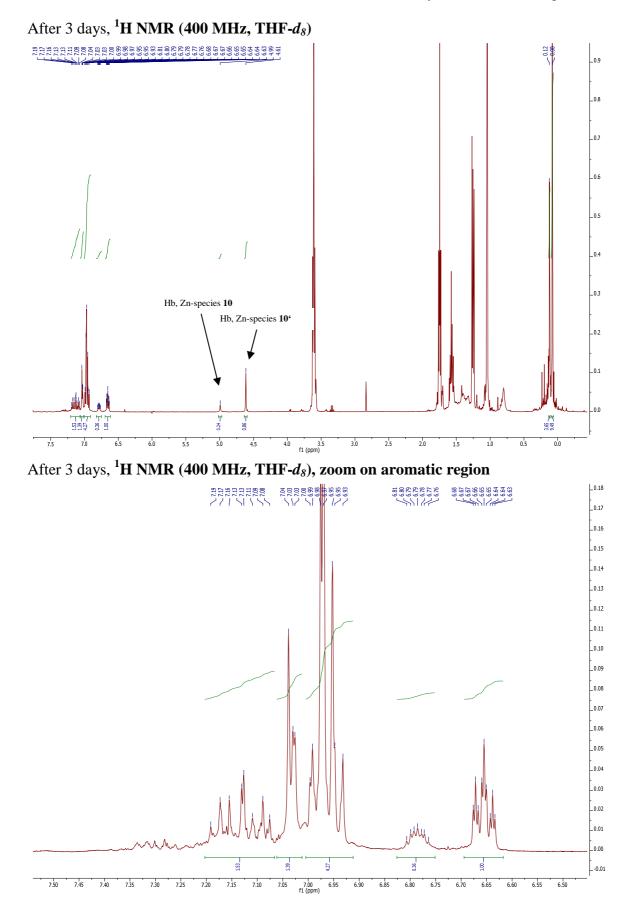




73 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 72 (ppm)

