Supporting Information ## Silk Macromolecules with Amino Acid-Poly(Ethylene Glycol) Grafts for Controlling Layer-by-Layer Encapsulation and Aggregation of Recombinant Bacterial Cells Irina Drachuk^a, Rossella Calabrese^b, Svetlana Harbaugh^c, Nancy Kelley-Loughnane^c, David L. Kaplan^b, Morley Stone^c, Vladimir V. Tsukruk^{a,*} ^a School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 United States ^b Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155 United States ^c Air Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson AFB, Dayton, Ohio 45433 United States Figure S1. ¹HNMR spectrum of low charge density SF(S)-PGA silk ionomer. S2 Figure S2: ¹HNMR spectrum of low charge density SF(S)-PLL silk ionomer. Figure S3. ¹HNMR spectrum of block SF(S)-PLL-PEG silk copolymer Figure S4. 1 HNMR spectrum of double-brush PEG-grafted SF(Y,S)-PLL-g[D]-PEG silk ionomer with D=9. Figure S5. Viability of bacterial cells encapsulated in 3 bilayers of low charge density silk polyelectrolytes that were initially primed with a bilayer of SF, $(SF)_2$ - $(SF(S)-PLL/SF(S)-PGA)_3$ shells. Viability was assessed with resazurin (a) and MTT (b) assays. Experimental values are represented as means \pm SD, n = 6. Paired t test, t = 0.01. Figure S6. Kinetics of GFP expression in *E. coli* (a) and *B. subtilis* (b) cells encapsulated in 3 bilayers of low charge density silk polyelectrolytes that were initially primed with a bilayer of SF, (SF)₂-(SF(S)-PLL/SF(S)-PGA)₃ shells. Experimental values are represented as means \pm SD, n = 6. Paired t = 0.05.