Supporting Information

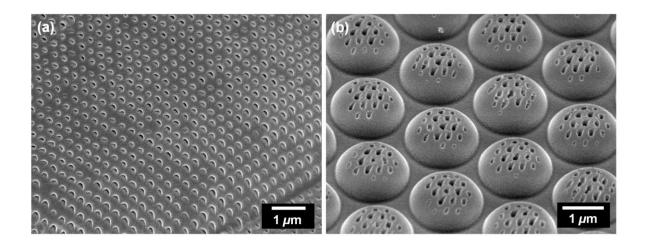
Multiscale Ommatidial Arrays with Broadband and Omnidirectional Antireflection and Antifogging Properties by Sacrificial Layer Mediated Nanoimprinting

Hemant Kumar Raut, ^{1,2,7**}Saman Safari Dinachali, ^{2,7} Yee Chong Loke, ² Ramakrishnan Ganesan, ⁴ Kwadwo Konadu Ansah-Antwi, ^{2,5} Aleksander Góra, ^{1,3} Eng Huat Khoo, ⁶ V. Anand Ganesh, ⁷ Mohammad S. M. Saifullah, ^{2*} Seeram Ramakrishna^{1,3}

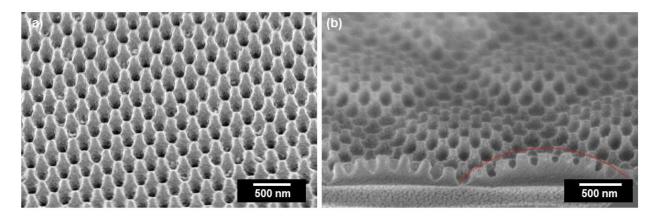
¹ Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Republic of Singapore

² Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore

³ Centre for Nanofibres and Nanotechnology, National University of Singapore, Nanoscience and Nanotechnology Initiative, 2 Engineering Drive 3, Singapore 117576, Republic of Singapore


⁴ Department of Chemistry, Birla Institute of Technology & Science, Pilani–Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500 078, Telangana, India

⁵ Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117574, Republic of Singapore


⁶ Electronics and Photonics Department, Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Connexis, Singapore 138632, Republic of Singapore

⁷ Division of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, 487372, Republic of Singapore

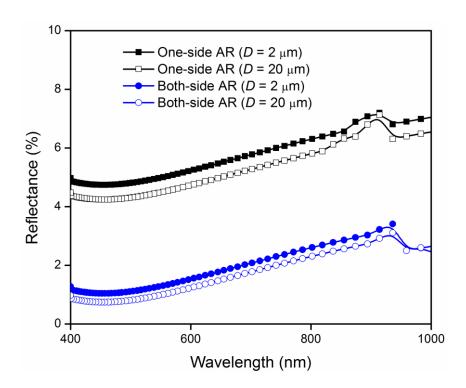

^{*} Corresponding authors' email addresses: hemant_raut@sutd.edu.sg, saifullahm@imre.a-star.edu.sg

Figure S1 (a) AR nanostructures buckled and deformed after imprinting of microlens, without a sacrificial layer to secure the nanostructure arrays (b) A conventional, direct imprinting approach involving imprinting of AR nanostructures atop previously imprinted microlens arrays that could not fully replicate the nanostructure arrays.

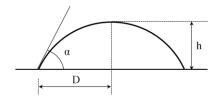


Figure S2 (a) AR nanostructures in a 2-dimesnional plane as imprinted on a planar thermoplastic film. (b) Cross-sectional SEM image of the AR nanostructures on the 3-dimensional microlens array after fabrication through the SLAN methodology.

Figure S3 Finite-difference time domain simulations showing the reflectance obtained for multiscale ommatidial arrays or diameter 2 μ m and 20 μ m.

Table ST1 Design parameters of the microlenses in the multiscale ommatidial arrays

D = Diameter of the ommatidia

h = Height of the ommatidia

 α = Contact angle of the ommatidia

Type	D	h	α
$2 \mu \text{m}$ multiscale	2	0.4	40
ommatidial array			
20 μm multiscale	20	3.0	36
ommatidial array			