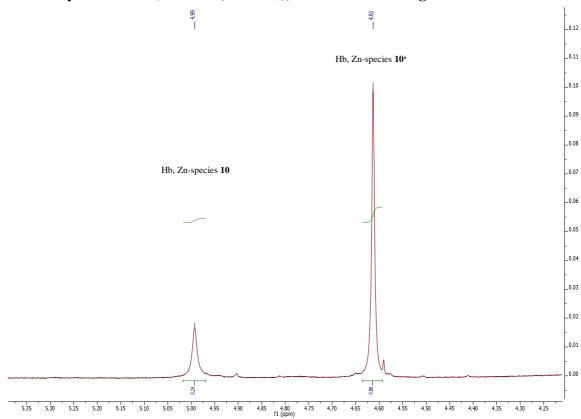



_ 110 _ 115 _ 120 _ 125 _ 130

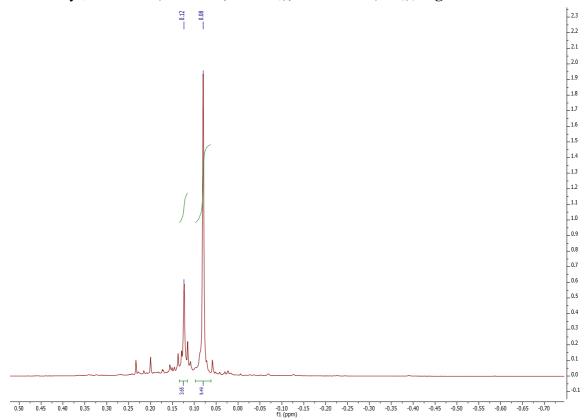

### HMQC, zoom on Si(CH₃)₃ region





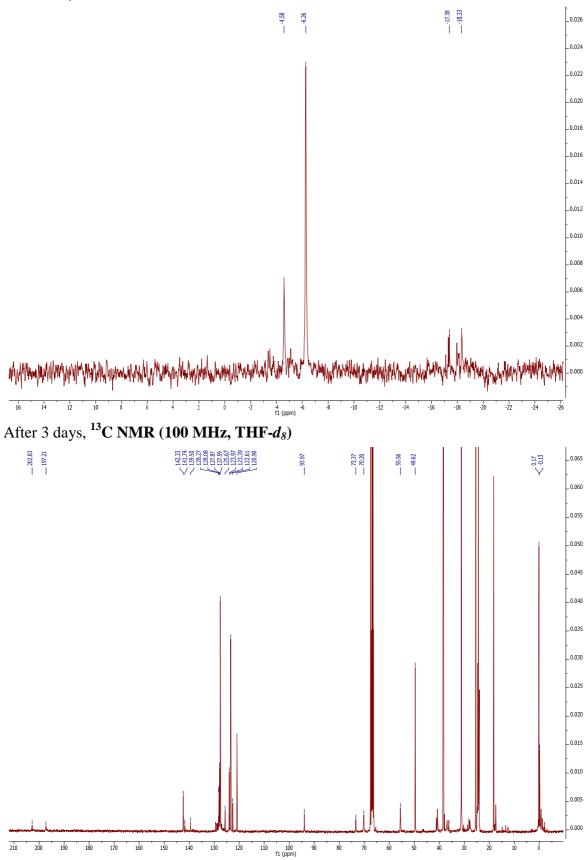



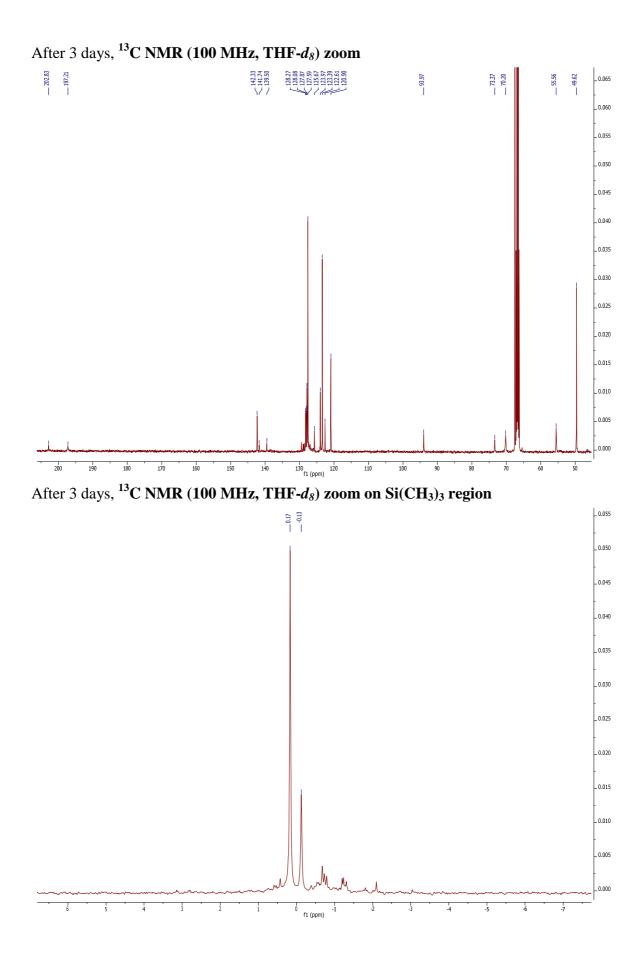


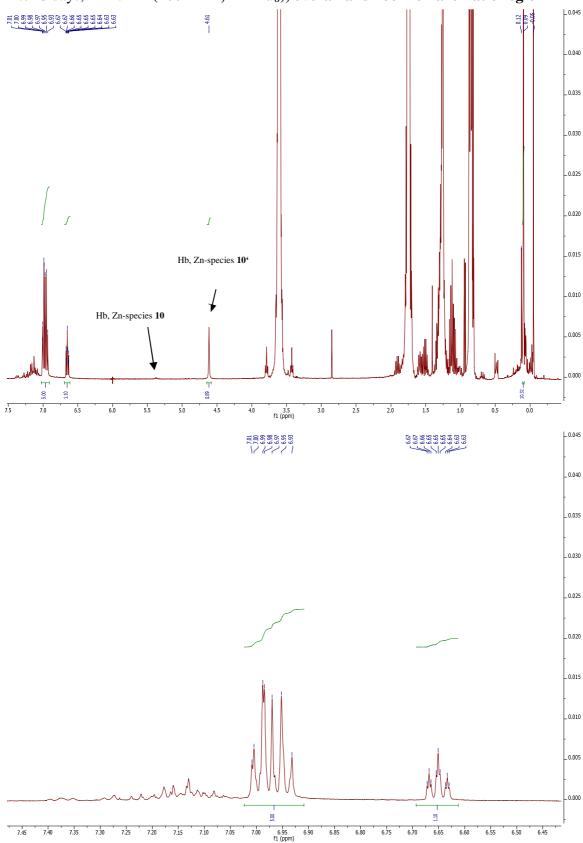





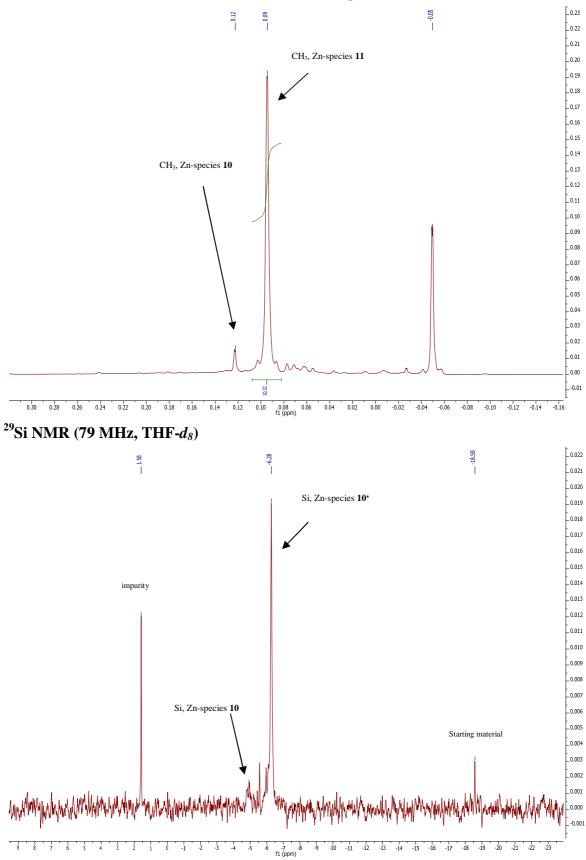

NMR studies of the metalated intermediate 10 after 3 and 6 days at 25°C under argon



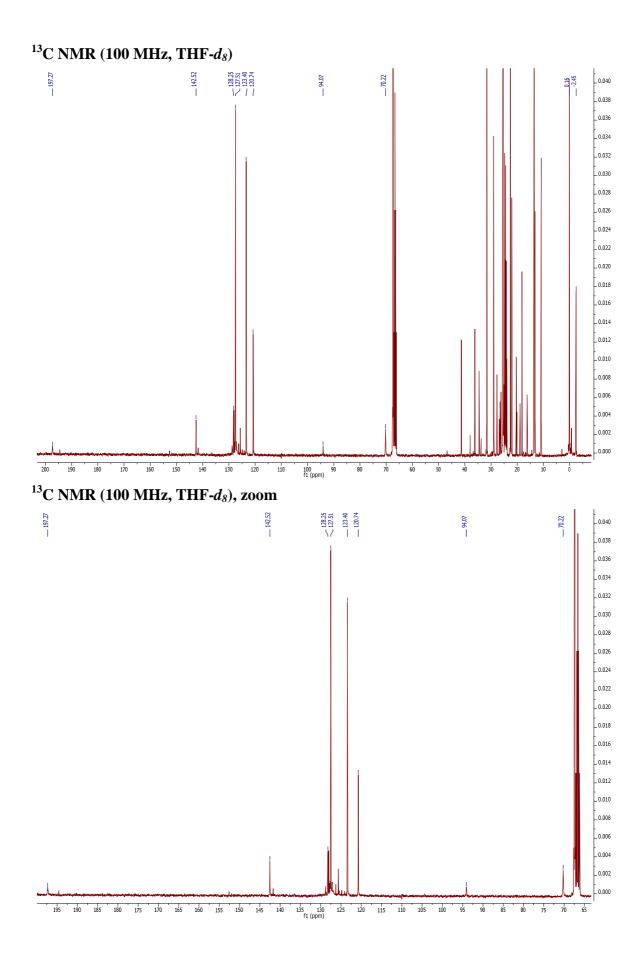


After 3 days, ¹H NMR (400 MHz, THF-*d*₈), zoom on Si(CH₃)₃ region

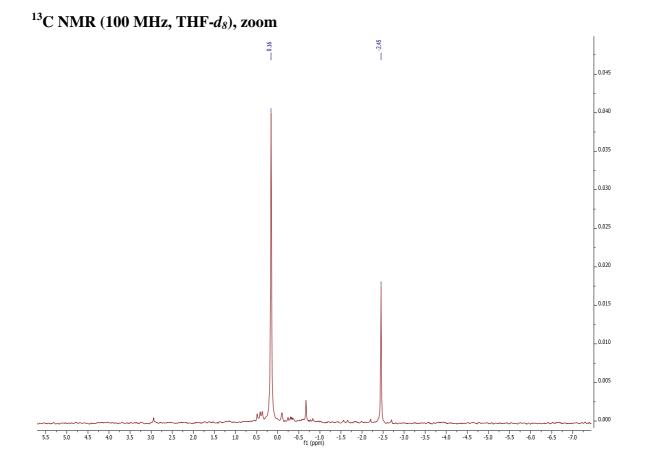



After 3 days, ¹H NMR (400 MHz, THF-d₈), zoom on allenic region






# After 6 days, ¹H NMR (400 MHz, THF-*d*₈), overall and zoom on aromatic region



¹H NMR (400 MHz, THF-*d*₈), zoom on Si(CH₃)₃ region



